diff --git a/src/HOL/Data_Structures/Binomial_Heap.thy b/src/HOL/Data_Structures/Binomial_Heap.thy --- a/src/HOL/Data_Structures/Binomial_Heap.thy +++ b/src/HOL/Data_Structures/Binomial_Heap.thy @@ -1,728 +1,728 @@ (* Author: Peter Lammich Tobias Nipkow (tuning) *) section \Binomial Heap\ theory Binomial_Heap imports "HOL-Library.Pattern_Aliases" Complex_Main Priority_Queue_Specs begin text \ We formalize the binomial heap presentation from Okasaki's book. We show the functional correctness and complexity of all operations. The presentation is engineered for simplicity, and most proofs are straightforward and automatic. \ subsection \Binomial Tree and Heap Datatype\ datatype 'a tree = Node (rank: nat) (root: 'a) (children: "'a tree list") type_synonym 'a heap = "'a tree list" subsubsection \Multiset of elements\ fun mset_tree :: "'a::linorder tree \ 'a multiset" where "mset_tree (Node _ a ts) = {#a#} + (\t\#mset ts. mset_tree t)" definition mset_heap :: "'a::linorder heap \ 'a multiset" where "mset_heap ts = (\t\#mset ts. mset_tree t)" lemma mset_tree_simp_alt[simp]: "mset_tree (Node r a ts) = {#a#} + mset_heap ts" unfolding mset_heap_def by auto declare mset_tree.simps[simp del] lemma mset_tree_nonempty[simp]: "mset_tree t \ {#}" by (cases t) auto lemma mset_heap_Nil[simp]: "mset_heap [] = {#}" by (auto simp: mset_heap_def) lemma mset_heap_Cons[simp]: "mset_heap (t#ts) = mset_tree t + mset_heap ts" by (auto simp: mset_heap_def) lemma mset_heap_empty_iff[simp]: "mset_heap ts = {#} \ ts=[]" by (auto simp: mset_heap_def) lemma root_in_mset[simp]: "root t \# mset_tree t" by (cases t) auto lemma mset_heap_rev_eq[simp]: "mset_heap (rev ts) = mset_heap ts" by (auto simp: mset_heap_def) subsubsection \Invariants\ text \Binomial invariant\ fun invar_btree :: "'a::linorder tree \ bool" where "invar_btree (Node r x ts) \ (\t\set ts. invar_btree t) \ map rank ts = rev [0.. bool" where "invar_bheap ts \ (\t\set ts. invar_btree t) \ (sorted_wrt (<) (map rank ts))" text \Ordering (heap) invariant\ fun invar_otree :: "'a::linorder tree \ bool" where "invar_otree (Node _ x ts) \ (\t\set ts. invar_otree t \ x \ root t)" definition invar_oheap :: "'a::linorder heap \ bool" where "invar_oheap ts \ (\t\set ts. invar_otree t)" definition invar :: "'a::linorder heap \ bool" where "invar ts \ invar_bheap ts \ invar_oheap ts" text \The children of a node are a valid heap\ lemma invar_oheap_children: "invar_otree (Node r v ts) \ invar_oheap (rev ts)" by (auto simp: invar_oheap_def) lemma invar_bheap_children: "invar_btree (Node r v ts) \ invar_bheap (rev ts)" by (auto simp: invar_bheap_def rev_map[symmetric]) subsection \Operations and Their Functional Correctness\ subsubsection \\link\\ context includes pattern_aliases begin fun link :: "('a::linorder) tree \ 'a tree \ 'a tree" where "link (Node r x\<^sub>1 ts\<^sub>1 =: t\<^sub>1) (Node r' x\<^sub>2 ts\<^sub>2 =: t\<^sub>2) = (if x\<^sub>1\x\<^sub>2 then Node (r+1) x\<^sub>1 (t\<^sub>2#ts\<^sub>1) else Node (r+1) x\<^sub>2 (t\<^sub>1#ts\<^sub>2))" end lemma invar_btree_link: assumes "invar_btree t\<^sub>1" assumes "invar_btree t\<^sub>2" assumes "rank t\<^sub>1 = rank t\<^sub>2" shows "invar_btree (link t\<^sub>1 t\<^sub>2)" using assms by (cases "(t\<^sub>1, t\<^sub>2)" rule: link.cases) simp -lemma invar_link_otree: +lemma invar_otree_link: assumes "invar_otree t\<^sub>1" assumes "invar_otree t\<^sub>2" shows "invar_otree (link t\<^sub>1 t\<^sub>2)" using assms by (cases "(t\<^sub>1, t\<^sub>2)" rule: link.cases) auto lemma rank_link[simp]: "rank (link t\<^sub>1 t\<^sub>2) = rank t\<^sub>1 + 1" by (cases "(t\<^sub>1, t\<^sub>2)" rule: link.cases) simp lemma mset_link[simp]: "mset_tree (link t\<^sub>1 t\<^sub>2) = mset_tree t\<^sub>1 + mset_tree t\<^sub>2" by (cases "(t\<^sub>1, t\<^sub>2)" rule: link.cases) simp subsubsection \\ins_tree\\ fun ins_tree :: "'a::linorder tree \ 'a heap \ 'a heap" where "ins_tree t [] = [t]" | "ins_tree t\<^sub>1 (t\<^sub>2#ts) = (if rank t\<^sub>1 < rank t\<^sub>2 then t\<^sub>1#t\<^sub>2#ts else ins_tree (link t\<^sub>1 t\<^sub>2) ts)" lemma invar_bheap_Cons[simp]: "invar_bheap (t#ts) \ invar_btree t \ invar_bheap ts \ (\t'\set ts. rank t < rank t')" by (auto simp: invar_bheap_def) lemma invar_btree_ins_tree: assumes "invar_btree t" assumes "invar_bheap ts" assumes "\t'\set ts. rank t \ rank t'" shows "invar_bheap (ins_tree t ts)" using assms by (induction t ts rule: ins_tree.induct) (auto simp: invar_btree_link less_eq_Suc_le[symmetric]) lemma invar_oheap_Cons[simp]: "invar_oheap (t#ts) \ invar_otree t \ invar_oheap ts" by (auto simp: invar_oheap_def) lemma invar_oheap_ins_tree: assumes "invar_otree t" assumes "invar_oheap ts" shows "invar_oheap (ins_tree t ts)" using assms -by (induction t ts rule: ins_tree.induct) (auto simp: invar_link_otree) +by (induction t ts rule: ins_tree.induct) (auto simp: invar_otree_link) lemma mset_heap_ins_tree[simp]: "mset_heap (ins_tree t ts) = mset_tree t + mset_heap ts" by (induction t ts rule: ins_tree.induct) auto lemma ins_tree_rank_bound: assumes "t' \ set (ins_tree t ts)" assumes "\t'\set ts. rank t\<^sub>0 < rank t'" assumes "rank t\<^sub>0 < rank t" shows "rank t\<^sub>0 < rank t'" using assms by (induction t ts rule: ins_tree.induct) (auto split: if_splits) subsubsection \\insert\\ hide_const (open) insert definition insert :: "'a::linorder \ 'a heap \ 'a heap" where "insert x ts = ins_tree (Node 0 x []) ts" lemma invar_insert[simp]: "invar t \ invar (insert x t)" by (auto intro!: invar_btree_ins_tree simp: invar_oheap_ins_tree insert_def invar_def) lemma mset_heap_insert[simp]: "mset_heap (insert x t) = {#x#} + mset_heap t" by(auto simp: insert_def) subsubsection \\merge\\ context includes pattern_aliases begin fun merge :: "'a::linorder heap \ 'a heap \ 'a heap" where "merge ts\<^sub>1 [] = ts\<^sub>1" | "merge [] ts\<^sub>2 = ts\<^sub>2" | "merge (t\<^sub>1#ts\<^sub>1 =: h\<^sub>1) (t\<^sub>2#ts\<^sub>2 =: h\<^sub>2) = ( if rank t\<^sub>1 < rank t\<^sub>2 then t\<^sub>1 # merge ts\<^sub>1 h\<^sub>2 else if rank t\<^sub>2 < rank t\<^sub>1 then t\<^sub>2 # merge h\<^sub>1 ts\<^sub>2 else ins_tree (link t\<^sub>1 t\<^sub>2) (merge ts\<^sub>1 ts\<^sub>2) )" end lemma merge_simp2[simp]: "merge [] ts\<^sub>2 = ts\<^sub>2" by (cases ts\<^sub>2) auto lemma merge_rank_bound: assumes "t' \ set (merge ts\<^sub>1 ts\<^sub>2)" assumes "\t\<^sub>1\set ts\<^sub>1. rank t < rank t\<^sub>1" assumes "\t\<^sub>2\set ts\<^sub>2. rank t < rank t\<^sub>2" shows "rank t < rank t'" using assms by (induction ts\<^sub>1 ts\<^sub>2 arbitrary: t' rule: merge.induct) (auto split: if_splits simp: ins_tree_rank_bound) lemma invar_bheap_merge: assumes "invar_bheap ts\<^sub>1" assumes "invar_bheap ts\<^sub>2" shows "invar_bheap (merge ts\<^sub>1 ts\<^sub>2)" using assms proof (induction ts\<^sub>1 ts\<^sub>2 rule: merge.induct) case (3 t\<^sub>1 ts\<^sub>1 t\<^sub>2 ts\<^sub>2) from "3.prems" have [simp]: "invar_btree t\<^sub>1" "invar_btree t\<^sub>2" by auto consider (LT) "rank t\<^sub>1 < rank t\<^sub>2" | (GT) "rank t\<^sub>1 > rank t\<^sub>2" | (EQ) "rank t\<^sub>1 = rank t\<^sub>2" using antisym_conv3 by blast then show ?case proof cases case LT then show ?thesis using 3 by (force elim!: merge_rank_bound) next case GT then show ?thesis using 3 by (force elim!: merge_rank_bound) next case [simp]: EQ from "3.IH"(3) "3.prems" have [simp]: "invar_bheap (merge ts\<^sub>1 ts\<^sub>2)" by auto have "rank t\<^sub>2 < rank t'" if "t' \ set (merge ts\<^sub>1 ts\<^sub>2)" for t' using that apply (rule merge_rank_bound) using "3.prems" by auto with EQ show ?thesis by (auto simp: Suc_le_eq invar_btree_ins_tree invar_btree_link) qed qed simp_all lemma invar_oheap_merge: assumes "invar_oheap ts\<^sub>1" assumes "invar_oheap ts\<^sub>2" shows "invar_oheap (merge ts\<^sub>1 ts\<^sub>2)" using assms by (induction ts\<^sub>1 ts\<^sub>2 rule: merge.induct) - (auto simp: invar_oheap_ins_tree invar_link_otree) + (auto simp: invar_oheap_ins_tree invar_otree_link) lemma invar_merge[simp]: "\ invar ts\<^sub>1; invar ts\<^sub>2 \ \ invar (merge ts\<^sub>1 ts\<^sub>2)" by (auto simp: invar_def invar_bheap_merge invar_oheap_merge) lemma mset_heap_merge[simp]: "mset_heap (merge ts\<^sub>1 ts\<^sub>2) = mset_heap ts\<^sub>1 + mset_heap ts\<^sub>2" by (induction ts\<^sub>1 ts\<^sub>2 rule: merge.induct) auto subsubsection \\get_min\\ fun get_min :: "'a::linorder heap \ 'a" where "get_min [t] = root t" | "get_min (t#ts) = min (root t) (get_min ts)" lemma invar_otree_root_min: assumes "invar_otree t" assumes "x \# mset_tree t" shows "root t \ x" using assms by (induction t arbitrary: x rule: mset_tree.induct) (fastforce simp: mset_heap_def) lemma get_min_mset_aux: assumes "ts\[]" assumes "invar_oheap ts" assumes "x \# mset_heap ts" shows "get_min ts \ x" using assms apply (induction ts arbitrary: x rule: get_min.induct) apply (auto simp: invar_otree_root_min min_def intro: order_trans; meson linear order_trans invar_otree_root_min )+ done lemma get_min_mset: assumes "ts\[]" assumes "invar ts" assumes "x \# mset_heap ts" shows "get_min ts \ x" using assms by (auto simp: invar_def get_min_mset_aux) lemma get_min_member: "ts\[] \ get_min ts \# mset_heap ts" by (induction ts rule: get_min.induct) (auto simp: min_def) lemma get_min: assumes "mset_heap ts \ {#}" assumes "invar ts" shows "get_min ts = Min_mset (mset_heap ts)" using assms get_min_member get_min_mset by (auto simp: eq_Min_iff) subsubsection \\get_min_rest\\ fun get_min_rest :: "'a::linorder heap \ 'a tree \ 'a heap" where "get_min_rest [t] = (t,[])" | "get_min_rest (t#ts) = (let (t',ts') = get_min_rest ts in if root t \ root t' then (t,ts) else (t',t#ts'))" lemma get_min_rest_get_min_same_root: assumes "ts\[]" assumes "get_min_rest ts = (t',ts')" shows "root t' = get_min ts" using assms by (induction ts arbitrary: t' ts' rule: get_min.induct) (auto simp: min_def split: prod.splits) lemma mset_get_min_rest: assumes "get_min_rest ts = (t',ts')" assumes "ts\[]" shows "mset ts = {#t'#} + mset ts'" using assms by (induction ts arbitrary: t' ts' rule: get_min.induct) (auto split: prod.splits if_splits) lemma set_get_min_rest: assumes "get_min_rest ts = (t', ts')" assumes "ts\[]" shows "set ts = Set.insert t' (set ts')" using mset_get_min_rest[OF assms, THEN arg_cong[where f=set_mset]] by auto lemma invar_bheap_get_min_rest: assumes "get_min_rest ts = (t',ts')" assumes "ts\[]" assumes "invar_bheap ts" shows "invar_btree t'" and "invar_bheap ts'" proof - have "invar_btree t' \ invar_bheap ts'" using assms proof (induction ts arbitrary: t' ts' rule: get_min.induct) case (2 t v va) then show ?case apply (clarsimp split: prod.splits if_splits) apply (drule set_get_min_rest; fastforce) done qed auto thus "invar_btree t'" and "invar_bheap ts'" by auto qed lemma invar_oheap_get_min_rest: assumes "get_min_rest ts = (t',ts')" assumes "ts\[]" assumes "invar_oheap ts" shows "invar_otree t'" and "invar_oheap ts'" using assms by (induction ts arbitrary: t' ts' rule: get_min.induct) (auto split: prod.splits if_splits) subsubsection \\del_min\\ definition del_min :: "'a::linorder heap \ 'a::linorder heap" where "del_min ts = (case get_min_rest ts of (Node r x ts\<^sub>1, ts\<^sub>2) \ merge (rev ts\<^sub>1) ts\<^sub>2)" lemma invar_del_min[simp]: assumes "ts \ []" assumes "invar ts" shows "invar (del_min ts)" using assms unfolding invar_def del_min_def by (auto split: prod.split tree.split intro!: invar_bheap_merge invar_oheap_merge dest: invar_bheap_get_min_rest invar_oheap_get_min_rest intro!: invar_oheap_children invar_bheap_children ) lemma mset_heap_del_min: assumes "ts \ []" shows "mset_heap ts = mset_heap (del_min ts) + {# get_min ts #}" using assms unfolding del_min_def apply (clarsimp split: tree.split prod.split) apply (frule (1) get_min_rest_get_min_same_root) apply (frule (1) mset_get_min_rest) apply (auto simp: mset_heap_def) done subsubsection \Instantiating the Priority Queue Locale\ text \Last step of functional correctness proof: combine all the above lemmas to show that binomial heaps satisfy the specification of priority queues with merge.\ interpretation binheap: Priority_Queue_Merge where empty = "[]" and is_empty = "(=) []" and insert = insert and get_min = get_min and del_min = del_min and merge = merge and invar = invar and mset = mset_heap proof (unfold_locales, goal_cases) case 1 thus ?case by simp next case 2 thus ?case by auto next case 3 thus ?case by auto next case (4 q) thus ?case using mset_heap_del_min[of q] get_min[OF _ \invar q\] by (auto simp: union_single_eq_diff) next case (5 q) thus ?case using get_min[of q] by auto next case 6 thus ?case by (auto simp add: invar_def invar_bheap_def invar_oheap_def) next case 7 thus ?case by simp next case 8 thus ?case by simp next case 9 thus ?case by simp next case 10 thus ?case by simp qed subsection \Complexity\ text \The size of a binomial tree is determined by its rank\ lemma size_mset_btree: assumes "invar_btree t" shows "size (mset_tree t) = 2^rank t" using assms proof (induction t) case (Node r v ts) hence IH: "size (mset_tree t) = 2^rank t" if "t \ set ts" for t using that by auto from Node have COMPL: "map rank ts = rev [0..t\ts. size (mset_tree t))" by (induction ts) auto also have "\ = (\t\ts. 2^rank t)" using IH by (auto cong: map_cong) also have "\ = (\r\map rank ts. 2^r)" by (induction ts) auto also have "\ = (\i\{0.. = 2^r - 1" by (induction r) auto finally show ?case by (simp) qed text \The length of a binomial heap is bounded by the number of its elements\ lemma size_mset_bheap: assumes "invar_bheap ts" shows "2^length ts \ size (mset_heap ts) + 1" proof - from \invar_bheap ts\ have ASC: "sorted_wrt (<) (map rank ts)" and TINV: "\t\set ts. invar_btree t" unfolding invar_bheap_def by auto have "(2::nat)^length ts = (\i\{0.. \ (\t\ts. 2^rank t) + 1" using sorted_wrt_less_sum_mono_lowerbound[OF _ ASC, of "(^) (2::nat)"] using power_increasing[where a="2::nat"] by (auto simp: o_def) also have "\ = (\t\ts. size (mset_tree t)) + 1" using TINV by (auto cong: map_cong simp: size_mset_btree) also have "\ = size (mset_heap ts) + 1" unfolding mset_heap_def by (induction ts) auto finally show ?thesis . qed subsubsection \Timing Functions\ text \ We define timing functions for each operation, and provide estimations of their complexity. \ definition T_link :: "'a::linorder tree \ 'a tree \ nat" where [simp]: "T_link _ _ = 1" fun T_ins_tree :: "'a::linorder tree \ 'a heap \ nat" where "T_ins_tree t [] = 1" | "T_ins_tree t\<^sub>1 (t\<^sub>2 # rest) = ( (if rank t\<^sub>1 < rank t\<^sub>2 then 1 else T_link t\<^sub>1 t\<^sub>2 + T_ins_tree (link t\<^sub>1 t\<^sub>2) rest) )" definition T_insert :: "'a::linorder \ 'a heap \ nat" where "T_insert x ts = T_ins_tree (Node 0 x []) ts" lemma T_ins_tree_simple_bound: "T_ins_tree t ts \ length ts + 1" by (induction t ts rule: T_ins_tree.induct) auto subsubsection \\T_insert\\ lemma T_insert_bound: assumes "invar ts" shows "T_insert x ts \ log 2 (size (mset_heap ts) + 1) + 1" proof - have 1: "T_insert x ts \ length ts + 1" unfolding T_insert_def by (rule T_ins_tree_simple_bound) also have "\ \ log 2 (2 * (size (mset_heap ts) + 1))" proof - from size_mset_bheap[of ts] assms have "2 ^ length ts \ size (mset_heap ts) + 1" unfolding invar_def by auto hence "2 ^ (length ts + 1) \ 2 * (size (mset_heap ts) + 1)" by auto thus ?thesis using le_log2_of_power by blast qed finally show ?thesis by (simp only: log_mult of_nat_mult) auto qed subsubsection \\T_merge\\ context includes pattern_aliases begin fun T_merge :: "'a::linorder heap \ 'a heap \ nat" where "T_merge ts\<^sub>1 [] = 1" | "T_merge [] ts\<^sub>2 = 1" | "T_merge (t\<^sub>1#ts\<^sub>1 =: h\<^sub>1) (t\<^sub>2#ts\<^sub>2 =: h\<^sub>2) = 1 + ( if rank t\<^sub>1 < rank t\<^sub>2 then T_merge ts\<^sub>1 h\<^sub>2 else if rank t\<^sub>2 < rank t\<^sub>1 then T_merge h\<^sub>1 ts\<^sub>2 else T_ins_tree (link t\<^sub>1 t\<^sub>2) (merge ts\<^sub>1 ts\<^sub>2) + T_merge ts\<^sub>1 ts\<^sub>2 )" end text \A crucial idea is to estimate the time in correlation with the result length, as each carry reduces the length of the result.\ lemma T_ins_tree_length: "T_ins_tree t ts + length (ins_tree t ts) = 2 + length ts" by (induction t ts rule: ins_tree.induct) auto lemma T_merge_length: "length (merge ts\<^sub>1 ts\<^sub>2) + T_merge ts\<^sub>1 ts\<^sub>2 \ 2 * (length ts\<^sub>1 + length ts\<^sub>2) + 1" by (induction ts\<^sub>1 ts\<^sub>2 rule: T_merge.induct) (auto simp: T_ins_tree_length algebra_simps) text \Finally, we get the desired logarithmic bound\ lemma T_merge_bound_aux: fixes ts\<^sub>1 ts\<^sub>2 defines "n\<^sub>1 \ size (mset_heap ts\<^sub>1)" defines "n\<^sub>2 \ size (mset_heap ts\<^sub>2)" assumes BINVARS: "invar_bheap ts\<^sub>1" "invar_bheap ts\<^sub>2" shows "T_merge ts\<^sub>1 ts\<^sub>2 \ 4*log 2 (n\<^sub>1 + n\<^sub>2 + 1) + 2" proof - define n where "n = n\<^sub>1 + n\<^sub>2" from T_merge_length[of ts\<^sub>1 ts\<^sub>2] have "T_merge ts\<^sub>1 ts\<^sub>2 \ 2 * (length ts\<^sub>1 + length ts\<^sub>2) + 1" by auto hence "(2::nat)^T_merge ts\<^sub>1 ts\<^sub>2 \ 2^(2 * (length ts\<^sub>1 + length ts\<^sub>2) + 1)" by (rule power_increasing) auto also have "\ = 2*(2^length ts\<^sub>1)\<^sup>2*(2^length ts\<^sub>2)\<^sup>2" by (auto simp: algebra_simps power_add power_mult) also note BINVARS(1)[THEN size_mset_bheap] also note BINVARS(2)[THEN size_mset_bheap] finally have "2 ^ T_merge ts\<^sub>1 ts\<^sub>2 \ 2 * (n\<^sub>1 + 1)\<^sup>2 * (n\<^sub>2 + 1)\<^sup>2" by (auto simp: power2_nat_le_eq_le n\<^sub>1_def n\<^sub>2_def) from le_log2_of_power[OF this] have "T_merge ts\<^sub>1 ts\<^sub>2 \ log 2 \" by simp also have "\ = log 2 2 + 2*log 2 (n\<^sub>1 + 1) + 2*log 2 (n\<^sub>2 + 1)" by (simp add: log_mult log_nat_power) also have "n\<^sub>2 \ n" by (auto simp: n_def) finally have "T_merge ts\<^sub>1 ts\<^sub>2 \ log 2 2 + 2*log 2 (n\<^sub>1 + 1) + 2*log 2 (n + 1)" by auto also have "n\<^sub>1 \ n" by (auto simp: n_def) finally have "T_merge ts\<^sub>1 ts\<^sub>2 \ log 2 2 + 4*log 2 (n + 1)" by auto also have "log 2 2 \ 2" by auto finally have "T_merge ts\<^sub>1 ts\<^sub>2 \ 4*log 2 (n + 1) + 2" by auto thus ?thesis unfolding n_def by (auto simp: algebra_simps) qed lemma T_merge_bound: fixes ts\<^sub>1 ts\<^sub>2 defines "n\<^sub>1 \ size (mset_heap ts\<^sub>1)" defines "n\<^sub>2 \ size (mset_heap ts\<^sub>2)" assumes "invar ts\<^sub>1" "invar ts\<^sub>2" shows "T_merge ts\<^sub>1 ts\<^sub>2 \ 4*log 2 (n\<^sub>1 + n\<^sub>2 + 1) + 2" using assms T_merge_bound_aux unfolding invar_def by blast subsubsection \\T_get_min\\ fun T_get_min :: "'a::linorder heap \ nat" where "T_get_min [t] = 1" | "T_get_min (t#ts) = 1 + T_get_min ts" lemma T_get_min_estimate: "ts\[] \ T_get_min ts = length ts" by (induction ts rule: T_get_min.induct) auto lemma T_get_min_bound: assumes "invar ts" assumes "ts\[]" shows "T_get_min ts \ log 2 (size (mset_heap ts) + 1)" proof - have 1: "T_get_min ts = length ts" using assms T_get_min_estimate by auto also have "\ \ log 2 (size (mset_heap ts) + 1)" proof - from size_mset_bheap[of ts] assms have "2 ^ length ts \ size (mset_heap ts) + 1" unfolding invar_def by auto thus ?thesis using le_log2_of_power by blast qed finally show ?thesis by auto qed subsubsection \\T_del_min\\ fun T_get_min_rest :: "'a::linorder heap \ nat" where "T_get_min_rest [t] = 1" | "T_get_min_rest (t#ts) = 1 + T_get_min_rest ts" lemma T_get_min_rest_estimate: "ts\[] \ T_get_min_rest ts = length ts" by (induction ts rule: T_get_min_rest.induct) auto lemma T_get_min_rest_bound_aux: assumes "invar_bheap ts" assumes "ts\[]" shows "T_get_min_rest ts \ log 2 (size (mset_heap ts) + 1)" proof - have 1: "T_get_min_rest ts = length ts" using assms T_get_min_rest_estimate by auto also have "\ \ log 2 (size (mset_heap ts) + 1)" proof - from size_mset_bheap[of ts] assms have "2 ^ length ts \ size (mset_heap ts) + 1" by auto thus ?thesis using le_log2_of_power by blast qed finally show ?thesis by auto qed lemma T_get_min_rest_bound: assumes "invar ts" assumes "ts\[]" shows "T_get_min_rest ts \ log 2 (size (mset_heap ts) + 1)" using assms T_get_min_rest_bound_aux unfolding invar_def by blast text\Note that although the definition of function \<^const>\rev\ has quadratic complexity, it can and is implemented (via suitable code lemmas) as a linear time function. Thus the following definition is justified:\ definition "T_rev xs = length xs + 1" definition T_del_min :: "'a::linorder heap \ nat" where "T_del_min ts = T_get_min_rest ts + (case get_min_rest ts of (Node _ x ts\<^sub>1, ts\<^sub>2) \ T_rev ts\<^sub>1 + T_merge (rev ts\<^sub>1) ts\<^sub>2 )" lemma T_rev_ts1_bound_aux: fixes ts defines "n \ size (mset_heap ts)" assumes BINVAR: "invar_bheap (rev ts)" shows "T_rev ts \ 1 + log 2 (n+1)" proof - have "T_rev ts = length ts + 1" by (auto simp: T_rev_def) hence "2^T_rev ts = 2*2^length ts" by auto also have "\ \ 2*n+2" using size_mset_bheap[OF BINVAR] by (auto simp: n_def) finally have "2 ^ T_rev ts \ 2 * n + 2" . from le_log2_of_power[OF this] have "T_rev ts \ log 2 (2 * (n + 1))" by auto also have "\ = 1 + log 2 (n+1)" by (simp only: of_nat_mult log_mult) auto finally show ?thesis by (auto simp: algebra_simps) qed lemma T_del_min_bound_aux: fixes ts defines "n \ size (mset_heap ts)" assumes BINVAR: "invar_bheap ts" assumes "ts\[]" shows "T_del_min ts \ 6 * log 2 (n+1) + 3" proof - obtain r x ts\<^sub>1 ts\<^sub>2 where GM: "get_min_rest ts = (Node r x ts\<^sub>1, ts\<^sub>2)" by (metis surj_pair tree.exhaust_sel) note BINVAR' = invar_bheap_get_min_rest[OF GM \ts\[]\ BINVAR] hence BINVAR1: "invar_bheap (rev ts\<^sub>1)" by (blast intro: invar_bheap_children) define n\<^sub>1 where "n\<^sub>1 = size (mset_heap ts\<^sub>1)" define n\<^sub>2 where "n\<^sub>2 = size (mset_heap ts\<^sub>2)" have T_rev_ts1_bound: "T_rev ts\<^sub>1 \ 1 + log 2 (n+1)" proof - note T_rev_ts1_bound_aux[OF BINVAR1, simplified, folded n\<^sub>1_def] also have "n\<^sub>1 \ n" unfolding n\<^sub>1_def n_def using mset_get_min_rest[OF GM \ts\[]\] by (auto simp: mset_heap_def) finally show ?thesis by (auto simp: algebra_simps) qed have "T_del_min ts = T_get_min_rest ts + T_rev ts\<^sub>1 + T_merge (rev ts\<^sub>1) ts\<^sub>2" unfolding T_del_min_def by (simp add: GM) also have "\ \ log 2 (n+1) + T_rev ts\<^sub>1 + T_merge (rev ts\<^sub>1) ts\<^sub>2" using T_get_min_rest_bound_aux[OF assms(2-)] by (auto simp: n_def) also have "\ \ 2*log 2 (n+1) + T_merge (rev ts\<^sub>1) ts\<^sub>2 + 1" using T_rev_ts1_bound by auto also have "\ \ 2*log 2 (n+1) + 4 * log 2 (n\<^sub>1 + n\<^sub>2 + 1) + 3" using T_merge_bound_aux[OF \invar_bheap (rev ts\<^sub>1)\ \invar_bheap ts\<^sub>2\] by (auto simp: n\<^sub>1_def n\<^sub>2_def algebra_simps) also have "n\<^sub>1 + n\<^sub>2 \ n" unfolding n\<^sub>1_def n\<^sub>2_def n_def using mset_get_min_rest[OF GM \ts\[]\] by (auto simp: mset_heap_def) finally have "T_del_min ts \ 6 * log 2 (n+1) + 3" by auto thus ?thesis by (simp add: algebra_simps) qed lemma T_del_min_bound: fixes ts defines "n \ size (mset_heap ts)" assumes "invar ts" assumes "ts\[]" shows "T_del_min ts \ 6 * log 2 (n+1) + 3" using assms T_del_min_bound_aux unfolding invar_def by blast end