diff --git a/src/HOL/Cardinals/Wellorder_Extension.thy b/src/HOL/Cardinals/Wellorder_Extension.thy --- a/src/HOL/Cardinals/Wellorder_Extension.thy +++ b/src/HOL/Cardinals/Wellorder_Extension.thy @@ -1,214 +1,213 @@ (* Title: HOL/Cardinals/Wellorder_Extension.thy Author: Christian Sternagel, JAIST *) section \Extending Well-founded Relations to Wellorders\ theory Wellorder_Extension imports Main Order_Union begin subsection \Extending Well-founded Relations to Wellorders\ text \A \emph{downset} (also lower set, decreasing set, initial segment, or downward closed set) is closed w.r.t.\ smaller elements.\ definition downset_on where "downset_on A r = (\x y. (x, y) \ r \ y \ A \ x \ A)" (* text {*Connection to order filters of the @{theory Cardinals} theory.*} lemma (in wo_rel) ofilter_downset_on_conv: "ofilter A \ downset_on A r \ A \ Field r" by (auto simp: downset_on_def ofilter_def under_def) *) lemma downset_onI: "(\x y. (x, y) \ r \ y \ A \ x \ A) \ downset_on A r" by (auto simp: downset_on_def) lemma downset_onD: "downset_on A r \ (x, y) \ r \ y \ A \ x \ A" unfolding downset_on_def by blast text \Extensions of relations w.r.t.\ a given set.\ definition extension_on where "extension_on A r s = (\x\A. \y\A. (x, y) \ s \ (x, y) \ r)" lemma extension_onI: "(\x y. \x \ A; y \ A; (x, y) \ s\ \ (x, y) \ r) \ extension_on A r s" by (auto simp: extension_on_def) lemma extension_onD: "extension_on A r s \ x \ A \ y \ A \ (x, y) \ s \ (x, y) \ r" by (auto simp: extension_on_def) lemma downset_on_Union: assumes "\r. r \ R \ downset_on (Field r) p" shows "downset_on (Field (\R)) p" using assms by (auto intro: downset_onI dest: downset_onD) lemma chain_subset_extension_on_Union: assumes "chain\<^sub>\ R" and "\r. r \ R \ extension_on (Field r) r p" shows "extension_on (Field (\R)) (\R) p" using assms by (simp add: chain_subset_def extension_on_def) (metis (no_types) mono_Field subsetD) lemma downset_on_empty [simp]: "downset_on {} p" by (auto simp: downset_on_def) lemma extension_on_empty [simp]: "extension_on {} p q" by (auto simp: extension_on_def) text \Every well-founded relation can be extended to a wellorder.\ theorem well_order_extension: assumes "wf p" shows "\w. p \ w \ Well_order w" proof - let ?K = "{r. Well_order r \ downset_on (Field r) p \ extension_on (Field r) r p}" define I where "I = init_seg_of \ ?K \ ?K" have I_init: "I \ init_seg_of" by (simp add: I_def) then have subch: "\R. R \ Chains I \ chain\<^sub>\ R" by (auto simp: init_seg_of_def chain_subset_def Chains_def) have Chains_wo: "\R r. R \ Chains I \ r \ R \ Well_order r \ downset_on (Field r) p \ extension_on (Field r) r p" by (simp add: Chains_def I_def) blast have FI: "Field I = ?K" by (auto simp: I_def init_seg_of_def Field_def) then have 0: "Partial_order I" by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def trans_def I_def elim: trans_init_seg_of) - { fix R assume "R \ Chains I" - then have Ris: "R \ Chains init_seg_of" using mono_Chains [OF I_init] by blast + have "\R \ ?K \ (\r\R. (r,\R) \ I)" if "R \ Chains I" for R + proof - + from that have Ris: "R \ Chains init_seg_of" using mono_Chains [OF I_init] by blast have subch: "chain\<^sub>\ R" using \R \ Chains I\ I_init by (auto simp: init_seg_of_def chain_subset_def Chains_def) have "\r\R. Refl r" and "\r\R. trans r" and "\r\R. antisym r" and "\r\R. Total r" and "\r\R. wf (r - Id)" and "\r. r \ R \ downset_on (Field r) p" and "\r. r \ R \ extension_on (Field r) r p" using Chains_wo [OF \R \ Chains I\] by (simp_all add: order_on_defs) have "Refl (\R)" using \\r\R. Refl r\ unfolding refl_on_def by fastforce moreover have "trans (\R)" by (rule chain_subset_trans_Union [OF subch \\r\R. trans r\]) moreover have "antisym (\R)" by (rule chain_subset_antisym_Union [OF subch \\r\R. antisym r\]) moreover have "Total (\R)" by (rule chain_subset_Total_Union [OF subch \\r\R. Total r\]) moreover have "wf ((\R) - Id)" proof - have "(\R) - Id = \{r - Id | r. r \ R}" by blast with \\r\R. wf (r - Id)\ wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]] show ?thesis by fastforce qed ultimately have "Well_order (\R)" by (simp add: order_on_defs) moreover have "\r\R. r initial_segment_of \R" using Ris by (simp add: Chains_init_seg_of_Union) moreover have "downset_on (Field (\R)) p" by (rule downset_on_Union [OF \\r. r \ R \ downset_on (Field r) p\]) moreover have "extension_on (Field (\R)) (\R) p" by (rule chain_subset_extension_on_Union [OF subch \\r. r \ R \ extension_on (Field r) r p\]) - ultimately have "\R \ ?K \ (\r\R. (r,\R) \ I)" + ultimately show ?thesis using mono_Chains [OF I_init] and \R \ Chains I\ by (simp (no_asm) add: I_def del: Field_Union) (metis Chains_wo) - } + qed then have 1: "\u\Field I. \r\R. (r, u) \ I" if "R\Chains I" for R using that by (subst FI) blast txt \Zorn's Lemma yields a maximal wellorder m.\ from Zorns_po_lemma [OF 0 1] obtain m :: "('a \ 'a) set" where "Well_order m" and "downset_on (Field m) p" and "extension_on (Field m) m p" and max: "\r. Well_order r \ downset_on (Field r) p \ extension_on (Field r) r p \ (m, r) \ I \ r = m" by (auto simp: FI) have "Field p \ Field m" proof (rule ccontr) let ?Q = "Field p - Field m" assume "\ (Field p \ Field m)" with assms [unfolded wf_eq_minimal, THEN spec, of ?Q] obtain x where "x \ Field p" and "x \ Field m" and min: "\y. (y, x) \ p \ y \ ?Q" by blast txt \Add \<^term>\x\ as topmost element to \<^term>\m\.\ let ?s = "{(y, x) | y. y \ Field m}" let ?m = "insert (x, x) m \ ?s" have Fm: "Field ?m = insert x (Field m)" by (auto simp: Field_def) have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)" using \Well_order m\ by (simp_all add: order_on_defs) txt \We show that the extension is a wellorder.\ have "Refl ?m" using \Refl m\ Fm by (auto simp: refl_on_def) moreover have "trans ?m" using \trans m\ \x \ Field m\ unfolding trans_def Field_def Domain_unfold Domain_converse [symmetric] by blast moreover have "antisym ?m" using \antisym m\ \x \ Field m\ unfolding antisym_def Field_def Domain_unfold Domain_converse [symmetric] by blast moreover have "Total ?m" using \Total m\ Fm by (auto simp: Relation.total_on_def) moreover have "wf (?m - Id)" proof - have "wf ?s" using \x \ Field m\ by (simp add: wf_eq_minimal Field_def Domain_unfold Domain_converse [symmetric]) metis thus ?thesis using \wf (m - Id)\ \x \ Field m\ wf_subset [OF \wf ?s\ Diff_subset] by (fastforce intro!: wf_Un simp add: Un_Diff Field_def) qed ultimately have "Well_order ?m" by (simp add: order_on_defs) moreover have "extension_on (Field ?m) ?m p" using \extension_on (Field m) m p\ \downset_on (Field m) p\ by (subst Fm) (auto simp: extension_on_def dest: downset_onD) moreover have "downset_on (Field ?m) p" apply (subst Fm) using \downset_on (Field m) p\ and min unfolding downset_on_def Field_def by blast moreover have "(m, ?m) \ I" using \Well_order m\ and \Well_order ?m\ and \downset_on (Field m) p\ and \downset_on (Field ?m) p\ and \extension_on (Field m) m p\ and \extension_on (Field ?m) ?m p\ and \Refl m\ and \x \ Field m\ by (auto simp: I_def init_seg_of_def refl_on_def) ultimately \ \This contradicts maximality of m:\ show False using max and \x \ Field m\ unfolding Field_def by blast qed have "p \ m" using \Field p \ Field m\ and \extension_on (Field m) m p\ unfolding Field_def extension_on_def by auto fast with \Well_order m\ show ?thesis by blast qed text \Every well-founded relation can be extended to a total wellorder.\ corollary total_well_order_extension: assumes "wf p" shows "\w. p \ w \ Well_order w \ Field w = UNIV" proof - from well_order_extension [OF assms] obtain w where "p \ w" and wo: "Well_order w" by blast let ?A = "UNIV - Field w" from well_order_on [of ?A] obtain w' where wo': "well_order_on ?A w'" .. have [simp]: "Field w' = ?A" using well_order_on_Well_order [OF wo'] by simp have *: "Field w \ Field w' = {}" by simp let ?w = "w \o w'" have "p \ ?w" using \p \ w\ by (auto simp: Osum_def) moreover have "Well_order ?w" using Osum_Well_order [OF * wo] and wo' by simp moreover have "Field ?w = UNIV" by (simp add: Field_Osum) ultimately show ?thesis by blast qed corollary well_order_on_extension: assumes "wf p" and "Field p \ A" shows "\w. p \ w \ well_order_on A w" proof - from total_well_order_extension [OF \wf p\] obtain r where "p \ r" and wo: "Well_order r" and univ: "Field r = UNIV" by blast let ?r = "{(x, y). x \ A \ y \ A \ (x, y) \ r}" from \p \ r\ have "p \ ?r" using \Field p \ A\ by (auto simp: Field_def) - have 1: "Field ?r = A" using wo univ - by (fastforce simp: Field_def order_on_defs refl_on_def) have "Refl r" "trans r" "antisym r" "Total r" "wf (r - Id)" using \Well_order r\ by (simp_all add: order_on_defs) have "refl_on A ?r" using \Refl r\ by (auto simp: refl_on_def univ) moreover have "trans ?r" using \trans r\ unfolding trans_def by blast moreover have "antisym ?r" using \antisym r\ unfolding antisym_def by blast moreover have "total_on A ?r" using \Total r\ by (simp add: total_on_def univ) moreover have "wf (?r - Id)" by (rule wf_subset [OF \wf(r - Id)\]) blast ultimately have "well_order_on A ?r" by (simp add: order_on_defs) with \p \ ?r\ show ?thesis by blast qed end