diff --git a/src/Pure/Isar/toplevel.ML b/src/Pure/Isar/toplevel.ML --- a/src/Pure/Isar/toplevel.ML +++ b/src/Pure/Isar/toplevel.ML @@ -1,793 +1,795 @@ (* Title: Pure/Isar/toplevel.ML Author: Markus Wenzel, TU Muenchen Isabelle/Isar toplevel transactions. *) signature TOPLEVEL = sig exception UNDEF type state val init_toplevel: unit -> state val theory_toplevel: theory -> state val is_toplevel: state -> bool val is_theory: state -> bool val is_proof: state -> bool val is_skipped_proof: state -> bool val level: state -> int val previous_theory_of: state -> theory option val context_of: state -> Proof.context val generic_theory_of: state -> generic_theory val theory_of: state -> theory val proof_of: state -> Proof.state val proof_position_of: state -> int val is_end_theory: state -> bool val end_theory: Position.T -> state -> theory val presentation_context: state -> Proof.context val presentation_state: Proof.context -> state val pretty_context: state -> Pretty.T list val pretty_state: state -> Pretty.T list val string_of_state: state -> string val pretty_abstract: state -> Pretty.T type transition val empty: transition val name_of: transition -> string val pos_of: transition -> Position.T val timing_of: transition -> Time.time val type_error: transition -> string val name: string -> transition -> transition val position: Position.T -> transition -> transition val markers: Input.source list -> transition -> transition val timing: Time.time -> transition -> transition val init_theory: (unit -> theory) -> transition -> transition val is_init: transition -> bool val modify_init: (unit -> theory) -> transition -> transition val exit: transition -> transition val keep: (state -> unit) -> transition -> transition val keep': (bool -> state -> unit) -> transition -> transition val keep_proof: (state -> unit) -> transition -> transition val ignored: Position.T -> transition val is_ignored: transition -> bool val malformed: Position.T -> string -> transition val generic_theory: (generic_theory -> generic_theory) -> transition -> transition val theory': (bool -> theory -> theory) -> transition -> transition val theory: (theory -> theory) -> transition -> transition val begin_local_theory: bool -> (theory -> local_theory) -> transition -> transition val end_local_theory: transition -> transition val open_target: (generic_theory -> local_theory) -> transition -> transition val close_target: transition -> transition val local_theory': (bool * Position.T) option -> (xstring * Position.T) option -> (bool -> local_theory -> local_theory) -> transition -> transition val local_theory: (bool * Position.T) option -> (xstring * Position.T) option -> (local_theory -> local_theory) -> transition -> transition val present_local_theory: (xstring * Position.T) option -> (state -> unit) -> transition -> transition val local_theory_to_proof': (bool * Position.T) option -> (xstring * Position.T) option -> (bool -> local_theory -> Proof.state) -> transition -> transition val local_theory_to_proof: (bool * Position.T) option -> (xstring * Position.T) option -> (local_theory -> Proof.state) -> transition -> transition val theory_to_proof: (theory -> Proof.state) -> transition -> transition val end_proof: (bool -> Proof.state -> Proof.context) -> transition -> transition val forget_proof: transition -> transition val proofs': (bool -> Proof.state -> Proof.state Seq.result Seq.seq) -> transition -> transition val proof': (bool -> Proof.state -> Proof.state) -> transition -> transition val proofs: (Proof.state -> Proof.state Seq.result Seq.seq) -> transition -> transition val proof: (Proof.state -> Proof.state) -> transition -> transition val actual_proof: (Proof_Node.T -> Proof_Node.T) -> transition -> transition val skip_proof: (unit -> unit) -> transition -> transition val skip_proof_open: transition -> transition val skip_proof_close: transition -> transition val exec_id: Document_ID.exec -> transition -> transition val setmp_thread_position: transition -> ('a -> 'b) -> 'a -> 'b val add_hook: (transition -> state -> state -> unit) -> unit val transition: bool -> transition -> state -> state * (exn * string) option val command_errors: bool -> transition -> state -> Runtime.error list * state option val command_exception: bool -> transition -> state -> state val reset_theory: state -> state option val reset_proof: state -> state option val reset_notepad: state -> state option val fork_presentation: transition -> transition * transition type result val join_results: result -> (transition * state) list val element_result: Keyword.keywords -> transition Thy_Element.element -> state -> result * state end; structure Toplevel: TOPLEVEL = struct (** toplevel state **) exception UNDEF = Runtime.UNDEF; (* datatype node *) datatype node = Toplevel (*toplevel outside of theory body*) | Theory of generic_theory (*global or local theory*) | Proof of Proof_Node.T * ((Proof.context -> generic_theory) * generic_theory) (*proof node, finish, original theory*) | Skipped_Proof of int * (generic_theory * generic_theory); (*proof depth, resulting theory, original theory*) val theory_node = fn Theory gthy => SOME gthy | _ => NONE; val proof_node = fn Proof (prf, _) => SOME prf | _ => NONE; val skipped_proof_node = fn Skipped_Proof _ => true | _ => false; fun cases_node f _ _ Toplevel = f () | cases_node _ g _ (Theory gthy) = g gthy | cases_node _ _ h (Proof (prf, _)) = h (Proof_Node.current prf) | cases_node _ g _ (Skipped_Proof (_, (gthy, _))) = g gthy; fun cases_proper_node g h = cases_node (fn () => raise UNDEF) g h; val get_theory = cases_node (K NONE) (SOME o Context.theory_of) (SOME o Proof.theory_of); (* datatype state *) type node_presentation = node * Proof.context; fun init_presentation () = Proof_Context.init_global (Theory.get_pure_bootstrap ()); fun node_presentation node = (node, cases_node init_presentation Context.proof_of Proof.context_of node); datatype state = State of node_presentation * theory option; (*current node with presentation context, previous theory*) fun node_of (State ((node, _), _)) = node; fun previous_theory_of (State (_, prev_thy)) = prev_thy; fun init_toplevel () = State (node_presentation Toplevel, NONE); fun theory_toplevel thy = State (node_presentation (Theory (Context.Theory thy)), NONE); fun level state = (case node_of state of Toplevel => 0 | Theory _ => 0 | Proof (prf, _) => Proof.level (Proof_Node.current prf) | Skipped_Proof (d, _) => d + 1); (*different notion of proof depth!*) fun str_of_state state = (case node_of state of Toplevel => (case previous_theory_of state of NONE => "at top level" | SOME thy => "at top level, result theory " ^ quote (Context.theory_name thy)) | Theory (Context.Theory _) => "in theory mode" | Theory (Context.Proof _) => "in local theory mode" | Proof _ => "in proof mode" | Skipped_Proof _ => "in skipped proof mode"); (* current node *) fun is_toplevel state = (case node_of state of Toplevel => true | _ => false); fun is_theory state = not (is_toplevel state) andalso is_some (theory_node (node_of state)); fun is_proof state = not (is_toplevel state) andalso is_some (proof_node (node_of state)); fun is_skipped_proof state = not (is_toplevel state) andalso skipped_proof_node (node_of state); fun proper_node_of state = if is_toplevel state then raise UNDEF else node_of state; fun proper_node_case f g state = cases_proper_node f g (proper_node_of state); val context_of = proper_node_case Context.proof_of Proof.context_of; val generic_theory_of = proper_node_case I (Context.Proof o Proof.context_of); val theory_of = proper_node_case Context.theory_of Proof.theory_of; val proof_of = proper_node_case (fn _ => error "No proof state") I; fun proof_position_of state = (case proper_node_of state of Proof (prf, _) => Proof_Node.position prf | _ => ~1); fun is_end_theory (State ((Toplevel, _), SOME _)) = true | is_end_theory _ = false; fun end_theory _ (State ((Toplevel, _), SOME thy)) = thy | end_theory pos _ = error ("Malformed theory" ^ Position.here pos); (* presentation context *) structure Presentation_State = Proof_Data ( type T = state option; fun init _ = NONE; ); fun presentation_context0 (State ((_, pr_ctxt), _)) = pr_ctxt; fun presentation_context (state as State (current, _)) = presentation_context0 state |> Presentation_State.put (SOME (State (current, NONE))); fun presentation_state ctxt = (case Presentation_State.get ctxt of NONE => State (node_presentation (Theory (Context.Proof ctxt)), NONE) | SOME state => state); (* print state *) fun pretty_context state = if is_toplevel state then [] else let val gthy = (case node_of state of Toplevel => raise Match | Theory gthy => gthy | Proof (_, (_, gthy)) => gthy | Skipped_Proof (_, (_, gthy)) => gthy); val lthy = Context.cases Named_Target.theory_init I gthy; in Local_Theory.pretty lthy end; fun pretty_state state = (case node_of state of Toplevel => [] | Theory _ => [] | Proof (prf, _) => Proof.pretty_state (Proof_Node.current prf) | Skipped_Proof (d, _) => [Pretty.str ("skipped proof: depth " ^ string_of_int d)]); val string_of_state = pretty_state #> Pretty.chunks #> Pretty.string_of; fun pretty_abstract state = Pretty.str (""); val _ = ML_system_pp (fn _ => fn _ => Pretty.to_polyml o pretty_abstract); (** toplevel transitions **) (* primitive transitions *) datatype trans = (*init theory*) Init of unit -> theory | (*formal exit of theory*) Exit | (*peek at state*) Keep of bool -> state -> unit | (*node transaction and presentation*) Transaction of (bool -> node -> node_presentation) * (state -> unit); local exception FAILURE of state * exn; fun apply f g node = let val node_pr = node_presentation node; val context = cases_proper_node I (Context.Proof o Proof.context_of) node; fun state_error e node_pr' = (State (node_pr', get_theory node), e); val (result, err) = node |> Runtime.controlled_execution (SOME context) f |> state_error NONE handle exn => state_error (SOME exn) node_pr; in (case err of NONE => tap g result | SOME exn => raise FAILURE (result, exn)) end; fun apply_tr int trans state = (case (trans, node_of state) of (Init f, Toplevel) => Runtime.controlled_execution NONE (fn () => State (node_presentation (Theory (Context.Theory (f ()))), NONE)) () | (Exit, node as Theory (Context.Theory thy)) => let val State ((node', pr_ctxt), _) = node |> apply - (fn _ => node_presentation (Theory (Context.Theory (Theory.end_theory thy)))) + (fn _ => + node_presentation + (Theory (Context.Theory (tap Thm.expose_theory (Theory.end_theory thy))))) (K ()); in State ((Toplevel, pr_ctxt), get_theory node') end | (Keep f, node) => Runtime.controlled_execution (try generic_theory_of state) (fn () => (f int state; State (node_presentation node, previous_theory_of state))) () | (Transaction _, Toplevel) => raise UNDEF | (Transaction (f, g), node) => apply (fn x => f int x) g node | _ => raise UNDEF); fun apply_union _ [] state = raise FAILURE (state, UNDEF) | apply_union int (tr :: trs) state = apply_union int trs state handle Runtime.UNDEF => apply_tr int tr state | FAILURE (alt_state, UNDEF) => apply_tr int tr alt_state | exn as FAILURE _ => raise exn | exn => raise FAILURE (state, exn); fun apply_markers name markers (state as State ((node, pr_ctxt), prev_thy)) = let val state' = Runtime.controlled_execution (try generic_theory_of state) (fn () => State ((node, fold (Document_Marker.evaluate name) markers pr_ctxt), prev_thy)) (); in (state', NONE) end handle exn => (state, SOME exn); in fun apply_trans int name markers trans state = (apply_union int trans state |> apply_markers name markers) handle FAILURE (alt_state, exn) => (alt_state, SOME exn) | exn => (state, SOME exn); end; (* datatype transition *) datatype transition = Transition of {name: string, (*command name*) pos: Position.T, (*source position*) markers: Input.source list, (*semantic document markers*) timing: Time.time, (*prescient timing information*) trans: trans list}; (*primitive transitions (union)*) fun make_transition (name, pos, markers, timing, trans) = Transition {name = name, pos = pos, markers = markers, timing = timing, trans = trans}; fun map_transition f (Transition {name, pos, markers, timing, trans}) = make_transition (f (name, pos, markers, timing, trans)); val empty = make_transition ("", Position.none, [], Time.zeroTime, []); (* diagnostics *) fun name_of (Transition {name, ...}) = name; fun pos_of (Transition {pos, ...}) = pos; fun timing_of (Transition {timing, ...}) = timing; fun command_msg msg tr = msg ^ "command " ^ quote (Markup.markup Markup.keyword1 (name_of tr)) ^ Position.here (pos_of tr); fun at_command tr = command_msg "At " tr; fun type_error tr = command_msg "Bad context for " tr; (* modify transitions *) fun name name = map_transition (fn (_, pos, markers, timing, trans) => (name, pos, markers, timing, trans)); fun position pos = map_transition (fn (name, _, markers, timing, trans) => (name, pos, markers, timing, trans)); fun markers markers = map_transition (fn (name, pos, _, timing, trans) => (name, pos, markers, timing, trans)); fun timing timing = map_transition (fn (name, pos, markers, _, trans) => (name, pos, markers, timing, trans)); fun add_trans tr = map_transition (fn (name, pos, markers, timing, trans) => (name, pos, markers, timing, tr :: trans)); val reset_trans = map_transition (fn (name, pos, markers, timing, _) => (name, pos, markers, timing, [])); (* basic transitions *) fun init_theory f = add_trans (Init f); fun is_init (Transition {trans = [Init _], ...}) = true | is_init _ = false; fun modify_init f tr = if is_init tr then init_theory f (reset_trans tr) else tr; val exit = add_trans Exit; val keep' = add_trans o Keep; fun present_transaction f g = add_trans (Transaction (f, g)); fun transaction f = present_transaction f (K ()); fun transaction0 f = present_transaction (node_presentation oo f) (K ()); fun keep f = add_trans (Keep (fn _ => f)); fun keep_proof f = keep (fn st => if is_proof st then f st else if is_skipped_proof st then () else warning "No proof state"); fun ignored pos = empty |> name "" |> position pos |> keep (fn _ => ()); fun is_ignored tr = name_of tr = ""; fun malformed pos msg = empty |> name "" |> position pos |> keep (fn _ => error msg); (* theory transitions *) fun generic_theory f = transaction (fn _ => (fn Theory gthy => node_presentation (Theory (f gthy)) | _ => raise UNDEF)); fun theory' f = transaction (fn int => (fn Theory (Context.Theory thy) => let val thy' = thy |> Sign.new_group |> f int |> Sign.reset_group; in node_presentation (Theory (Context.Theory thy')) end | _ => raise UNDEF)); fun theory f = theory' (K f); fun begin_local_theory begin f = transaction (fn _ => (fn Theory (Context.Theory thy) => let val lthy = f thy; val gthy = if begin then Context.Proof lthy else Context.Theory (Named_Target.exit lthy); val _ = (case Local_Theory.pretty lthy of [] => () | prts => Output.state (Pretty.string_of (Pretty.chunks prts))); in (Theory gthy, lthy) end | _ => raise UNDEF)); val end_local_theory = transaction (fn _ => (fn Theory (Context.Proof lthy) => (Theory (Context.Theory (Named_Target.exit lthy)), lthy) | _ => raise UNDEF)); fun open_target f = transaction0 (fn _ => (fn Theory gthy => let val lthy = f gthy in Theory (Context.Proof lthy) end | _ => raise UNDEF)); val close_target = transaction (fn _ => (fn Theory (Context.Proof lthy) => (case try Local_Theory.close_target lthy of SOME ctxt' => let val gthy' = if can Local_Theory.assert ctxt' then Context.Proof ctxt' else Context.Theory (Proof_Context.theory_of ctxt'); in (Theory gthy', lthy) end | NONE => raise UNDEF) | _ => raise UNDEF)); fun restricted_context (SOME (strict, scope)) = Proof_Context.map_naming (Name_Space.restricted strict scope) | restricted_context NONE = I; fun local_theory' restricted target f = present_transaction (fn int => (fn Theory gthy => let val (finish, lthy) = Named_Target.switch target gthy; val lthy' = lthy |> restricted_context restricted |> Local_Theory.new_group |> f int |> Local_Theory.reset_group; in (Theory (finish lthy'), lthy') end | _ => raise UNDEF)) (K ()); fun local_theory restricted target f = local_theory' restricted target (K f); fun present_local_theory target = present_transaction (fn _ => (fn Theory gthy => let val (finish, lthy) = Named_Target.switch target gthy; in (Theory (finish lthy), lthy) end | _ => raise UNDEF)); (* proof transitions *) fun end_proof f = transaction (fn int => (fn Proof (prf, (finish, _)) => let val state = Proof_Node.current prf in if can (Proof.assert_bottom true) state then let val ctxt' = f int state; val gthy' = finish ctxt'; in (Theory gthy', ctxt') end else raise UNDEF end | Skipped_Proof (0, (gthy, _)) => node_presentation (Theory gthy) | _ => raise UNDEF)); local fun begin_proof init_proof = transaction0 (fn int => (fn Theory gthy => let val (finish, prf) = init_proof int gthy; val document = Options.default_string "document"; val skip = (document = "" orelse document = "false") andalso Goal.skip_proofs_enabled (); val schematic_goal = try Proof.schematic_goal prf; val _ = if skip andalso schematic_goal = SOME true then warning "Cannot skip proof of schematic goal statement" else (); in if skip andalso schematic_goal = SOME false then Skipped_Proof (0, (finish (Proof.global_skip_proof true prf), gthy)) else Proof (Proof_Node.init prf, (finish, gthy)) end | _ => raise UNDEF)); in fun local_theory_to_proof' restricted target f = begin_proof (fn int => fn gthy => let val (finish, lthy) = Named_Target.switch target gthy; val prf = lthy |> restricted_context restricted |> Local_Theory.new_group |> f int; in (finish o Local_Theory.reset_group, prf) end); fun local_theory_to_proof restricted target f = local_theory_to_proof' restricted target (K f); fun theory_to_proof f = begin_proof (fn _ => fn gthy => (Context.Theory o Sign.reset_group o Sign.change_check o Proof_Context.theory_of, (case gthy of Context.Theory thy => f (Sign.new_group thy) | _ => raise UNDEF))); end; val forget_proof = transaction0 (fn _ => (fn Proof (prf, (_, orig_gthy)) => if Proof.is_notepad (Proof_Node.current prf) then raise UNDEF else Theory orig_gthy | Skipped_Proof (_, (_, orig_gthy)) => Theory orig_gthy | _ => raise UNDEF)); fun proofs' f = transaction0 (fn int => (fn Proof (prf, x) => Proof (Proof_Node.applys (f int) prf, x) | skip as Skipped_Proof _ => skip | _ => raise UNDEF)); fun proof' f = proofs' ((Seq.single o Seq.Result) oo f); val proofs = proofs' o K; val proof = proof' o K; (* skipped proofs *) fun actual_proof f = transaction0 (fn _ => (fn Proof (prf, x) => Proof (f prf, x) | _ => raise UNDEF)); fun skip_proof f = transaction0 (fn _ => (fn skip as Skipped_Proof _ => (f (); skip) | _ => raise UNDEF)); val skip_proof_open = transaction0 (fn _ => (fn Skipped_Proof (d, x) => Skipped_Proof (d + 1, x) | _ => raise UNDEF)); val skip_proof_close = transaction0 (fn _ => (fn Skipped_Proof (0, (gthy, _)) => Theory gthy | Skipped_Proof (d, x) => Skipped_Proof (d - 1, x) | _ => raise UNDEF)); (** toplevel transactions **) (* runtime position *) fun exec_id id (tr as Transition {pos, ...}) = position (Position.put_id (Document_ID.print id) pos) tr; fun setmp_thread_position (Transition {pos, ...}) f x = Position.setmp_thread_data pos f x; (* post-transition hooks *) local val hooks = Synchronized.var "Toplevel.hooks" ([]: (transition -> state -> state -> unit) list); in fun add_hook hook = Synchronized.change hooks (cons hook); fun get_hooks () = Synchronized.value hooks; end; (* apply transitions *) local fun app int (tr as Transition {name, markers, trans, ...}) = setmp_thread_position tr (Timing.protocol (name_of tr) (pos_of tr) (apply_trans int name markers trans) ##> Option.map (fn UNDEF => ERROR (type_error tr) | exn => exn)); in fun transition int tr st = let val (st', opt_err) = Context.setmp_generic_context (try (Context.Proof o presentation_context0) st) (fn () => app int tr st) (); val opt_err' = opt_err |> Option.map (fn Runtime.EXCURSION_FAIL exn_info => exn_info | exn => (Runtime.exn_context (try context_of st) exn, at_command tr)); val _ = get_hooks () |> List.app (fn f => (try (fn () => f tr st st') (); ())); in (st', opt_err') end; end; (* managed commands *) fun command_errors int tr st = (case transition int tr st of (st', NONE) => ([], SOME st') | (_, SOME (exn, _)) => (Runtime.exn_messages exn, NONE)); fun command_exception int tr st = (case transition int tr st of (st', NONE) => st' | (_, SOME (exn, info)) => if Exn.is_interrupt exn then Exn.reraise exn else raise Runtime.EXCURSION_FAIL (exn, info)); val command = command_exception false; (* reset state *) local fun reset_state check trans st = if check st then NONE else #2 (command_errors false (trans empty) st); in val reset_theory = reset_state is_theory forget_proof; val reset_proof = reset_state is_proof (transaction0 (fn _ => (fn Theory gthy => Skipped_Proof (0, (gthy, gthy)) | _ => raise UNDEF))); val reset_notepad = reset_state (fn st => (case try proof_of st of SOME state => not (Proof.is_notepad state) orelse can Proof.end_notepad state | NONE => true)) (proof Proof.reset_notepad); end; (* scheduled proof result *) datatype result = Result of transition * state | Result_List of result list | Result_Future of result future; fun join_results (Result x) = [x] | join_results (Result_List xs) = maps join_results xs | join_results (Result_Future x) = join_results (Future.join x); local structure Result = Proof_Data ( type T = result; fun init _ = Result_List []; ); val get_result = Result.get o Proof.context_of; val put_result = Proof.map_context o Result.put; fun timing_estimate elem = let val trs = tl (Thy_Element.flat_element elem) in fold (fn tr => fn t => timing_of tr + t) trs Time.zeroTime end; fun future_proofs_enabled estimate st = (case try proof_of st of NONE => false | SOME state => not (Proofterm.proofs_enabled ()) andalso not (Proof.is_relevant state) andalso (if can (Proof.assert_bottom true) state then Future.proofs_enabled 1 else Future.proofs_enabled 2 orelse Future.proofs_enabled_timing estimate)); val empty_markers = markers []; val empty_trans = reset_trans #> keep (K ()); in fun fork_presentation tr = (tr |> empty_markers, tr |> empty_trans); fun atom_result keywords tr st = let val st' = if Future.proofs_enabled 1 andalso Keyword.is_diag keywords (name_of tr) then let val (tr1, tr2) = fork_presentation tr; val _ = Execution.fork {name = "Toplevel.diag", pos = pos_of tr, pri = ~1} (fn () => command tr1 st); in command tr2 st end else command tr st; in (Result (tr, st'), st') end; fun element_result keywords (Thy_Element.Element (tr, NONE)) st = atom_result keywords tr st | element_result keywords (elem as Thy_Element.Element (head_tr, SOME element_rest)) st = let val (head_result, st') = atom_result keywords head_tr st; val (body_elems, end_tr) = element_rest; val estimate = timing_estimate elem; in if not (future_proofs_enabled estimate st') then let val proof_trs = maps Thy_Element.flat_element body_elems @ [end_tr]; val (proof_results, st'') = fold_map (atom_result keywords) proof_trs st'; in (Result_List (head_result :: proof_results), st'') end else let val (end_tr1, end_tr2) = fork_presentation end_tr; val finish = Context.Theory o Proof_Context.theory_of; val future_proof = Proof.future_proof (fn state => Execution.fork {name = "Toplevel.future_proof", pos = pos_of head_tr, pri = ~1} (fn () => let val State ((Proof (prf, (_, orig_gthy)), _), prev_thy) = st'; val node' = Proof (Proof_Node.apply (K state) prf, (finish, orig_gthy)); val (results, result_state) = State (node_presentation node', prev_thy) |> fold_map (element_result keywords) body_elems ||> command end_tr1; in (Result_List results, presentation_context0 result_state) end)) #> (fn (res, state') => state' |> put_result (Result_Future res)); val forked_proof = proof (future_proof #> (fn state => state |> Proof.local_done_proof |> put_result (get_result state))) o end_proof (fn _ => future_proof #> (fn state => state |> Proof.global_done_proof |> Result.put (get_result state))); val st'' = st' |> command (head_tr |> reset_trans |> forked_proof); val end_st = st'' |> command end_tr2; val end_result = Result (end_tr, end_st); val result = Result_List [head_result, Result.get (presentation_context0 st''), end_result]; in (result, end_st) end end; end; end; structure Local_Theory : LOCAL_THEORY = struct open Local_Theory; end; diff --git a/src/Pure/more_thm.ML b/src/Pure/more_thm.ML --- a/src/Pure/more_thm.ML +++ b/src/Pure/more_thm.ML @@ -1,755 +1,755 @@ (* Title: Pure/more_thm.ML Author: Makarius Further operations on type ctyp/cterm/thm, outside the inference kernel. *) infix aconvc; signature BASIC_THM = sig include BASIC_THM val show_consts: bool Config.T val show_hyps: bool Config.T val show_tags: bool Config.T structure Ctermtab: TABLE structure Thmtab: TABLE val aconvc: cterm * cterm -> bool type attribute = Context.generic * thm -> Context.generic option * thm option end; signature THM = sig include THM structure Ctermtab: TABLE structure Thmtab: TABLE val eq_ctyp: ctyp * ctyp -> bool val aconvc: cterm * cterm -> bool val add_tvars: thm -> ctyp list -> ctyp list val add_frees: thm -> cterm list -> cterm list val add_vars: thm -> cterm list -> cterm list val dest_funT: ctyp -> ctyp * ctyp val strip_type: ctyp -> ctyp list * ctyp val all_name: Proof.context -> string * cterm -> cterm -> cterm val all: Proof.context -> cterm -> cterm -> cterm val mk_binop: cterm -> cterm -> cterm -> cterm val dest_binop: cterm -> cterm * cterm val dest_implies: cterm -> cterm * cterm val dest_equals: cterm -> cterm * cterm val dest_equals_lhs: cterm -> cterm val dest_equals_rhs: cterm -> cterm val lhs_of: thm -> cterm val rhs_of: thm -> cterm val fast_term_ord: cterm ord val term_ord: cterm ord val thm_ord: thm ord val cterm_cache: (cterm -> 'a) -> cterm -> 'a val thm_cache: (thm -> 'a) -> thm -> 'a val is_reflexive: thm -> bool val eq_thm: thm * thm -> bool val eq_thm_prop: thm * thm -> bool val eq_thm_strict: thm * thm -> bool val equiv_thm: theory -> thm * thm -> bool val class_triv: theory -> class -> thm val of_sort: ctyp * sort -> thm list val is_dummy: thm -> bool val add_thm: thm -> thm list -> thm list val del_thm: thm -> thm list -> thm list val merge_thms: thm list * thm list -> thm list val full_rules: thm Item_Net.T val intro_rules: thm Item_Net.T val elim_rules: thm Item_Net.T val declare_hyps: cterm -> Proof.context -> Proof.context val assume_hyps: cterm -> Proof.context -> thm * Proof.context val unchecked_hyps: Proof.context -> Proof.context val restore_hyps: Proof.context -> Proof.context -> Proof.context val undeclared_hyps: Context.generic -> thm -> term list val check_hyps: Context.generic -> thm -> thm val declare_term_sorts: term -> Proof.context -> Proof.context val extra_shyps': Proof.context -> thm -> sort list val check_shyps: Proof.context -> thm -> thm val weaken_sorts': Proof.context -> cterm -> cterm val elim_implies: thm -> thm -> thm val forall_intr_name: string * cterm -> thm -> thm val forall_elim_var: int -> thm -> thm val forall_elim_vars: int -> thm -> thm val instantiate_frees: ((string * sort) * ctyp) list * ((string * typ) * cterm) list -> thm -> thm val instantiate': ctyp option list -> cterm option list -> thm -> thm val forall_intr_frees: thm -> thm val unvarify_global: theory -> thm -> thm val unvarify_axiom: theory -> string -> thm val rename_params_rule: string list * int -> thm -> thm val rename_boundvars: term -> term -> thm -> thm val add_axiom: Proof.context -> binding * term -> theory -> (string * thm) * theory val add_axiom_global: binding * term -> theory -> (string * thm) * theory val add_def: Defs.context -> bool -> bool -> binding * term -> theory -> (string * thm) * theory val add_def_global: bool -> bool -> binding * term -> theory -> (string * thm) * theory type attribute = Context.generic * thm -> Context.generic option * thm option type binding = binding * attribute list val tag_rule: string * string -> thm -> thm val untag_rule: string -> thm -> thm val is_free_dummy: thm -> bool val tag_free_dummy: thm -> thm val def_name: string -> string val def_name_optional: string -> string -> string val def_binding: Binding.binding -> Binding.binding val def_binding_optional: Binding.binding -> Binding.binding -> Binding.binding val make_def_binding: bool -> Binding.binding -> Binding.binding val has_name_hint: thm -> bool val get_name_hint: thm -> string val put_name_hint: string -> thm -> thm val theoremK: string val legacy_get_kind: thm -> string val kind_rule: string -> thm -> thm val rule_attribute: thm list -> (Context.generic -> thm -> thm) -> attribute val declaration_attribute: (thm -> Context.generic -> Context.generic) -> attribute val mixed_attribute: (Context.generic * thm -> Context.generic * thm) -> attribute val apply_attribute: attribute -> thm -> Context.generic -> thm * Context.generic val attribute_declaration: attribute -> thm -> Context.generic -> Context.generic val theory_attributes: attribute list -> thm -> theory -> thm * theory val proof_attributes: attribute list -> thm -> Proof.context -> thm * Proof.context val no_attributes: 'a -> 'a * 'b list val simple_fact: 'a -> ('a * 'b list) list val tag: string * string -> attribute val untag: string -> attribute val kind: string -> attribute val reconstruct_proof_of: thm -> Proofterm.proof val standard_proof_of: {full: bool, expand_name: Proofterm.thm_header -> string option} -> thm -> Proofterm.proof val register_proofs: thm list lazy -> theory -> theory val consolidate_theory: theory -> unit + val expose_theory: theory -> unit val show_consts: bool Config.T val show_hyps: bool Config.T val show_tags: bool Config.T val pretty_thm_raw: Proof.context -> {quote: bool, show_hyps: bool} -> thm -> Pretty.T val pretty_thm: Proof.context -> thm -> Pretty.T val pretty_thm_item: Proof.context -> thm -> Pretty.T val pretty_thm_global: theory -> thm -> Pretty.T val string_of_thm: Proof.context -> thm -> string val string_of_thm_global: theory -> thm -> string end; structure Thm: THM = struct (** basic operations **) (* collecting ctyps and cterms *) val eq_ctyp = op = o apply2 Thm.typ_of; val op aconvc = op aconv o apply2 Thm.term_of; val add_tvars = Thm.fold_atomic_ctyps (fn a => is_TVar (Thm.typ_of a) ? insert eq_ctyp a); val add_frees = Thm.fold_atomic_cterms (fn a => is_Free (Thm.term_of a) ? insert (op aconvc) a); val add_vars = Thm.fold_atomic_cterms (fn a => is_Var (Thm.term_of a) ? insert (op aconvc) a); (* ctyp operations *) fun dest_funT cT = (case Thm.typ_of cT of Type ("fun", _) => let val [A, B] = Thm.dest_ctyp cT in (A, B) end | T => raise TYPE ("dest_funT", [T], [])); (* ctyp version of strip_type: maps [T1,...,Tn]--->T to ([T1,T2,...,Tn], T) *) fun strip_type cT = (case Thm.typ_of cT of Type ("fun", _) => let val (cT1, cT2) = dest_funT cT; val (cTs, cT') = strip_type cT2 in (cT1 :: cTs, cT') end | _ => ([], cT)); (* cterm operations *) fun all_name ctxt (x, t) A = let val T = Thm.typ_of_cterm t; val all_const = Thm.cterm_of ctxt (Const ("Pure.all", (T --> propT) --> propT)); in Thm.apply all_const (Thm.lambda_name (x, t) A) end; fun all ctxt t A = all_name ctxt ("", t) A; fun mk_binop c a b = Thm.apply (Thm.apply c a) b; fun dest_binop ct = (Thm.dest_arg1 ct, Thm.dest_arg ct); fun dest_implies ct = (case Thm.term_of ct of Const ("Pure.imp", _) $ _ $ _ => dest_binop ct | _ => raise TERM ("dest_implies", [Thm.term_of ct])); fun dest_equals ct = (case Thm.term_of ct of Const ("Pure.eq", _) $ _ $ _ => dest_binop ct | _ => raise TERM ("dest_equals", [Thm.term_of ct])); fun dest_equals_lhs ct = (case Thm.term_of ct of Const ("Pure.eq", _) $ _ $ _ => Thm.dest_arg1 ct | _ => raise TERM ("dest_equals_lhs", [Thm.term_of ct])); fun dest_equals_rhs ct = (case Thm.term_of ct of Const ("Pure.eq", _) $ _ $ _ => Thm.dest_arg ct | _ => raise TERM ("dest_equals_rhs", [Thm.term_of ct])); val lhs_of = dest_equals_lhs o Thm.cprop_of; val rhs_of = dest_equals_rhs o Thm.cprop_of; (* certified term order *) val fast_term_ord = Term_Ord.fast_term_ord o apply2 Thm.term_of; val term_ord = Term_Ord.term_ord o apply2 Thm.term_of; (* thm order: ignores theory context! *) val thm_ord = Term_Ord.fast_term_ord o apply2 Thm.prop_of <<< list_ord (prod_ord Term_Ord.fast_term_ord Term_Ord.fast_term_ord) o apply2 Thm.tpairs_of <<< list_ord Term_Ord.fast_term_ord o apply2 Thm.hyps_of <<< list_ord Term_Ord.sort_ord o apply2 Thm.shyps_of; (* tables and caches *) structure Ctermtab = Table(type key = cterm val ord = fast_term_ord); structure Thmtab = Table(type key = thm val ord = thm_ord); fun cterm_cache f = Cache.create Ctermtab.empty Ctermtab.lookup Ctermtab.update f; fun thm_cache f = Cache.create Thmtab.empty Thmtab.lookup Thmtab.update f; (* equality *) fun is_reflexive th = op aconv (Logic.dest_equals (Thm.prop_of th)) handle TERM _ => false; val eq_thm = is_equal o thm_ord; val eq_thm_prop = op aconv o apply2 Thm.full_prop_of; fun eq_thm_strict ths = eq_thm ths andalso Context.eq_thy_id (apply2 Thm.theory_id ths) andalso op = (apply2 Thm.maxidx_of ths) andalso op = (apply2 Thm.get_tags ths); (* pattern equivalence *) fun equiv_thm thy ths = Pattern.equiv thy (apply2 (Thm.full_prop_of o Thm.transfer thy) ths); (* type classes and sorts *) fun class_triv thy c = Thm.of_class (Thm.global_ctyp_of thy (TVar ((Name.aT, 0), [c])), c); fun of_sort (T, S) = map (fn c => Thm.of_class (T, c)) S; (* misc operations *) fun is_dummy thm = (case try Logic.dest_term (Thm.concl_of thm) of NONE => false | SOME t => Term.is_dummy_pattern (Term.head_of t)); (* collections of theorems in canonical order *) val add_thm = update eq_thm_prop; val del_thm = remove eq_thm_prop; val merge_thms = merge eq_thm_prop; val full_rules = Item_Net.init eq_thm_prop (single o Thm.full_prop_of); val intro_rules = Item_Net.init eq_thm_prop (single o Thm.concl_of); val elim_rules = Item_Net.init eq_thm_prop (single o Thm.major_prem_of); (** declared hyps and sort hyps **) structure Hyps = Proof_Data ( type T = {checked_hyps: bool, hyps: Termtab.set, shyps: sort Ord_List.T}; fun init _ : T = {checked_hyps = true, hyps = Termtab.empty, shyps = []}; ); fun map_hyps f = Hyps.map (fn {checked_hyps, hyps, shyps} => let val (checked_hyps', hyps', shyps') = f (checked_hyps, hyps, shyps) in {checked_hyps = checked_hyps', hyps = hyps', shyps = shyps'} end); (* hyps *) fun declare_hyps raw_ct ctxt = ctxt |> map_hyps (fn (checked_hyps, hyps, shyps) => let val ct = Thm.transfer_cterm (Proof_Context.theory_of ctxt) raw_ct; val hyps' = Termtab.update (Thm.term_of ct, ()) hyps; in (checked_hyps, hyps', shyps) end); fun assume_hyps ct ctxt = (Thm.assume ct, declare_hyps ct ctxt); val unchecked_hyps = map_hyps (fn (_, hyps, shyps) => (false, hyps, shyps)); fun restore_hyps ctxt = map_hyps (fn (_, hyps, shyps) => (#checked_hyps (Hyps.get ctxt), hyps, shyps)); fun undeclared_hyps context th = Thm.hyps_of th |> filter_out (case context of Context.Theory _ => K false | Context.Proof ctxt => (case Hyps.get ctxt of {checked_hyps = false, ...} => K true | {hyps, ...} => Termtab.defined hyps)); fun check_hyps context th = (case undeclared_hyps context th of [] => th | undeclared => error (Pretty.string_of (Pretty.big_list "Undeclared hyps:" (map (Pretty.item o single o Syntax.pretty_term (Syntax.init_pretty context)) undeclared)))); (* shyps *) fun declare_term_sorts t = map_hyps (fn (checked_hyps, hyps, shyps) => (checked_hyps, hyps, Sorts.insert_term t shyps)); fun extra_shyps' ctxt th = Sorts.subtract (#shyps (Hyps.get ctxt)) (Thm.extra_shyps th); fun check_shyps ctxt raw_th = let val th = Thm.strip_shyps raw_th; val extra_shyps = extra_shyps' ctxt th; in if null extra_shyps then th else error (Pretty.string_of (Pretty.block (Pretty.str "Pending sort hypotheses:" :: Pretty.brk 1 :: Pretty.commas (map (Syntax.pretty_sort ctxt) extra_shyps)))) end; val weaken_sorts' = Thm.weaken_sorts o #shyps o Hyps.get; (** basic derived rules **) (*Elimination of implication A A \ B ------------ B *) fun elim_implies thA thAB = Thm.implies_elim thAB thA; (* forall_intr_name *) fun forall_intr_name (a, x) th = let val th' = Thm.forall_intr x th; val prop' = (case Thm.prop_of th' of all $ Abs (_, T, b) => all $ Abs (a, T, b)); in Thm.renamed_prop prop' th' end; (* forall_elim_var(s) *) local fun dest_all ct = (case Thm.term_of ct of Const ("Pure.all", _) $ Abs (a, _, _) => let val (x, ct') = Thm.dest_abs NONE (Thm.dest_arg ct) in SOME ((a, Thm.ctyp_of_cterm x), ct') end | _ => NONE); fun dest_all_list ct = (case dest_all ct of NONE => [] | SOME (v, ct') => v :: dest_all_list ct'); fun forall_elim_vars_list vars i th = let val used = (Thm.fold_terms o Term.fold_aterms) (fn Var ((x, j), _) => if i = j then insert (op =) x else I | _ => I) th []; val vars' = (Name.variant_list used (map #1 vars), vars) |> ListPair.map (fn (x, (_, T)) => Thm.var ((x, i), T)); in fold Thm.forall_elim vars' th end; in fun forall_elim_vars i th = forall_elim_vars_list (dest_all_list (Thm.cprop_of th)) i th; fun forall_elim_var i th = let val vars = (case dest_all (Thm.cprop_of th) of SOME (v, _) => [v] | NONE => raise THM ("forall_elim_var", i, [th])); in forall_elim_vars_list vars i th end; end; (* instantiate frees *) fun instantiate_frees ([], []) th = th | instantiate_frees (instT, inst) th = let val idx = Thm.maxidx_of th + 1; fun index ((a, A), b) = (((a, idx), A), b); val insts = (map index instT, map index inst); val frees = (map (#1 o #1) instT, map (#1 o #1) inst); val hyps = Thm.chyps_of th; val inst_cterm = Thm.generalize_cterm frees idx #> Thm.instantiate_cterm insts; in th |> fold_rev Thm.implies_intr hyps |> Thm.generalize frees idx |> Thm.instantiate insts |> fold (elim_implies o Thm.assume o inst_cterm) hyps end; (* instantiate by left-to-right occurrence of variables *) fun instantiate' cTs cts thm = let fun err msg = raise TYPE ("instantiate': " ^ msg, map_filter (Option.map Thm.typ_of) cTs, map_filter (Option.map Thm.term_of) cts); fun zip_vars xs ys = zip_options xs ys handle ListPair.UnequalLengths => err "more instantiations than variables in thm"; val thm' = Thm.instantiate ((zip_vars (rev (Thm.fold_terms Term.add_tvars thm [])) cTs), []) thm; val thm'' = Thm.instantiate ([], zip_vars (rev (Thm.fold_terms Term.add_vars thm' [])) cts) thm'; in thm'' end; (* forall_intr_frees: generalization over all suitable Free variables *) fun forall_intr_frees th = let val fixed = fold Term.add_frees (Thm.terms_of_tpairs (Thm.tpairs_of th) @ Thm.hyps_of th) []; val frees = Thm.fold_atomic_cterms (fn a => (case Thm.term_of a of Free v => not (member (op =) fixed v) ? insert (op aconvc) a | _ => I)) th []; in fold Thm.forall_intr frees th end; (* unvarify_global: global schematic variables *) fun unvarify_global thy th = let val prop = Thm.full_prop_of th; val _ = map Logic.unvarify_global (prop :: Thm.hyps_of th) handle TERM (msg, _) => raise THM (msg, 0, [th]); val instT = rev (Term.add_tvars prop []) |> map (fn v as ((a, _), S) => (v, TFree (a, S))); val inst = rev (Term.add_vars prop []) |> map (fn ((a, i), T) => let val T' = Term_Subst.instantiateT instT T in (((a, i), T'), Thm.global_cterm_of thy (Free ((a, T')))) end); in Thm.instantiate (map (apsnd (Thm.global_ctyp_of thy)) instT, inst) th end; fun unvarify_axiom thy = unvarify_global thy o Thm.axiom thy; (* user renaming of parameters in a subgoal *) (*The names, if distinct, are used for the innermost parameters of subgoal i; preceding parameters may be renamed to make all parameters distinct.*) fun rename_params_rule (names, i) st = let val (_, Bs, Bi, C) = Thm.dest_state (st, i); val params = map #1 (Logic.strip_params Bi); val short = length params - length names; val names' = if short < 0 then error "More names than parameters in subgoal!" else Name.variant_list names (take short params) @ names; val free_names = Term.fold_aterms (fn Free (x, _) => insert (op =) x | _ => I) Bi []; val Bi' = Logic.list_rename_params names' Bi; in (case duplicates (op =) names of a :: _ => (warning ("Can't rename. Bound variables not distinct: " ^ a); st) | [] => (case inter (op =) names free_names of a :: _ => (warning ("Can't rename. Bound/Free variable clash: " ^ a); st) | [] => Thm.renamed_prop (Logic.list_implies (Bs @ [Bi'], C)) st)) end; (* preservation of bound variable names *) fun rename_boundvars pat obj th = (case Term.rename_abs pat obj (Thm.prop_of th) of NONE => th | SOME prop' => Thm.renamed_prop prop' th); (** specification primitives **) (* rules *) fun stripped_sorts thy t = let val tfrees = rev (Term.add_tfrees t []); val tfrees' = map (fn a => (a, [])) (Name.variant_list [] (map #1 tfrees)); val recover = map2 (fn (a', S') => fn (a, S) => (((a', 0), S'), Thm.global_ctyp_of thy (TVar ((a, 0), S)))) tfrees' tfrees; val strip = map (apply2 TFree) (tfrees ~~ tfrees'); val t' = Term.map_types (Term.map_atyps (perhaps (AList.lookup (op =) strip))) t; in (strip, recover, t') end; fun add_axiom ctxt (b, prop) thy = let val _ = Sign.no_vars ctxt prop; val (strip, recover, prop') = stripped_sorts thy prop; val constraints = map (fn (TFree (_, S), T) => (T, S)) strip; val of_sorts = maps (fn (T as TFree (_, S), _) => of_sort (Thm.ctyp_of ctxt T, S)) strip; val thy' = thy |> Theory.add_axiom ctxt (b, Logic.list_implies (maps Logic.mk_of_sort constraints, prop')); val axm_name = Sign.full_name thy' b; val axm' = Thm.axiom thy' axm_name; val thm = Thm.instantiate (recover, []) axm' |> unvarify_global thy' |> fold elim_implies of_sorts; in ((axm_name, thm), thy') end; fun add_axiom_global arg thy = add_axiom (Syntax.init_pretty_global thy) arg thy; fun add_def (context as (ctxt, _)) unchecked overloaded (b, prop) thy = let val _ = Sign.no_vars ctxt prop; val prems = map (Thm.cterm_of ctxt) (Logic.strip_imp_prems prop); val (_, recover, concl') = stripped_sorts thy (Logic.strip_imp_concl prop); val thy' = Theory.add_def context unchecked overloaded (b, concl') thy; val axm_name = Sign.full_name thy' b; val axm' = Thm.axiom thy' axm_name; val thm = Thm.instantiate (recover, []) axm' |> unvarify_global thy' |> fold_rev Thm.implies_intr prems; in ((axm_name, thm), thy') end; fun add_def_global unchecked overloaded arg thy = add_def (Defs.global_context thy) unchecked overloaded arg thy; (** theorem tags **) (* add / delete tags *) fun tag_rule tg = Thm.map_tags (insert (op =) tg); fun untag_rule s = Thm.map_tags (filter_out (fn (s', _) => s = s')); (* free dummy thm -- for abstract closure *) val free_dummyN = "free_dummy"; fun is_free_dummy thm = Properties.defined (Thm.get_tags thm) free_dummyN; val tag_free_dummy = tag_rule (free_dummyN, ""); (* def_name *) fun def_name c = c ^ "_def"; fun def_name_optional c "" = def_name c | def_name_optional _ name = name; val def_binding = Binding.map_name def_name #> Binding.reset_pos; fun def_binding_optional b name = if Binding.is_empty name then def_binding b else name; fun make_def_binding cond b = if cond then def_binding b else Binding.empty; (* unofficial theorem names *) fun has_name_hint thm = AList.defined (op =) (Thm.get_tags thm) Markup.nameN; fun the_name_hint thm = the (AList.lookup (op =) (Thm.get_tags thm) Markup.nameN); fun get_name_hint thm = if has_name_hint thm then the_name_hint thm else "??.unknown"; fun put_name_hint name = untag_rule Markup.nameN #> tag_rule (Markup.nameN, name); (* theorem kinds *) val theoremK = "theorem"; fun legacy_get_kind thm = the_default "" (Properties.get (Thm.get_tags thm) Markup.kindN); fun kind_rule k = tag_rule (Markup.kindN, k) o untag_rule Markup.kindN; (** attributes **) (*attributes subsume any kind of rules or context modifiers*) type attribute = Context.generic * thm -> Context.generic option * thm option; type binding = binding * attribute list; fun rule_attribute ths f (x, th) = (NONE, (case find_first is_free_dummy (th :: ths) of SOME th' => SOME th' | NONE => SOME (f x th))); fun declaration_attribute f (x, th) = (if is_free_dummy th then NONE else SOME (f th x), NONE); fun mixed_attribute f (x, th) = let val (x', th') = f (x, th) in (SOME x', SOME th') end; fun apply_attribute (att: attribute) th x = let val (x', th') = att (x, check_hyps x (Thm.transfer'' x th)) in (the_default th th', the_default x x') end; fun attribute_declaration att th x = #2 (apply_attribute att th x); fun apply_attributes mk dest = let fun app [] th x = (th, x) | app (att :: atts) th x = apply_attribute att th (mk x) ||> dest |-> app atts; in app end; val theory_attributes = apply_attributes Context.Theory Context.the_theory; val proof_attributes = apply_attributes Context.Proof Context.the_proof; fun no_attributes x = (x, []); fun simple_fact x = [(x, [])]; fun tag tg = rule_attribute [] (K (tag_rule tg)); fun untag s = rule_attribute [] (K (untag_rule s)); fun kind k = rule_attribute [] (K (k <> "" ? kind_rule k)); (** proof terms **) fun reconstruct_proof_of thm = Proofterm.reconstruct_proof (Thm.theory_of_thm thm) (Thm.prop_of thm) (Thm.proof_of thm); fun standard_proof_of {full, expand_name} thm = let val thy = Thm.theory_of_thm thm in reconstruct_proof_of thm |> Proofterm.expand_proof thy expand_name |> Proofterm.rew_proof thy |> Proofterm.no_thm_proofs |> not full ? Proofterm.shrink_proof end; (** forked proofs **) structure Proofs = Theory_Data ( type T = thm list lazy list; val empty = []; fun extend _ = empty; fun merge _ = empty; ); fun register_proofs ths = (Proofs.map o cons) (Lazy.map_finished (map Thm.trim_context) ths); -fun consolidate_theory thy = - let - val thms = - rev (Proofs.get thy) - |> maps (map (Thm.transfer thy) o Lazy.force); - val _ = Thm.consolidate thms; - val _ = Thm.expose_proofs thy thms; - in () end; +fun force_proofs thy = rev (Proofs.get thy) |> maps (map (Thm.transfer thy) o Lazy.force); + +val consolidate_theory = Thm.consolidate o force_proofs; + +fun expose_theory thy = + if Proofterm.export_enabled () + then Thm.expose_proofs thy (force_proofs thy) else (); (** print theorems **) (* options *) val show_consts = Config.declare_option_bool ("show_consts", \<^here>); val show_hyps = Config.declare_bool ("show_hyps", \<^here>) (K false); val show_tags = Config.declare_bool ("show_tags", \<^here>) (K false); (* pretty_thm etc. *) fun pretty_tag (name, arg) = Pretty.strs [name, quote arg]; val pretty_tags = Pretty.list "[" "]" o map pretty_tag; fun pretty_thm_raw ctxt {quote, show_hyps = show_hyps'} raw_th = let val show_tags = Config.get ctxt show_tags; val show_hyps = Config.get ctxt show_hyps; val th = raw_th |> perhaps (try (Thm.transfer' ctxt)) |> perhaps (try Thm.strip_shyps); val hyps = if show_hyps then Thm.hyps_of th else undeclared_hyps (Context.Proof ctxt) th; val extra_shyps = extra_shyps' ctxt th; val tags = Thm.get_tags th; val tpairs = Thm.tpairs_of th; val q = if quote then Pretty.quote else I; val prt_term = q o Syntax.pretty_term ctxt; val hlen = length extra_shyps + length hyps + length tpairs; val hsymbs = if hlen = 0 then [] else if show_hyps orelse show_hyps' then [Pretty.brk 2, Pretty.list "[" "]" (map (q o Syntax.pretty_flexpair ctxt) tpairs @ map prt_term hyps @ map (Syntax.pretty_sort ctxt) extra_shyps)] else [Pretty.brk 2, Pretty.str ("[" ^ replicate_string hlen "." ^ "]")]; val tsymbs = if null tags orelse not show_tags then [] else [Pretty.brk 1, pretty_tags tags]; in Pretty.block (prt_term (Thm.prop_of th) :: (hsymbs @ tsymbs)) end; fun pretty_thm ctxt = pretty_thm_raw ctxt {quote = false, show_hyps = true}; fun pretty_thm_item ctxt th = Pretty.item [pretty_thm ctxt th]; fun pretty_thm_global thy = pretty_thm_raw (Syntax.init_pretty_global thy) {quote = false, show_hyps = false}; val string_of_thm = Pretty.string_of oo pretty_thm; val string_of_thm_global = Pretty.string_of oo pretty_thm_global; open Thm; end; structure Basic_Thm: BASIC_THM = Thm; open Basic_Thm;