diff --git a/src/HOL/Groups_List.thy b/src/HOL/Groups_List.thy --- a/src/HOL/Groups_List.thy +++ b/src/HOL/Groups_List.thy @@ -1,432 +1,444 @@ (* Author: Tobias Nipkow, TU Muenchen *) section \Sum and product over lists\ theory Groups_List imports List begin locale monoid_list = monoid begin definition F :: "'a list \ 'a" where eq_foldr [code]: "F xs = foldr f xs \<^bold>1" lemma Nil [simp]: "F [] = \<^bold>1" by (simp add: eq_foldr) lemma Cons [simp]: "F (x # xs) = x \<^bold>* F xs" by (simp add: eq_foldr) lemma append [simp]: "F (xs @ ys) = F xs \<^bold>* F ys" by (induct xs) (simp_all add: assoc) end locale comm_monoid_list = comm_monoid + monoid_list begin lemma rev [simp]: "F (rev xs) = F xs" by (simp add: eq_foldr foldr_fold fold_rev fun_eq_iff assoc left_commute) end locale comm_monoid_list_set = list: comm_monoid_list + set: comm_monoid_set begin lemma distinct_set_conv_list: "distinct xs \ set.F g (set xs) = list.F (map g xs)" by (induct xs) simp_all lemma set_conv_list [code]: "set.F g (set xs) = list.F (map g (remdups xs))" by (simp add: distinct_set_conv_list [symmetric]) end subsection \List summation\ context monoid_add begin sublocale sum_list: monoid_list plus 0 defines sum_list = sum_list.F .. end context comm_monoid_add begin sublocale sum_list: comm_monoid_list plus 0 rewrites "monoid_list.F plus 0 = sum_list" proof - show "comm_monoid_list plus 0" .. then interpret sum_list: comm_monoid_list plus 0 . from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp qed sublocale sum: comm_monoid_list_set plus 0 rewrites "monoid_list.F plus 0 = sum_list" and "comm_monoid_set.F plus 0 = sum" proof - show "comm_monoid_list_set plus 0" .. then interpret sum: comm_monoid_list_set plus 0 . from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp from sum_def show "comm_monoid_set.F plus 0 = sum" by (auto intro: sym) qed end text \Some syntactic sugar for summing a function over a list:\ syntax (ASCII) "_sum_list" :: "pttrn => 'a list => 'b => 'b" ("(3SUM _<-_. _)" [0, 51, 10] 10) syntax "_sum_list" :: "pttrn => 'a list => 'b => 'b" ("(3\_\_. _)" [0, 51, 10] 10) translations \ \Beware of argument permutation!\ "\x\xs. b" == "CONST sum_list (CONST map (\x. b) xs)" +context + includes lifting_syntax +begin + +lemma sum_list_transfer [transfer_rule]: + "(list_all2 A ===> A) sum_list sum_list" + if [transfer_rule]: "A 0 0" "(A ===> A ===> A) (+) (+)" + unfolding sum_list.eq_foldr [abs_def] + by transfer_prover + +end + text \TODO duplicates\ lemmas sum_list_simps = sum_list.Nil sum_list.Cons lemmas sum_list_append = sum_list.append lemmas sum_list_rev = sum_list.rev lemma (in monoid_add) fold_plus_sum_list_rev: "fold plus xs = plus (sum_list (rev xs))" proof fix x have "fold plus xs x = sum_list (rev xs @ [x])" by (simp add: foldr_conv_fold sum_list.eq_foldr) also have "\ = sum_list (rev xs) + x" by simp finally show "fold plus xs x = sum_list (rev xs) + x" . qed lemma (in comm_monoid_add) sum_list_map_remove1: "x \ set xs \ sum_list (map f xs) = f x + sum_list (map f (remove1 x xs))" by (induct xs) (auto simp add: ac_simps) lemma (in monoid_add) size_list_conv_sum_list: "size_list f xs = sum_list (map f xs) + size xs" by (induct xs) auto lemma (in monoid_add) length_concat: "length (concat xss) = sum_list (map length xss)" by (induct xss) simp_all lemma (in monoid_add) length_product_lists: "length (product_lists xss) = foldr (*) (map length xss) 1" proof (induct xss) case (Cons xs xss) then show ?case by (induct xs) (auto simp: length_concat o_def) qed simp lemma (in monoid_add) sum_list_map_filter: assumes "\x. x \ set xs \ \ P x \ f x = 0" shows "sum_list (map f (filter P xs)) = sum_list (map f xs)" using assms by (induct xs) auto lemma sum_list_filter_le_nat: fixes f :: "'a \ nat" shows "sum_list (map f (filter P xs)) \ sum_list (map f xs)" by(induction xs; simp) lemma (in comm_monoid_add) distinct_sum_list_conv_Sum: "distinct xs \ sum_list xs = Sum (set xs)" by (induct xs) simp_all lemma sum_list_upt[simp]: "m \ n \ sum_list [m.. {m..x. x \ set xs \ 0 \ x) \ 0 \ sum_list xs" by (induction xs) auto lemma sum_list_nonpos: "(\x. x \ set xs \ x \ 0) \ sum_list xs \ 0" by (induction xs) (auto simp: add_nonpos_nonpos) lemma sum_list_nonneg_eq_0_iff: "(\x. x \ set xs \ 0 \ x) \ sum_list xs = 0 \ (\x\ set xs. x = 0)" by (induction xs) (simp_all add: add_nonneg_eq_0_iff sum_list_nonneg) end context canonically_ordered_monoid_add begin lemma sum_list_eq_0_iff [simp]: "sum_list ns = 0 \ (\n \ set ns. n = 0)" by (simp add: sum_list_nonneg_eq_0_iff) lemma member_le_sum_list: "x \ set xs \ x \ sum_list xs" by (induction xs) (auto simp: add_increasing add_increasing2) lemma elem_le_sum_list: "k < size ns \ ns ! k \ sum_list (ns)" by (rule member_le_sum_list) simp end lemma (in ordered_cancel_comm_monoid_diff) sum_list_update: "k < size xs \ sum_list (xs[k := x]) = sum_list xs + x - xs ! k" apply(induction xs arbitrary:k) apply (auto simp: add_ac split: nat.split) apply(drule elem_le_sum_list) by (simp add: local.add_diff_assoc local.add_increasing) lemma (in monoid_add) sum_list_triv: "(\x\xs. r) = of_nat (length xs) * r" by (induct xs) (simp_all add: distrib_right) lemma (in monoid_add) sum_list_0 [simp]: "(\x\xs. 0) = 0" by (induct xs) (simp_all add: distrib_right) text\For non-Abelian groups \xs\ needs to be reversed on one side:\ lemma (in ab_group_add) uminus_sum_list_map: "- sum_list (map f xs) = sum_list (map (uminus \ f) xs)" by (induct xs) simp_all lemma (in comm_monoid_add) sum_list_addf: "(\x\xs. f x + g x) = sum_list (map f xs) + sum_list (map g xs)" by (induct xs) (simp_all add: algebra_simps) lemma (in ab_group_add) sum_list_subtractf: "(\x\xs. f x - g x) = sum_list (map f xs) - sum_list (map g xs)" by (induct xs) (simp_all add: algebra_simps) lemma (in semiring_0) sum_list_const_mult: "(\x\xs. c * f x) = c * (\x\xs. f x)" by (induct xs) (simp_all add: algebra_simps) lemma (in semiring_0) sum_list_mult_const: "(\x\xs. f x * c) = (\x\xs. f x) * c" by (induct xs) (simp_all add: algebra_simps) lemma (in ordered_ab_group_add_abs) sum_list_abs: "\sum_list xs\ \ sum_list (map abs xs)" by (induct xs) (simp_all add: order_trans [OF abs_triangle_ineq]) lemma sum_list_mono: fixes f g :: "'a \ 'b::{monoid_add, ordered_ab_semigroup_add}" shows "(\x. x \ set xs \ f x \ g x) \ (\x\xs. f x) \ (\x\xs. g x)" by (induct xs) (simp, simp add: add_mono) lemma sum_list_strict_mono: fixes f g :: "'a \ 'b::{monoid_add, strict_ordered_ab_semigroup_add}" shows "\ xs \ []; \x. x \ set xs \ f x < g x \ \ sum_list (map f xs) < sum_list (map g xs)" proof (induction xs) case Nil thus ?case by simp next case C: (Cons _ xs) show ?case proof (cases xs) case Nil thus ?thesis using C.prems by simp next case Cons thus ?thesis using C by(simp add: add_strict_mono) qed qed lemma (in monoid_add) sum_list_distinct_conv_sum_set: "distinct xs \ sum_list (map f xs) = sum f (set xs)" by (induct xs) simp_all lemma (in monoid_add) interv_sum_list_conv_sum_set_nat: "sum_list (map f [m..General equivalence between \<^const>\sum_list\ and \<^const>\sum\\ lemma (in monoid_add) sum_list_sum_nth: "sum_list xs = (\ i = 0 ..< length xs. xs ! i)" using interv_sum_list_conv_sum_set_nat [of "(!) xs" 0 "length xs"] by (simp add: map_nth) lemma sum_list_map_eq_sum_count: "sum_list (map f xs) = sum (\x. count_list xs x * f x) (set xs)" proof(induction xs) case (Cons x xs) show ?case (is "?l = ?r") proof cases assume "x \ set xs" have "?l = f x + (\x\set xs. count_list xs x * f x)" by (simp add: Cons.IH) also have "set xs = insert x (set xs - {x})" using \x \ set xs\by blast also have "f x + (\x\insert x (set xs - {x}). count_list xs x * f x) = ?r" by (simp add: sum.insert_remove eq_commute) finally show ?thesis . next assume "x \ set xs" hence "\xa. xa \ set xs \ x \ xa" by blast thus ?thesis by (simp add: Cons.IH \x \ set xs\) qed qed simp lemma sum_list_map_eq_sum_count2: assumes "set xs \ X" "finite X" shows "sum_list (map f xs) = sum (\x. count_list xs x * f x) X" proof- let ?F = "\x. count_list xs x * f x" have "sum ?F X = sum ?F (set xs \ (X - set xs))" using Un_absorb1[OF assms(1)] by(simp) also have "\ = sum ?F (set xs)" using assms(2) by(simp add: sum.union_disjoint[OF _ _ Diff_disjoint] del: Un_Diff_cancel) finally show ?thesis by(simp add:sum_list_map_eq_sum_count) qed lemma sum_list_nonneg: "(\x. x \ set xs \ (x :: 'a :: ordered_comm_monoid_add) \ 0) \ sum_list xs \ 0" by (induction xs) simp_all lemma sum_list_Suc: "sum_list (map (\x. Suc(f x)) xs) = sum_list (map f xs) + length xs" by(induction xs; simp) lemma (in monoid_add) sum_list_map_filter': "sum_list (map f (filter P xs)) = sum_list (map (\x. if P x then f x else 0) xs)" by (induction xs) simp_all text \Summation of a strictly ascending sequence with length \n\ can be upper-bounded by summation over \{0...\ lemma sorted_wrt_less_sum_mono_lowerbound: fixes f :: "nat \ ('b::ordered_comm_monoid_add)" assumes mono: "\x y. x\y \ f x \ f y" shows "sorted_wrt (<) ns \ (\i\{0.. (\i\ns. f i)" proof (induction ns rule: rev_induct) case Nil then show ?case by simp next case (snoc n ns) have "sum f {0.. sum_list (map f ns)" using snoc by (auto simp: sorted_wrt_append) also have "length ns \ n" using sorted_wrt_less_idx[OF snoc.prems(1), of "length ns"] by auto finally have "sum f {0.. sum_list (map f ns) + f n" using mono add_mono by blast thus ?case by simp qed subsection \Further facts about \<^const>\List.n_lists\\ lemma length_n_lists: "length (List.n_lists n xs) = length xs ^ n" by (induct n) (auto simp add: comp_def length_concat sum_list_triv) lemma distinct_n_lists: assumes "distinct xs" shows "distinct (List.n_lists n xs)" proof (rule card_distinct) from assms have card_length: "card (set xs) = length xs" by (rule distinct_card) have "card (set (List.n_lists n xs)) = card (set xs) ^ n" proof (induct n) case 0 then show ?case by simp next case (Suc n) moreover have "card (\ys\set (List.n_lists n xs). (\y. y # ys) ` set xs) = (\ys\set (List.n_lists n xs). card ((\y. y # ys) ` set xs))" by (rule card_UN_disjoint) auto moreover have "\ys. card ((\y. y # ys) ` set xs) = card (set xs)" by (rule card_image) (simp add: inj_on_def) ultimately show ?case by auto qed also have "\ = length xs ^ n" by (simp add: card_length) finally show "card (set (List.n_lists n xs)) = length (List.n_lists n xs)" by (simp add: length_n_lists) qed subsection \Tools setup\ lemmas sum_code = sum.set_conv_list lemma sum_set_upto_conv_sum_list_int [code_unfold]: "sum f (set [i..j::int]) = sum_list (map f [i..j])" by (simp add: interv_sum_list_conv_sum_set_int) lemma sum_set_upt_conv_sum_list_nat [code_unfold]: "sum f (set [m.. A) sum_list sum_list" - if [transfer_rule]: "A 0 0" "(A ===> A ===> A) (+) (+)" - unfolding sum_list.eq_foldr [abs_def] - by transfer_prover - -end - subsection \List product\ context monoid_mult begin sublocale prod_list: monoid_list times 1 defines prod_list = prod_list.F .. end context comm_monoid_mult begin sublocale prod_list: comm_monoid_list times 1 rewrites "monoid_list.F times 1 = prod_list" proof - show "comm_monoid_list times 1" .. then interpret prod_list: comm_monoid_list times 1 . from prod_list_def show "monoid_list.F times 1 = prod_list" by simp qed sublocale prod: comm_monoid_list_set times 1 rewrites "monoid_list.F times 1 = prod_list" and "comm_monoid_set.F times 1 = prod" proof - show "comm_monoid_list_set times 1" .. then interpret prod: comm_monoid_list_set times 1 . from prod_list_def show "monoid_list.F times 1 = prod_list" by simp from prod_def show "comm_monoid_set.F times 1 = prod" by (auto intro: sym) qed end -lemma prod_list_zero_iff: - "prod_list xs = 0 \ (0 :: 'a :: {semiring_no_zero_divisors, semiring_1}) \ set xs" - by (induction xs) simp_all - text \Some syntactic sugar:\ syntax (ASCII) "_prod_list" :: "pttrn => 'a list => 'b => 'b" ("(3PROD _<-_. _)" [0, 51, 10] 10) syntax "_prod_list" :: "pttrn => 'a list => 'b => 'b" ("(3\_\_. _)" [0, 51, 10] 10) translations \ \Beware of argument permutation!\ "\x\xs. b" \ "CONST prod_list (CONST map (\x. b) xs)" +context + includes lifting_syntax +begin + +lemma prod_list_transfer [transfer_rule]: + "(list_all2 A ===> A) prod_list prod_list" + if [transfer_rule]: "A 1 1" "(A ===> A ===> A) (*) (*)" + unfolding prod_list.eq_foldr [abs_def] + by transfer_prover + end + +lemma prod_list_zero_iff: + "prod_list xs = 0 \ (0 :: 'a :: {semiring_no_zero_divisors, semiring_1}) \ set xs" + by (induction xs) simp_all + +end diff --git a/src/HOL/Power.thy b/src/HOL/Power.thy --- a/src/HOL/Power.thy +++ b/src/HOL/Power.thy @@ -1,1002 +1,1015 @@ (* Title: HOL/Power.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1997 University of Cambridge *) section \Exponentiation\ theory Power imports Num begin subsection \Powers for Arbitrary Monoids\ class power = one + times begin primrec power :: "'a \ nat \ 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" notation (latex output) power ("(_\<^bsup>_\<^esup>)" [1000] 1000) text \Special syntax for squares.\ abbreviation power2 :: "'a \ 'a" ("(_\<^sup>2)" [1000] 999) where "x\<^sup>2 \ x ^ 2" end +context + includes lifting_syntax +begin + +lemma power_transfer [transfer_rule]: + \(R ===> (=) ===> R) (^) (^)\ + if [transfer_rule]: \R 1 1\ + \(R ===> R ===> R) (*) (*)\ + for R :: \'a::power \ 'b::power \ bool\ + by (simp only: power_def [abs_def]) transfer_prover + +end + context monoid_mult begin subclass power . lemma power_one [simp]: "1 ^ n = 1" by (induct n) simp_all lemma power_one_right [simp]: "a ^ 1 = a" by simp lemma power_Suc0_right [simp]: "a ^ Suc 0 = a" by simp lemma power_commutes: "a ^ n * a = a * a ^ n" by (induct n) (simp_all add: mult.assoc) lemma power_Suc2: "a ^ Suc n = a ^ n * a" by (simp add: power_commutes) lemma power_add: "a ^ (m + n) = a ^ m * a ^ n" by (induct m) (simp_all add: algebra_simps) lemma power_mult: "a ^ (m * n) = (a ^ m) ^ n" by (induct n) (simp_all add: power_add) lemma power_even_eq: "a ^ (2 * n) = (a ^ n)\<^sup>2" by (subst mult.commute) (simp add: power_mult) lemma power_odd_eq: "a ^ Suc (2*n) = a * (a ^ n)\<^sup>2" by (simp add: power_even_eq) lemma power_numeral_even: "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)" by (simp only: numeral_Bit0 power_add Let_def) lemma power_numeral_odd: "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)" by (simp only: numeral_Bit1 One_nat_def add_Suc_right add_0_right power_Suc power_add Let_def mult.assoc) lemma power2_eq_square: "a\<^sup>2 = a * a" by (simp add: numeral_2_eq_2) lemma power3_eq_cube: "a ^ 3 = a * a * a" by (simp add: numeral_3_eq_3 mult.assoc) lemma power4_eq_xxxx: "x^4 = x * x * x * x" by (simp add: mult.assoc power_numeral_even) lemma funpow_times_power: "(times x ^^ f x) = times (x ^ f x)" proof (induct "f x" arbitrary: f) case 0 then show ?case by (simp add: fun_eq_iff) next case (Suc n) define g where "g x = f x - 1" for x with Suc have "n = g x" by simp with Suc have "times x ^^ g x = times (x ^ g x)" by simp moreover from Suc g_def have "f x = g x + 1" by simp ultimately show ?case by (simp add: power_add funpow_add fun_eq_iff mult.assoc) qed lemma power_commuting_commutes: assumes "x * y = y * x" shows "x ^ n * y = y * x ^n" proof (induct n) case 0 then show ?case by simp next case (Suc n) have "x ^ Suc n * y = x ^ n * y * x" by (subst power_Suc2) (simp add: assms ac_simps) also have "\ = y * x ^ Suc n" by (simp only: Suc power_Suc2) (simp add: ac_simps) finally show ?case . qed lemma power_minus_mult: "0 < n \ a ^ (n - 1) * a = a ^ n" by (simp add: power_commutes split: nat_diff_split) lemma left_right_inverse_power: assumes "x * y = 1" shows "x ^ n * y ^ n = 1" proof (induct n) case (Suc n) moreover have "x ^ Suc n * y ^ Suc n = x^n * (x * y) * y^n" by (simp add: power_Suc2[symmetric] mult.assoc[symmetric]) ultimately show ?case by (simp add: assms) qed simp end context comm_monoid_mult begin lemma power_mult_distrib [algebra_simps, algebra_split_simps, field_simps, field_split_simps, divide_simps]: "(a * b) ^ n = (a ^ n) * (b ^ n)" by (induction n) (simp_all add: ac_simps) end text \Extract constant factors from powers.\ declare power_mult_distrib [where a = "numeral w" for w, simp] declare power_mult_distrib [where b = "numeral w" for w, simp] lemma power_add_numeral [simp]: "a^numeral m * a^numeral n = a^numeral (m + n)" for a :: "'a::monoid_mult" by (simp add: power_add [symmetric]) lemma power_add_numeral2 [simp]: "a^numeral m * (a^numeral n * b) = a^numeral (m + n) * b" for a :: "'a::monoid_mult" by (simp add: mult.assoc [symmetric]) lemma power_mult_numeral [simp]: "(a^numeral m)^numeral n = a^numeral (m * n)" for a :: "'a::monoid_mult" by (simp only: numeral_mult power_mult) context semiring_numeral begin lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k" by (simp only: sqr_conv_mult numeral_mult) lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l" by (induct l) (simp_all only: numeral_class.numeral.simps pow.simps numeral_sqr numeral_mult power_add power_one_right) lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)" by (rule numeral_pow [symmetric]) end context semiring_1 begin lemma of_nat_power [simp]: "of_nat (m ^ n) = of_nat m ^ n" by (induct n) simp_all lemma zero_power: "0 < n \ 0 ^ n = 0" by (cases n) simp_all lemma power_zero_numeral [simp]: "0 ^ numeral k = 0" by (simp add: numeral_eq_Suc) lemma zero_power2: "0\<^sup>2 = 0" (* delete? *) by (rule power_zero_numeral) lemma one_power2: "1\<^sup>2 = 1" (* delete? *) by (rule power_one) lemma power_0_Suc [simp]: "0 ^ Suc n = 0" by simp text \It looks plausible as a simprule, but its effect can be strange.\ lemma power_0_left: "0 ^ n = (if n = 0 then 1 else 0)" by (cases n) simp_all end context semiring_char_0 begin lemma numeral_power_eq_of_nat_cancel_iff [simp]: "numeral x ^ n = of_nat y \ numeral x ^ n = y" using of_nat_eq_iff by fastforce lemma real_of_nat_eq_numeral_power_cancel_iff [simp]: "of_nat y = numeral x ^ n \ y = numeral x ^ n" using numeral_power_eq_of_nat_cancel_iff [of x n y] by (metis (mono_tags)) lemma of_nat_eq_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w = of_nat x \ b ^ w = x" by (metis of_nat_power of_nat_eq_iff) lemma of_nat_power_eq_of_nat_cancel_iff[simp]: "of_nat x = (of_nat b) ^ w \ x = b ^ w" by (metis of_nat_eq_of_nat_power_cancel_iff) end context comm_semiring_1 begin text \The divides relation.\ lemma le_imp_power_dvd: assumes "m \ n" shows "a ^ m dvd a ^ n" proof from assms have "a ^ n = a ^ (m + (n - m))" by simp also have "\ = a ^ m * a ^ (n - m)" by (rule power_add) finally show "a ^ n = a ^ m * a ^ (n - m)" . qed lemma power_le_dvd: "a ^ n dvd b \ m \ n \ a ^ m dvd b" by (rule dvd_trans [OF le_imp_power_dvd]) lemma dvd_power_same: "x dvd y \ x ^ n dvd y ^ n" by (induct n) (auto simp add: mult_dvd_mono) lemma dvd_power_le: "x dvd y \ m \ n \ x ^ n dvd y ^ m" by (rule power_le_dvd [OF dvd_power_same]) lemma dvd_power [simp]: fixes n :: nat assumes "n > 0 \ x = 1" shows "x dvd (x ^ n)" using assms proof assume "0 < n" then have "x ^ n = x ^ Suc (n - 1)" by simp then show "x dvd (x ^ n)" by simp next assume "x = 1" then show "x dvd (x ^ n)" by simp qed end context semiring_1_no_zero_divisors begin subclass power . lemma power_eq_0_iff [simp]: "a ^ n = 0 \ a = 0 \ n > 0" by (induct n) auto lemma power_not_zero: "a \ 0 \ a ^ n \ 0" by (induct n) auto lemma zero_eq_power2 [simp]: "a\<^sup>2 = 0 \ a = 0" unfolding power2_eq_square by simp end context ring_1 begin lemma power_minus: "(- a) ^ n = (- 1) ^ n * a ^ n" proof (induct n) case 0 show ?case by simp next case (Suc n) then show ?case by (simp del: power_Suc add: power_Suc2 mult.assoc) qed lemma power_minus': "NO_MATCH 1 x \ (-x) ^ n = (-1)^n * x ^ n" by (rule power_minus) lemma power_minus_Bit0: "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)" by (induct k, simp_all only: numeral_class.numeral.simps power_add power_one_right mult_minus_left mult_minus_right minus_minus) lemma power_minus_Bit1: "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))" by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left) lemma power2_minus [simp]: "(- a)\<^sup>2 = a\<^sup>2" by (fact power_minus_Bit0) lemma power_minus1_even [simp]: "(- 1) ^ (2*n) = 1" proof (induct n) case 0 show ?case by simp next case (Suc n) then show ?case by (simp add: power_add power2_eq_square) qed lemma power_minus1_odd: "(- 1) ^ Suc (2*n) = -1" by simp lemma power_minus_even [simp]: "(-a) ^ (2*n) = a ^ (2*n)" by (simp add: power_minus [of a]) end context ring_1_no_zero_divisors begin lemma power2_eq_1_iff: "a\<^sup>2 = 1 \ a = 1 \ a = - 1" using square_eq_1_iff [of a] by (simp add: power2_eq_square) end context idom begin lemma power2_eq_iff: "x\<^sup>2 = y\<^sup>2 \ x = y \ x = - y" unfolding power2_eq_square by (rule square_eq_iff) end context semidom_divide begin lemma power_diff: "a ^ (m - n) = (a ^ m) div (a ^ n)" if "a \ 0" and "n \ m" proof - define q where "q = m - n" with \n \ m\ have "m = q + n" by simp with \a \ 0\ q_def show ?thesis by (simp add: power_add) qed end context algebraic_semidom begin lemma div_power: "b dvd a \ (a div b) ^ n = a ^ n div b ^ n" by (induct n) (simp_all add: div_mult_div_if_dvd dvd_power_same) lemma is_unit_power_iff: "is_unit (a ^ n) \ is_unit a \ n = 0" by (induct n) (auto simp add: is_unit_mult_iff) lemma dvd_power_iff: assumes "x \ 0" shows "x ^ m dvd x ^ n \ is_unit x \ m \ n" proof assume *: "x ^ m dvd x ^ n" { assume "m > n" note * also have "x ^ n = x ^ n * 1" by simp also from \m > n\ have "m = n + (m - n)" by simp also have "x ^ \ = x ^ n * x ^ (m - n)" by (rule power_add) finally have "x ^ (m - n) dvd 1" by (subst (asm) dvd_times_left_cancel_iff) (insert assms, simp_all) with \m > n\ have "is_unit x" by (simp add: is_unit_power_iff) } thus "is_unit x \ m \ n" by force qed (auto intro: unit_imp_dvd simp: is_unit_power_iff le_imp_power_dvd) end context normalization_semidom begin lemma normalize_power: "normalize (a ^ n) = normalize a ^ n" by (induct n) (simp_all add: normalize_mult) lemma unit_factor_power: "unit_factor (a ^ n) = unit_factor a ^ n" by (induct n) (simp_all add: unit_factor_mult) end context division_ring begin text \Perhaps these should be simprules.\ lemma power_inverse [field_simps, field_split_simps, divide_simps]: "inverse a ^ n = inverse (a ^ n)" proof (cases "a = 0") case True then show ?thesis by (simp add: power_0_left) next case False then have "inverse (a ^ n) = inverse a ^ n" by (induct n) (simp_all add: nonzero_inverse_mult_distrib power_commutes) then show ?thesis by simp qed lemma power_one_over [field_simps, field_split_simps, divide_simps]: "(1 / a) ^ n = 1 / a ^ n" using power_inverse [of a] by (simp add: divide_inverse) end context field begin lemma power_divide [field_simps, field_split_simps, divide_simps]: "(a / b) ^ n = a ^ n / b ^ n" by (induct n) simp_all end subsection \Exponentiation on ordered types\ context linordered_semidom begin lemma zero_less_power [simp]: "0 < a \ 0 < a ^ n" by (induct n) simp_all lemma zero_le_power [simp]: "0 \ a \ 0 \ a ^ n" by (induct n) simp_all lemma power_mono: "a \ b \ 0 \ a \ a ^ n \ b ^ n" by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) lemma one_le_power [simp]: "1 \ a \ 1 \ a ^ n" using power_mono [of 1 a n] by simp lemma power_le_one: "0 \ a \ a \ 1 \ a ^ n \ 1" using power_mono [of a 1 n] by simp lemma power_gt1_lemma: assumes gt1: "1 < a" shows "1 < a * a ^ n" proof - from gt1 have "0 \ a" by (fact order_trans [OF zero_le_one less_imp_le]) from gt1 have "1 * 1 < a * 1" by simp also from gt1 have "\ \ a * a ^ n" by (simp only: mult_mono \0 \ a\ one_le_power order_less_imp_le zero_le_one order_refl) finally show ?thesis by simp qed lemma power_gt1: "1 < a \ 1 < a ^ Suc n" by (simp add: power_gt1_lemma) lemma one_less_power [simp]: "1 < a \ 0 < n \ 1 < a ^ n" by (cases n) (simp_all add: power_gt1_lemma) lemma power_le_imp_le_exp: assumes gt1: "1 < a" shows "a ^ m \ a ^ n \ m \ n" proof (induct m arbitrary: n) case 0 show ?case by simp next case (Suc m) show ?case proof (cases n) case 0 with Suc have "a * a ^ m \ 1" by simp with gt1 show ?thesis by (force simp only: power_gt1_lemma not_less [symmetric]) next case (Suc n) with Suc.prems Suc.hyps show ?thesis by (force dest: mult_left_le_imp_le simp add: less_trans [OF zero_less_one gt1]) qed qed lemma of_nat_zero_less_power_iff [simp]: "of_nat x ^ n > 0 \ x > 0 \ n = 0" by (induct n) auto text \Surely we can strengthen this? It holds for \0 too.\ lemma power_inject_exp [simp]: "1 < a \ a ^ m = a ^ n \ m = n" by (force simp add: order_antisym power_le_imp_le_exp) text \ Can relax the first premise to \<^term>\0 in the case of the natural numbers. \ lemma power_less_imp_less_exp: "1 < a \ a ^ m < a ^ n \ m < n" by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] power_le_imp_le_exp) lemma power_strict_mono [rule_format]: "a < b \ 0 \ a \ 0 < n \ a ^ n < b ^ n" by (induct n) (auto simp: mult_strict_mono le_less_trans [of 0 a b]) lemma power_mono_iff [simp]: shows "\a \ 0; b \ 0; n>0\ \ a ^ n \ b ^ n \ a \ b" using power_mono [of a b] power_strict_mono [of b a] not_le by auto text\Lemma for \power_strict_decreasing\\ lemma power_Suc_less: "0 < a \ a < 1 \ a * a ^ n < a ^ n" by (induct n) (auto simp: mult_strict_left_mono) lemma power_strict_decreasing [rule_format]: "n < N \ 0 < a \ a < 1 \ a ^ N < a ^ n" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: power_Suc_less less_Suc_eq) apply (subgoal_tac "a * a^N < 1 * a^n") apply simp apply (rule mult_strict_mono) apply auto done qed text \Proof resembles that of \power_strict_decreasing\.\ lemma power_decreasing: "n \ N \ 0 \ a \ a \ 1 \ a ^ N \ a ^ n" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: le_Suc_eq) apply (subgoal_tac "a * a^N \ 1 * a^n") apply simp apply (rule mult_mono) apply auto done qed lemma power_decreasing_iff [simp]: "\0 < b; b < 1\ \ b ^ m \ b ^ n \ n \ m" using power_strict_decreasing [of m n b] by (auto intro: power_decreasing ccontr) lemma power_strict_decreasing_iff [simp]: "\0 < b; b < 1\ \ b ^ m < b ^ n \ n < m" using power_decreasing_iff [of b m n] unfolding le_less by (auto dest: power_strict_decreasing le_neq_implies_less) lemma power_Suc_less_one: "0 < a \ a < 1 \ a ^ Suc n < 1" using power_strict_decreasing [of 0 "Suc n" a] by simp text \Proof again resembles that of \power_strict_decreasing\.\ lemma power_increasing: "n \ N \ 1 \ a \ a ^ n \ a ^ N" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: le_Suc_eq) apply (subgoal_tac "1 * a^n \ a * a^N") apply simp apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) done qed text \Lemma for \power_strict_increasing\.\ lemma power_less_power_Suc: "1 < a \ a ^ n < a * a ^ n" by (induct n) (auto simp: mult_strict_left_mono less_trans [OF zero_less_one]) lemma power_strict_increasing: "n < N \ 1 < a \ a ^ n < a ^ N" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: power_less_power_Suc less_Suc_eq) apply (subgoal_tac "1 * a^n < a * a^N") apply simp apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) done qed lemma power_increasing_iff [simp]: "1 < b \ b ^ x \ b ^ y \ x \ y" by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) lemma power_strict_increasing_iff [simp]: "1 < b \ b ^ x < b ^ y \ x < y" by (blast intro: power_less_imp_less_exp power_strict_increasing) lemma power_le_imp_le_base: assumes le: "a ^ Suc n \ b ^ Suc n" and "0 \ b" shows "a \ b" proof (rule ccontr) assume "\ ?thesis" then have "b < a" by (simp only: linorder_not_le) then have "b ^ Suc n < a ^ Suc n" by (simp only: assms(2) power_strict_mono) with le show False by (simp add: linorder_not_less [symmetric]) qed lemma power_less_imp_less_base: assumes less: "a ^ n < b ^ n" assumes nonneg: "0 \ b" shows "a < b" proof (rule contrapos_pp [OF less]) assume "\ ?thesis" then have "b \ a" by (simp only: linorder_not_less) from this nonneg have "b ^ n \ a ^ n" by (rule power_mono) then show "\ a ^ n < b ^ n" by (simp only: linorder_not_less) qed lemma power_inject_base: "a ^ Suc n = b ^ Suc n \ 0 \ a \ 0 \ b \ a = b" by (blast intro: power_le_imp_le_base antisym eq_refl sym) lemma power_eq_imp_eq_base: "a ^ n = b ^ n \ 0 \ a \ 0 \ b \ 0 < n \ a = b" by (cases n) (simp_all del: power_Suc, rule power_inject_base) lemma power_eq_iff_eq_base: "0 < n \ 0 \ a \ 0 \ b \ a ^ n = b ^ n \ a = b" using power_eq_imp_eq_base [of a n b] by auto lemma power2_le_imp_le: "x\<^sup>2 \ y\<^sup>2 \ 0 \ y \ x \ y" unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) lemma power2_less_imp_less: "x\<^sup>2 < y\<^sup>2 \ 0 \ y \ x < y" by (rule power_less_imp_less_base) lemma power2_eq_imp_eq: "x\<^sup>2 = y\<^sup>2 \ 0 \ x \ 0 \ y \ x = y" unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp lemma power_Suc_le_self: "0 \ a \ a \ 1 \ a ^ Suc n \ a" using power_decreasing [of 1 "Suc n" a] by simp lemma power2_eq_iff_nonneg [simp]: assumes "0 \ x" "0 \ y" shows "(x ^ 2 = y ^ 2) \ x = y" using assms power2_eq_imp_eq by blast lemma of_nat_less_numeral_power_cancel_iff[simp]: "of_nat x < numeral i ^ n \ x < numeral i ^ n" using of_nat_less_iff[of x "numeral i ^ n", unfolded of_nat_numeral of_nat_power] . lemma of_nat_le_numeral_power_cancel_iff[simp]: "of_nat x \ numeral i ^ n \ x \ numeral i ^ n" using of_nat_le_iff[of x "numeral i ^ n", unfolded of_nat_numeral of_nat_power] . lemma numeral_power_less_of_nat_cancel_iff[simp]: "numeral i ^ n < of_nat x \ numeral i ^ n < x" using of_nat_less_iff[of "numeral i ^ n" x, unfolded of_nat_numeral of_nat_power] . lemma numeral_power_le_of_nat_cancel_iff[simp]: "numeral i ^ n \ of_nat x \ numeral i ^ n \ x" using of_nat_le_iff[of "numeral i ^ n" x, unfolded of_nat_numeral of_nat_power] . lemma of_nat_le_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w \ of_nat x \ b ^ w \ x" by (metis of_nat_le_iff of_nat_power) lemma of_nat_power_le_of_nat_cancel_iff[simp]: "of_nat x \ (of_nat b) ^ w \ x \ b ^ w" by (metis of_nat_le_iff of_nat_power) lemma of_nat_less_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w < of_nat x \ b ^ w < x" by (metis of_nat_less_iff of_nat_power) lemma of_nat_power_less_of_nat_cancel_iff[simp]: "of_nat x < (of_nat b) ^ w \ x < b ^ w" by (metis of_nat_less_iff of_nat_power) end text \Some @{typ nat}-specific lemmas:\ lemma mono_ge2_power_minus_self: assumes "k \ 2" shows "mono (\m. k ^ m - m)" unfolding mono_iff_le_Suc proof fix n have "k ^ n < k ^ Suc n" using power_strict_increasing_iff[of k "n" "Suc n"] assms by linarith thus "k ^ n - n \ k ^ Suc n - Suc n" by linarith qed lemma self_le_ge2_pow[simp]: assumes "k \ 2" shows "m \ k ^ m" proof (induction m) case 0 show ?case by simp next case (Suc m) hence "Suc m \ Suc (k ^ m)" by simp also have "... \ k^m + k^m" using one_le_power[of k m] assms by linarith also have "... \ k * k^m" by (metis mult_2 mult_le_mono1[OF assms]) finally show ?case by simp qed lemma diff_le_diff_pow[simp]: assumes "k \ 2" shows "m - n \ k ^ m - k ^ n" proof (cases "n \ m") case True thus ?thesis using monoD[OF mono_ge2_power_minus_self[OF assms] True] self_le_ge2_pow[OF assms, of m] by (simp add: le_diff_conv le_diff_conv2) qed auto context linordered_ring_strict begin lemma sum_squares_eq_zero_iff: "x * x + y * y = 0 \ x = 0 \ y = 0" by (simp add: add_nonneg_eq_0_iff) lemma sum_squares_le_zero_iff: "x * x + y * y \ 0 \ x = 0 \ y = 0" by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) lemma sum_squares_gt_zero_iff: "0 < x * x + y * y \ x \ 0 \ y \ 0" by (simp add: not_le [symmetric] sum_squares_le_zero_iff) end context linordered_idom begin lemma zero_le_power2 [simp]: "0 \ a\<^sup>2" by (simp add: power2_eq_square) lemma zero_less_power2 [simp]: "0 < a\<^sup>2 \ a \ 0" by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) lemma power2_less_0 [simp]: "\ a\<^sup>2 < 0" by (force simp add: power2_eq_square mult_less_0_iff) lemma power_abs: "\a ^ n\ = \a\ ^ n" \ \FIXME simp?\ by (induct n) (simp_all add: abs_mult) lemma power_sgn [simp]: "sgn (a ^ n) = sgn a ^ n" by (induct n) (simp_all add: sgn_mult) lemma abs_power_minus [simp]: "\(- a) ^ n\ = \a ^ n\" by (simp add: power_abs) lemma zero_less_power_abs_iff [simp]: "0 < \a\ ^ n \ a \ 0 \ n = 0" proof (induct n) case 0 show ?case by simp next case Suc then show ?case by (auto simp: zero_less_mult_iff) qed lemma zero_le_power_abs [simp]: "0 \ \a\ ^ n" by (rule zero_le_power [OF abs_ge_zero]) lemma power2_less_eq_zero_iff [simp]: "a\<^sup>2 \ 0 \ a = 0" by (simp add: le_less) lemma abs_power2 [simp]: "\a\<^sup>2\ = a\<^sup>2" by (simp add: power2_eq_square) lemma power2_abs [simp]: "\a\\<^sup>2 = a\<^sup>2" by (simp add: power2_eq_square) lemma odd_power_less_zero: "a < 0 \ a ^ Suc (2 * n) < 0" proof (induct n) case 0 then show ?case by simp next case (Suc n) have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" by (simp add: ac_simps power_add power2_eq_square) then show ?case by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) qed lemma odd_0_le_power_imp_0_le: "0 \ a ^ Suc (2 * n) \ 0 \ a" using odd_power_less_zero [of a n] by (force simp add: linorder_not_less [symmetric]) lemma zero_le_even_power'[simp]: "0 \ a ^ (2 * n)" proof (induct n) case 0 show ?case by simp next case (Suc n) have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" by (simp add: ac_simps power_add power2_eq_square) then show ?case by (simp add: Suc zero_le_mult_iff) qed lemma sum_power2_ge_zero: "0 \ x\<^sup>2 + y\<^sup>2" by (intro add_nonneg_nonneg zero_le_power2) lemma not_sum_power2_lt_zero: "\ x\<^sup>2 + y\<^sup>2 < 0" unfolding not_less by (rule sum_power2_ge_zero) lemma sum_power2_eq_zero_iff: "x\<^sup>2 + y\<^sup>2 = 0 \ x = 0 \ y = 0" unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff) lemma sum_power2_le_zero_iff: "x\<^sup>2 + y\<^sup>2 \ 0 \ x = 0 \ y = 0" by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero) lemma sum_power2_gt_zero_iff: "0 < x\<^sup>2 + y\<^sup>2 \ x \ 0 \ y \ 0" unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff) lemma abs_le_square_iff: "\x\ \ \y\ \ x\<^sup>2 \ y\<^sup>2" (is "?lhs \ ?rhs") proof assume ?lhs then have "\x\\<^sup>2 \ \y\\<^sup>2" by (rule power_mono) simp then show ?rhs by simp next assume ?rhs then show ?lhs by (auto intro!: power2_le_imp_le [OF _ abs_ge_zero]) qed lemma abs_square_le_1:"x\<^sup>2 \ 1 \ \x\ \ 1" using abs_le_square_iff [of x 1] by simp lemma abs_square_eq_1: "x\<^sup>2 = 1 \ \x\ = 1" by (auto simp add: abs_if power2_eq_1_iff) lemma abs_square_less_1: "x\<^sup>2 < 1 \ \x\ < 1" using abs_square_eq_1 [of x] abs_square_le_1 [of x] by (auto simp add: le_less) lemma square_le_1: assumes "- 1 \ x" "x \ 1" shows "x\<^sup>2 \ 1" using assms by (metis add.inverse_inverse linear mult_le_one neg_equal_0_iff_equal neg_le_iff_le power2_eq_square power_minus_Bit0) end subsection \Miscellaneous rules\ lemma (in linordered_semidom) self_le_power: "1 \ a \ 0 < n \ a \ a ^ n" using power_increasing [of 1 n a] power_one_right [of a] by auto lemma (in power) power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))" unfolding One_nat_def by (cases m) simp_all lemma (in comm_semiring_1) power2_sum: "(x + y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 + 2 * x * y" by (simp add: algebra_simps power2_eq_square mult_2_right) context comm_ring_1 begin lemma power2_diff: "(x - y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 - 2 * x * y" by (simp add: algebra_simps power2_eq_square mult_2_right) lemma power2_commute: "(x - y)\<^sup>2 = (y - x)\<^sup>2" by (simp add: algebra_simps power2_eq_square) lemma minus_power_mult_self: "(- a) ^ n * (- a) ^ n = a ^ (2 * n)" by (simp add: power_mult_distrib [symmetric]) (simp add: power2_eq_square [symmetric] power_mult [symmetric]) lemma minus_one_mult_self [simp]: "(- 1) ^ n * (- 1) ^ n = 1" using minus_power_mult_self [of 1 n] by simp lemma left_minus_one_mult_self [simp]: "(- 1) ^ n * ((- 1) ^ n * a) = a" by (simp add: mult.assoc [symmetric]) end text \Simprules for comparisons where common factors can be cancelled.\ lemmas zero_compare_simps = add_strict_increasing add_strict_increasing2 add_increasing zero_le_mult_iff zero_le_divide_iff zero_less_mult_iff zero_less_divide_iff mult_le_0_iff divide_le_0_iff mult_less_0_iff divide_less_0_iff zero_le_power2 power2_less_0 subsection \Exponentiation for the Natural Numbers\ lemma nat_one_le_power [simp]: "Suc 0 \ i \ Suc 0 \ i ^ n" by (rule one_le_power [of i n, unfolded One_nat_def]) lemma nat_zero_less_power_iff [simp]: "x ^ n > 0 \ x > 0 \ n = 0" for x :: nat by (induct n) auto lemma nat_power_eq_Suc_0_iff [simp]: "x ^ m = Suc 0 \ m = 0 \ x = Suc 0" by (induct m) auto lemma power_Suc_0 [simp]: "Suc 0 ^ n = Suc 0" by simp text \ Valid for the naturals, but what if \0 < i < 1\? Premises cannot be weakened: consider the case where \i = 0\, \m = 1\ and \n = 0\. \ lemma nat_power_less_imp_less: fixes i :: nat assumes nonneg: "0 < i" assumes less: "i ^ m < i ^ n" shows "m < n" proof (cases "i = 1") case True with less power_one [where 'a = nat] show ?thesis by simp next case False with nonneg have "1 < i" by auto from power_strict_increasing_iff [OF this] less show ?thesis .. qed lemma power_dvd_imp_le: "i ^ m dvd i ^ n \ 1 < i \ m \ n" for i m n :: nat apply (rule power_le_imp_le_exp) apply assumption apply (erule dvd_imp_le) apply simp done lemma dvd_power_iff_le: fixes k::nat shows "2 \ k \ ((k ^ m) dvd (k ^ n) \ m \ n)" using le_imp_power_dvd power_dvd_imp_le by force lemma power2_nat_le_eq_le: "m\<^sup>2 \ n\<^sup>2 \ m \ n" for m n :: nat by (auto intro: power2_le_imp_le power_mono) lemma power2_nat_le_imp_le: fixes m n :: nat assumes "m\<^sup>2 \ n" shows "m \ n" proof (cases m) case 0 then show ?thesis by simp next case (Suc k) show ?thesis proof (rule ccontr) assume "\ ?thesis" then have "n < m" by simp with assms Suc show False by (simp add: power2_eq_square) qed qed lemma ex_power_ivl1: fixes b k :: nat assumes "b \ 2" shows "k \ 1 \ \n. b^n \ k \ k < b^(n+1)" (is "_ \ \n. ?P k n") proof(induction k) case 0 thus ?case by simp next case (Suc k) show ?case proof cases assume "k=0" hence "?P (Suc k) 0" using assms by simp thus ?case .. next assume "k\0" with Suc obtain n where IH: "?P k n" by auto show ?case proof (cases "k = b^(n+1) - 1") case True hence "?P (Suc k) (n+1)" using assms by (simp add: power_less_power_Suc) thus ?thesis .. next case False hence "?P (Suc k) n" using IH by auto thus ?thesis .. qed qed qed lemma ex_power_ivl2: fixes b k :: nat assumes "b \ 2" "k \ 2" shows "\n. b^n < k \ k \ b^(n+1)" proof - have "1 \ k - 1" using assms(2) by arith from ex_power_ivl1[OF assms(1) this] obtain n where "b ^ n \ k - 1 \ k - 1 < b ^ (n + 1)" .. hence "b^n < k \ k \ b^(n+1)" using assms by auto thus ?thesis .. qed subsubsection \Cardinality of the Powerset\ lemma card_UNIV_bool [simp]: "card (UNIV :: bool set) = 2" unfolding UNIV_bool by simp lemma card_Pow: "finite A \ card (Pow A) = 2 ^ card A" proof (induct rule: finite_induct) case empty show ?case by simp next case (insert x A) from \x \ A\ have disjoint: "Pow A \ insert x ` Pow A = {}" by blast from \x \ A\ have inj_on: "inj_on (insert x) (Pow A)" unfolding inj_on_def by auto have "card (Pow (insert x A)) = card (Pow A \ insert x ` Pow A)" by (simp only: Pow_insert) also have "\ = card (Pow A) + card (insert x ` Pow A)" by (rule card_Un_disjoint) (use \finite A\ disjoint in simp_all) also from inj_on have "card (insert x ` Pow A) = card (Pow A)" by (rule card_image) also have "\ + \ = 2 * \" by (simp add: mult_2) also from insert(3) have "\ = 2 ^ Suc (card A)" by simp also from insert(1,2) have "Suc (card A) = card (insert x A)" by (rule card_insert_disjoint [symmetric]) finally show ?case . qed subsection \Code generator tweak\ code_identifier code_module Power \ (SML) Arith and (OCaml) Arith and (Haskell) Arith end