diff --git a/src/HOL/ex/Word.thy b/src/HOL/ex/Word.thy --- a/src/HOL/ex/Word.thy +++ b/src/HOL/ex/Word.thy @@ -1,692 +1,696 @@ (* Author: Florian Haftmann, TUM *) section \Proof of concept for algebraically founded bit word types\ theory Word imports Main "HOL-Library.Type_Length" "HOL-ex.Bit_Operations" begin subsection \Preliminaries\ definition signed_take_bit :: "nat \ int \ int" where signed_take_bit_eq_take_bit: "signed_take_bit n k = take_bit (Suc n) (k + 2 ^ n) - 2 ^ n" lemma signed_take_bit_eq_take_bit': "signed_take_bit (n - Suc 0) k = take_bit n (k + 2 ^ (n - 1)) - 2 ^ (n - 1)" if "n > 0" using that by (simp add: signed_take_bit_eq_take_bit) lemma signed_take_bit_0 [simp]: "signed_take_bit 0 k = - (k mod 2)" proof (cases "even k") case True then have "odd (k + 1)" by simp then have "(k + 1) mod 2 = 1" by (simp add: even_iff_mod_2_eq_zero) with True show ?thesis by (simp add: signed_take_bit_eq_take_bit) next case False then show ?thesis by (simp add: signed_take_bit_eq_take_bit odd_iff_mod_2_eq_one) qed lemma signed_take_bit_Suc [simp]: "signed_take_bit (Suc n) k = signed_take_bit n (k div 2) * 2 + k mod 2" by (simp add: odd_iff_mod_2_eq_one signed_take_bit_eq_take_bit algebra_simps) lemma signed_take_bit_of_0 [simp]: "signed_take_bit n 0 = 0" by (simp add: signed_take_bit_eq_take_bit take_bit_eq_mod) lemma signed_take_bit_of_minus_1 [simp]: "signed_take_bit n (- 1) = - 1" by (induct n) simp_all lemma signed_take_bit_eq_iff_take_bit_eq: "signed_take_bit (n - Suc 0) k = signed_take_bit (n - Suc 0) l \ take_bit n k = take_bit n l" (is "?P \ ?Q") if "n > 0" proof - from that obtain m where m: "n = Suc m" by (cases n) auto show ?thesis proof assume ?Q have "take_bit (Suc m) (k + 2 ^ m) = take_bit (Suc m) (take_bit (Suc m) k + take_bit (Suc m) (2 ^ m))" by (simp only: take_bit_add) also have "\ = take_bit (Suc m) (take_bit (Suc m) l + take_bit (Suc m) (2 ^ m))" by (simp only: \?Q\ m [symmetric]) also have "\ = take_bit (Suc m) (l + 2 ^ m)" by (simp only: take_bit_add) finally show ?P by (simp only: signed_take_bit_eq_take_bit m) simp next assume ?P with that have "(k + 2 ^ (n - Suc 0)) mod 2 ^ n = (l + 2 ^ (n - Suc 0)) mod 2 ^ n" by (simp add: signed_take_bit_eq_take_bit' take_bit_eq_mod) then have "(i + (k + 2 ^ (n - Suc 0))) mod 2 ^ n = (i + (l + 2 ^ (n - Suc 0))) mod 2 ^ n" for i by (metis mod_add_eq) then have "k mod 2 ^ n = l mod 2 ^ n" by (metis add_diff_cancel_right' uminus_add_conv_diff) then show ?Q by (simp add: take_bit_eq_mod) qed qed subsection \Bit strings as quotient type\ subsubsection \Basic properties\ quotient_type (overloaded) 'a word = int / "\k l. take_bit LENGTH('a) k = take_bit LENGTH('a::len0) l" by (auto intro!: equivpI reflpI sympI transpI) instantiation word :: (len0) "{semiring_numeral, comm_semiring_0, comm_ring}" begin lift_definition zero_word :: "'a word" is 0 . lift_definition one_word :: "'a word" is 1 . lift_definition plus_word :: "'a word \ 'a word \ 'a word" is plus by (subst take_bit_add [symmetric]) (simp add: take_bit_add) lift_definition uminus_word :: "'a word \ 'a word" is uminus by (subst take_bit_uminus [symmetric]) (simp add: take_bit_uminus) lift_definition minus_word :: "'a word \ 'a word \ 'a word" is minus by (subst take_bit_minus [symmetric]) (simp add: take_bit_minus) lift_definition times_word :: "'a word \ 'a word \ 'a word" is times by (auto simp add: take_bit_eq_mod intro: mod_mult_cong) instance by standard (transfer; simp add: algebra_simps)+ end instance word :: (len) comm_ring_1 by standard (transfer; simp)+ quickcheck_generator word constructors: "zero_class.zero :: ('a::len0) word", "numeral :: num \ ('a::len0) word", "uminus :: ('a::len0) word \ ('a::len0) word" context includes lifting_syntax notes power_transfer [transfer_rule] begin lemma power_transfer_word [transfer_rule]: \(pcr_word ===> (=) ===> pcr_word) (^) (^)\ by transfer_prover end subsubsection \Conversions\ context includes lifting_syntax notes transfer_rule_of_bool [transfer_rule] transfer_rule_numeral [transfer_rule] transfer_rule_of_nat [transfer_rule] transfer_rule_of_int [transfer_rule] begin lemma [transfer_rule]: "((=) ===> (pcr_word :: int \ 'a::len word \ bool)) of_bool of_bool" by transfer_prover lemma [transfer_rule]: "((=) ===> (pcr_word :: int \ 'a::len word \ bool)) numeral numeral" by transfer_prover lemma [transfer_rule]: "((=) ===> pcr_word) int of_nat" by transfer_prover lemma [transfer_rule]: "((=) ===> pcr_word) (\k. k) of_int" proof - have "((=) ===> pcr_word) of_int of_int" by transfer_prover then show ?thesis by (simp add: id_def) qed end lemma abs_word_eq: "abs_word = of_int" by (rule ext) (transfer, rule) context semiring_1 begin lift_definition unsigned :: "'b::len0 word \ 'a" is "of_nat \ nat \ take_bit LENGTH('b)" by simp lemma unsigned_0 [simp]: "unsigned 0 = 0" by transfer simp end context semiring_char_0 begin lemma word_eq_iff_unsigned: "a = b \ unsigned a = unsigned b" by safe (transfer; simp add: eq_nat_nat_iff) end instantiation word :: (len0) equal begin definition equal_word :: "'a word \ 'a word \ bool" where "equal_word a b \ (unsigned a :: int) = unsigned b" instance proof fix a b :: "'a word" show "HOL.equal a b \ a = b" using word_eq_iff_unsigned [of a b] by (auto simp add: equal_word_def) qed end context ring_1 begin lift_definition signed :: "'b::len word \ 'a" is "of_int \ signed_take_bit (LENGTH('b) - 1)" by (simp add: signed_take_bit_eq_iff_take_bit_eq [symmetric]) lemma signed_0 [simp]: "signed 0 = 0" by transfer simp end lemma unsigned_of_nat [simp]: "unsigned (of_nat n :: 'a word) = take_bit LENGTH('a::len) n" by transfer (simp add: nat_eq_iff take_bit_eq_mod zmod_int) lemma of_nat_unsigned [simp]: "of_nat (unsigned a) = a" by transfer simp lemma of_int_unsigned [simp]: "of_int (unsigned a) = a" by transfer simp lemma unsigned_nat_less: \unsigned a < (2 ^ LENGTH('a) :: nat)\ for a :: \'a::len0 word\ by transfer (simp add: take_bit_eq_mod) lemma unsigned_int_less: \unsigned a < (2 ^ LENGTH('a) :: int)\ for a :: \'a::len0 word\ by transfer (simp add: take_bit_eq_mod) context ring_char_0 begin lemma word_eq_iff_signed: "a = b \ signed a = signed b" by safe (transfer; auto simp add: signed_take_bit_eq_iff_take_bit_eq) end lemma signed_of_int [simp]: "signed (of_int k :: 'a word) = signed_take_bit (LENGTH('a::len) - 1) k" by transfer simp lemma of_int_signed [simp]: "of_int (signed a) = a" by transfer (simp add: signed_take_bit_eq_take_bit take_bit_eq_mod mod_simps) subsubsection \Properties\ +lemma exp_eq_zero_iff: + \(2 :: 'a::len word) ^ n = 0 \ LENGTH('a) \ n\ + by transfer simp + subsubsection \Division\ instantiation word :: (len0) modulo begin lift_definition divide_word :: "'a word \ 'a word \ 'a word" is "\a b. take_bit LENGTH('a) a div take_bit LENGTH('a) b" by simp lift_definition modulo_word :: "'a word \ 'a word \ 'a word" is "\a b. take_bit LENGTH('a) a mod take_bit LENGTH('a) b" by simp instance .. end lemma zero_word_div_eq [simp]: \0 div a = 0\ for a :: \'a::len0 word\ by transfer simp lemma div_zero_word_eq [simp]: \a div 0 = 0\ for a :: \'a::len0 word\ by transfer simp context includes lifting_syntax begin lemma [transfer_rule]: "(pcr_word ===> (\)) even ((dvd) 2 :: 'a::len word \ bool)" proof - have even_word_unfold: "even k \ (\l. take_bit LENGTH('a) k = take_bit LENGTH('a) (2 * l))" (is "?P \ ?Q") for k :: int proof assume ?P then show ?Q by auto next assume ?Q then obtain l where "take_bit LENGTH('a) k = take_bit LENGTH('a) (2 * l)" .. then have "even (take_bit LENGTH('a) k)" by simp then show ?P by simp qed show ?thesis by (simp only: even_word_unfold [abs_def] dvd_def [where ?'a = "'a word", abs_def]) transfer_prover qed end instance word :: (len) semiring_modulo proof show "a div b * b + a mod b = a" for a b :: "'a word" proof transfer fix k l :: int define r :: int where "r = 2 ^ LENGTH('a)" then have r: "take_bit LENGTH('a) k = k mod r" for k by (simp add: take_bit_eq_mod) have "k mod r = ((k mod r) div (l mod r) * (l mod r) + (k mod r) mod (l mod r)) mod r" by (simp add: div_mult_mod_eq) also have "... = (((k mod r) div (l mod r) * (l mod r)) mod r + (k mod r) mod (l mod r)) mod r" by (simp add: mod_add_left_eq) also have "... = (((k mod r) div (l mod r) * l) mod r + (k mod r) mod (l mod r)) mod r" by (simp add: mod_mult_right_eq) finally have "k mod r = ((k mod r) div (l mod r) * l + (k mod r) mod (l mod r)) mod r" by (simp add: mod_simps) with r show "take_bit LENGTH('a) (take_bit LENGTH('a) k div take_bit LENGTH('a) l * l + take_bit LENGTH('a) k mod take_bit LENGTH('a) l) = take_bit LENGTH('a) k" by simp qed qed instance word :: (len) semiring_parity proof show "\ 2 dvd (1::'a word)" by transfer simp show even_iff_mod_2_eq_0: "2 dvd a \ a mod 2 = 0" for a :: "'a word" by transfer (simp_all add: mod_2_eq_odd) show "\ 2 dvd a \ a mod 2 = 1" for a :: "'a word" by transfer (simp_all add: mod_2_eq_odd) qed subsubsection \Orderings\ instantiation word :: (len0) linorder begin lift_definition less_eq_word :: "'a word \ 'a word \ bool" is "\a b. take_bit LENGTH('a) a \ take_bit LENGTH('a) b" by simp lift_definition less_word :: "'a word \ 'a word \ bool" is "\a b. take_bit LENGTH('a) a < take_bit LENGTH('a) b" by simp instance by standard (transfer; auto)+ end context linordered_semidom begin lemma word_less_eq_iff_unsigned: "a \ b \ unsigned a \ unsigned b" by (transfer fixing: less_eq) (simp add: nat_le_eq_zle) lemma word_less_iff_unsigned: "a < b \ unsigned a < unsigned b" by (transfer fixing: less) (auto dest: preorder_class.le_less_trans [OF take_bit_nonnegative]) end lemma word_greater_zero_iff: \a > 0 \ a \ 0\ for a :: \'a::len0 word\ by transfer (simp add: less_le) lemma of_nat_word_eq_iff: \of_nat m = (of_nat n :: 'a::len word) \ take_bit LENGTH('a) m = take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma of_nat_word_less_eq_iff: \of_nat m \ (of_nat n :: 'a::len word) \ take_bit LENGTH('a) m \ take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma of_nat_word_less_iff: \of_nat m < (of_nat n :: 'a::len word) \ take_bit LENGTH('a) m < take_bit LENGTH('a) n\ by transfer (simp add: take_bit_of_nat) lemma of_nat_word_eq_0_iff: \of_nat n = (0 :: 'a::len word) \ 2 ^ LENGTH('a) dvd n\ using of_nat_word_eq_iff [where ?'a = 'a, of n 0] by (simp add: take_bit_eq_0_iff) lemma of_int_word_eq_iff: \of_int k = (of_int l :: 'a::len word) \ take_bit LENGTH('a) k = take_bit LENGTH('a) l\ by transfer rule lemma of_int_word_less_eq_iff: \of_int k \ (of_int l :: 'a::len word) \ take_bit LENGTH('a) k \ take_bit LENGTH('a) l\ by transfer rule lemma of_int_word_less_iff: \of_int k < (of_int l :: 'a::len word) \ take_bit LENGTH('a) k < take_bit LENGTH('a) l\ by transfer rule lemma of_int_word_eq_0_iff: \of_int k = (0 :: 'a::len word) \ 2 ^ LENGTH('a) dvd k\ using of_int_word_eq_iff [where ?'a = 'a, of k 0] by (simp add: take_bit_eq_0_iff) subsection \Bit structure on \<^typ>\'a word\\ lemma word_bit_induct [case_names zero even odd]: \P a\ if word_zero: \P 0\ and word_even: \\a. P a \ 0 < a \ a < 2 ^ (LENGTH('a) - 1) \ P (2 * a)\ and word_odd: \\a. P a \ a < 2 ^ (LENGTH('a) - 1) \ P (1 + 2 * a)\ for P and a :: \'a::len word\ proof - define m :: nat where \m = LENGTH('a) - 1\ then have l: \LENGTH('a) = Suc m\ by simp define n :: nat where \n = unsigned a\ then have \n < 2 ^ LENGTH('a)\ by (simp add: unsigned_nat_less) then have \n < 2 * 2 ^ m\ by (simp add: l) then have \P (of_nat n)\ proof (induction n rule: nat_bit_induct) case zero show ?case by simp (rule word_zero) next case (even n) then have \n < 2 ^ m\ by simp with even.IH have \P (of_nat n)\ by simp moreover from \n < 2 ^ m\ even.hyps have \0 < (of_nat n :: 'a word)\ by (auto simp add: word_greater_zero_iff of_nat_word_eq_0_iff l) moreover from \n < 2 ^ m\ have \(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - 1)\ using of_nat_word_less_iff [where ?'a = 'a, of n \2 ^ m\] by (cases \m = 0\) (simp_all add: not_less take_bit_eq_self ac_simps l) ultimately have \P (2 * of_nat n)\ by (rule word_even) then show ?case by simp next case (odd n) then have \Suc n \ 2 ^ m\ by simp with odd.IH have \P (of_nat n)\ by simp moreover from \Suc n \ 2 ^ m\ have \(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - 1)\ using of_nat_word_less_iff [where ?'a = 'a, of n \2 ^ m\] by (cases \m = 0\) (simp_all add: not_less take_bit_eq_self ac_simps l) ultimately have \P (1 + 2 * of_nat n)\ by (rule word_odd) then show ?case by simp qed then show ?thesis by (simp add: n_def) qed lemma bit_word_half_eq: \(of_bool b + a * 2) div 2 = a\ if \a < 2 ^ (LENGTH('a) - Suc 0)\ for a :: \'a::len word\ proof (cases \2 \ LENGTH('a::len)\) case False have \of_bool (odd k) < (1 :: int) \ even k\ for k :: int by auto with False that show ?thesis by (auto; transfer) simp_all next case True obtain n where length: \LENGTH('a) = Suc n\ by (cases \LENGTH('a)\) simp_all show ?thesis proof (cases b) case False moreover have \a * 2 div 2 = a\ using that proof transfer fix k :: int from length have \k * 2 mod 2 ^ LENGTH('a) = (k mod 2 ^ n) * 2\ by simp moreover assume \take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\ with \LENGTH('a) = Suc n\ have \k mod 2 ^ LENGTH('a) = k mod 2 ^ n\ by (simp add: take_bit_eq_mod divmod_digit_0) ultimately have \take_bit LENGTH('a) (k * 2) = take_bit LENGTH('a) k * 2\ by (simp add: take_bit_eq_mod) with True show \take_bit LENGTH('a) (take_bit LENGTH('a) (k * 2) div take_bit LENGTH('a) 2) = take_bit LENGTH('a) k\ by simp qed ultimately show ?thesis by simp next case True moreover have \(1 + a * 2) div 2 = a\ using that proof transfer fix k :: int from length have \(1 + k * 2) mod 2 ^ LENGTH('a) = 1 + (k mod 2 ^ n) * 2\ using pos_zmod_mult_2 [of \2 ^ n\ k] by (simp add: ac_simps) moreover assume \take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\ with \LENGTH('a) = Suc n\ have \k mod 2 ^ LENGTH('a) = k mod 2 ^ n\ by (simp add: take_bit_eq_mod divmod_digit_0) ultimately have \take_bit LENGTH('a) (1 + k * 2) = 1 + take_bit LENGTH('a) k * 2\ by (simp add: take_bit_eq_mod) with True show \take_bit LENGTH('a) (take_bit LENGTH('a) (1 + k * 2) div take_bit LENGTH('a) 2) = take_bit LENGTH('a) k\ by auto qed ultimately show ?thesis by simp qed qed instance word :: (len) semiring_bits proof show \P a\ if stable: \\a. a div 2 = a \ P a\ and rec: \\a b. P a \ (of_bool b + 2 * a) div 2 = a \ P (of_bool b + 2 * a)\ for P and a :: \'a word\ proof (induction a rule: word_bit_induct) case zero from stable [of 0] show ?case by simp next case (even a) with rec [of a False] show ?case using bit_word_half_eq [of a False] by (simp add: ac_simps) next case (odd a) with rec [of a True] show ?case using bit_word_half_eq [of a True] by (simp add: ac_simps) qed show \0 div a = 0\ for a :: \'a word\ by transfer simp show \a div 1 = a\ for a :: \'a word\ by transfer simp show \a mod b div b = 0\ for a b :: \'a word\ apply transfer apply (simp add: take_bit_eq_mod) apply (subst (3) mod_pos_pos_trivial [of _ \2 ^ LENGTH('a)\]) apply simp_all apply (metis le_less mod_by_0 pos_mod_conj zero_less_numeral zero_less_power) using pos_mod_bound [of \2 ^ LENGTH('a)\] apply simp proof - fix aa :: int and ba :: int have f1: "\i n. (i::int) mod 2 ^ n = 0 \ 0 < i mod 2 ^ n" by (metis le_less take_bit_eq_mod take_bit_nonnegative) have "(0::int) < 2 ^ len_of (TYPE('a)::'a itself) \ ba mod 2 ^ len_of (TYPE('a)::'a itself) \ 0 \ aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)" by (metis (no_types) mod_by_0 unique_euclidean_semiring_numeral_class.pos_mod_bound zero_less_numeral zero_less_power) then show "aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)" using f1 by (meson le_less less_le_trans unique_euclidean_semiring_numeral_class.pos_mod_bound) qed show \(1 + a) div 2 = a div 2\ if \even a\ for a :: \'a word\ using that by transfer (auto dest: le_Suc_ex) show \(2 :: 'a word) ^ m div 2 ^ n = of_bool ((2 :: 'a word) ^ m \ 0 \ n \ m) * 2 ^ (m - n)\ for m n :: nat by transfer (simp, simp add: exp_div_exp_eq) show "a div 2 ^ m div 2 ^ n = a div 2 ^ (m + n)" for a :: "'a word" and m n :: nat apply transfer apply (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: drop_bit_eq_div) apply (simp add: drop_bit_take_bit) done show "a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n" for a :: "'a word" and m n :: nat by transfer (auto simp flip: take_bit_eq_mod simp add: ac_simps) show \a * 2 ^ m mod 2 ^ n = a mod 2 ^ (n - m) * 2 ^ m\ if \m \ n\ for a :: "'a word" and m n :: nat using that apply transfer apply (auto simp flip: take_bit_eq_mod) apply (auto simp flip: push_bit_eq_mult simp add: push_bit_take_bit split: split_min_lin) done show \a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\ for a :: "'a word" and m n :: nat by transfer (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: take_bit_eq_mod drop_bit_eq_div split: split_min_lin) qed context includes lifting_syntax begin lemma transfer_rule_bit_word [transfer_rule]: \((pcr_word :: int \ 'a::len word \ bool) ===> (=)) (\k n. n < LENGTH('a) \ bit k n) bit\ proof - let ?t = \\a n. odd (take_bit LENGTH('a) a div take_bit LENGTH('a) ((2::int) ^ n))\ have \((pcr_word :: int \ 'a word \ bool) ===> (=)) ?t bit\ by (unfold bit_def) transfer_prover also have \?t = (\k n. n < LENGTH('a) \ bit k n)\ by (simp add: fun_eq_iff bit_take_bit_iff flip: bit_def) finally show ?thesis . qed end instantiation word :: (len) semiring_bit_shifts begin lift_definition push_bit_word :: \nat \ 'a word \ 'a word\ is push_bit proof - show \take_bit LENGTH('a) (push_bit n k) = take_bit LENGTH('a) (push_bit n l)\ if \take_bit LENGTH('a) k = take_bit LENGTH('a) l\ for k l :: int and n :: nat proof - from that have \take_bit (LENGTH('a) - n) (take_bit LENGTH('a) k) = take_bit (LENGTH('a) - n) (take_bit LENGTH('a) l)\ by simp moreover have \min (LENGTH('a) - n) LENGTH('a) = LENGTH('a) - n\ by simp ultimately show ?thesis by (simp add: take_bit_push_bit) qed qed lift_definition drop_bit_word :: \nat \ 'a word \ 'a word\ is \\n. drop_bit n \ take_bit LENGTH('a)\ by (simp add: take_bit_eq_mod) instance proof show \push_bit n a = a * 2 ^ n\ for n :: nat and a :: "'a word" by transfer (simp add: push_bit_eq_mult) show \drop_bit n a = a div 2 ^ n\ for n :: nat and a :: "'a word" by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit) qed end instantiation word :: (len) ring_bit_operations begin lift_definition not_word :: "'a word \ 'a word" is not by (simp add: take_bit_not_iff) lift_definition and_word :: "'a word \ 'a word \ 'a word" is "and" by simp lift_definition or_word :: "'a word \ 'a word \ 'a word" is or by simp lift_definition xor_word :: "'a word \ 'a word \ 'a word" is xor by simp instance proof fix a b :: \'a word\ and n :: nat show \even (- 1 div (2 :: 'a word) ^ n) \ (2 :: 'a word) ^ n = 0\ by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit) show \bit (NOT a) n \ (2 :: 'a word) ^ n \ 0 \ \ bit a n\ by transfer (simp add: bit_not_iff) show \bit (a AND b) n \ bit a n \ bit b n\ by transfer (auto simp add: bit_and_iff) show \bit (a OR b) n \ bit a n \ bit b n\ by transfer (auto simp add: bit_or_iff) show \bit (a XOR b) n \ bit a n \ bit b n\ by transfer (auto simp add: bit_xor_iff) qed end end