diff --git a/src/HOL/ex/Bit_Operations.thy b/src/HOL/ex/Bit_Operations.thy --- a/src/HOL/ex/Bit_Operations.thy +++ b/src/HOL/ex/Bit_Operations.thy @@ -1,758 +1,758 @@ (* Author: Florian Haftmann, TUM *) section \Proof of concept for purely algebraically founded lists of bits\ theory Bit_Operations imports "HOL-Library.Boolean_Algebra" Main begin context semiring_bit_shifts begin (*lemma bit_push_bit_iff: \bit (push_bit m a) n \ n \ m \ 2 ^ n \ 0 \ bit a (n - m)\*) end subsection \Bit operations in suitable algebraic structures\ class semiring_bit_operations = semiring_bit_shifts + fixes "and" :: \'a \ 'a \ 'a\ (infixr "AND" 64) and or :: \'a \ 'a \ 'a\ (infixr "OR" 59) and xor :: \'a \ 'a \ 'a\ (infixr "XOR" 59) assumes bit_and_iff: \\n. bit (a AND b) n \ bit a n \ bit b n\ and bit_or_iff: \\n. bit (a OR b) n \ bit a n \ bit b n\ and bit_xor_iff: \\n. bit (a XOR b) n \ bit a n \ bit b n\ begin text \ We want the bitwise operations to bind slightly weaker than \+\ and \-\. For the sake of code generation the operations \<^const>\and\, \<^const>\or\ and \<^const>\xor\ are specified as definitional class operations. \ definition map_bit :: \nat \ (bool \ bool) \ 'a \ 'a\ where \map_bit n f a = take_bit n a + push_bit n (of_bool (f (bit a n)) + 2 * drop_bit (Suc n) a)\ definition set_bit :: \nat \ 'a \ 'a\ where \set_bit n = map_bit n top\ definition unset_bit :: \nat \ 'a \ 'a\ where \unset_bit n = map_bit n bot\ definition flip_bit :: \nat \ 'a \ 'a\ where \flip_bit n = map_bit n Not\ text \ Having \<^const>\set_bit\, \<^const>\unset_bit\ and \<^const>\flip_bit\ as separate operations allows to implement them using bit masks later. \ lemma stable_imp_drop_eq: \drop_bit n a = a\ if \a div 2 = a\ by (induction n) (simp_all add: that) lemma map_bit_0 [simp]: \map_bit 0 f a = of_bool (f (odd a)) + 2 * (a div 2)\ by (simp add: map_bit_def) lemma map_bit_Suc [simp]: \map_bit (Suc n) f a = a mod 2 + 2 * map_bit n f (a div 2)\ by (auto simp add: map_bit_def algebra_simps mod2_eq_if push_bit_add mult_2 elim: evenE oddE) lemma set_bit_0 [simp]: \set_bit 0 a = 1 + 2 * (a div 2)\ by (simp add: set_bit_def) lemma set_bit_Suc [simp]: \set_bit (Suc n) a = a mod 2 + 2 * set_bit n (a div 2)\ by (simp add: set_bit_def) lemma unset_bit_0 [simp]: \unset_bit 0 a = 2 * (a div 2)\ by (simp add: unset_bit_def) lemma unset_bit_Suc [simp]: \unset_bit (Suc n) a = a mod 2 + 2 * unset_bit n (a div 2)\ by (simp add: unset_bit_def) lemma flip_bit_0 [simp]: \flip_bit 0 a = of_bool (even a) + 2 * (a div 2)\ by (simp add: flip_bit_def) lemma flip_bit_Suc [simp]: \flip_bit (Suc n) a = a mod 2 + 2 * flip_bit n (a div 2)\ by (simp add: flip_bit_def) sublocale "and": semilattice \(AND)\ by standard (auto simp add: bit_eq_iff bit_and_iff) sublocale or: semilattice_neutr \(OR)\ 0 by standard (auto simp add: bit_eq_iff bit_or_iff) sublocale xor: comm_monoid \(XOR)\ 0 by standard (auto simp add: bit_eq_iff bit_xor_iff) lemma zero_and_eq [simp]: "0 AND a = 0" by (simp add: bit_eq_iff bit_and_iff) lemma and_zero_eq [simp]: "a AND 0 = 0" by (simp add: bit_eq_iff bit_and_iff) lemma one_and_eq [simp]: "1 AND a = of_bool (odd a)" by (simp add: bit_eq_iff bit_and_iff) (auto simp add: bit_1_iff) lemma and_one_eq [simp]: "a AND 1 = of_bool (odd a)" using one_and_eq [of a] by (simp add: ac_simps) lemma one_or_eq [simp]: "1 OR a = a + of_bool (even a)" by (simp add: bit_eq_iff bit_or_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff) lemma or_one_eq [simp]: "a OR 1 = a + of_bool (even a)" using one_or_eq [of a] by (simp add: ac_simps) lemma one_xor_eq [simp]: "1 XOR a = a + of_bool (even a) - of_bool (odd a)" by (simp add: bit_eq_iff bit_xor_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff odd_bit_iff_bit_pred elim: oddE) -lemma xor_one_int_eq [simp]: +lemma xor_one_eq [simp]: "a XOR 1 = a + of_bool (even a) - of_bool (odd a)" using one_xor_eq [of a] by (simp add: ac_simps) lemma take_bit_and [simp]: \take_bit n (a AND b) = take_bit n a AND take_bit n b\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_and_iff) lemma take_bit_or [simp]: \take_bit n (a OR b) = take_bit n a OR take_bit n b\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_or_iff) lemma take_bit_xor [simp]: \take_bit n (a XOR b) = take_bit n a XOR take_bit n b\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_xor_iff) end class ring_bit_operations = semiring_bit_operations + ring_parity + fixes not :: \'a \ 'a\ (\NOT\) assumes bit_not_iff: \\n. bit (NOT a) n \ 2 ^ n \ 0 \ \ bit a n\ assumes minus_eq_not_minus_1: \- a = NOT (a - 1)\ begin text \ For the sake of code generation \<^const>\not\ is specified as definitional class operation. Note that \<^const>\not\ has no sensible definition for unlimited but only positive bit strings (type \<^typ>\nat\). \ lemma bits_minus_1_mod_2_eq [simp]: \(- 1) mod 2 = 1\ by (simp add: mod_2_eq_odd) lemma not_eq_complement: \NOT a = - a - 1\ using minus_eq_not_minus_1 [of \a + 1\] by simp lemma minus_eq_not_plus_1: \- a = NOT a + 1\ using not_eq_complement [of a] by simp lemma bit_minus_iff: \bit (- a) n \ 2 ^ n \ 0 \ \ bit (a - 1) n\ by (simp add: minus_eq_not_minus_1 bit_not_iff) lemma even_not_iff [simp]: "even (NOT a) \ odd a" using bit_not_iff [of a 0] by auto lemma bit_not_exp_iff: \bit (NOT (2 ^ m)) n \ 2 ^ n \ 0 \ n \ m\ by (auto simp add: bit_not_iff bit_exp_iff) lemma bit_minus_1_iff [simp]: \bit (- 1) n \ 2 ^ n \ 0\ by (simp add: bit_minus_iff) lemma bit_minus_exp_iff: \bit (- (2 ^ m)) n \ 2 ^ n \ 0 \ n \ m\ oops lemma bit_minus_2_iff [simp]: \bit (- 2) n \ 2 ^ n \ 0 \ n > 0\ by (simp add: bit_minus_iff bit_1_iff) lemma not_one [simp]: "NOT 1 = - 2" by (simp add: bit_eq_iff bit_not_iff) (simp add: bit_1_iff) sublocale "and": semilattice_neutr \(AND)\ \- 1\ apply standard apply (auto simp add: bit_eq_iff bit_and_iff) apply (simp add: bit_exp_iff) apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0) done sublocale bit: boolean_algebra \(AND)\ \(OR)\ NOT 0 \- 1\ rewrites \bit.xor = (XOR)\ proof - interpret bit: boolean_algebra \(AND)\ \(OR)\ NOT 0 \- 1\ apply standard apply simp_all apply (auto simp add: bit_eq_iff bit_and_iff bit_or_iff bit_not_iff) apply (simp add: bit_exp_iff) apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0) done show \boolean_algebra (AND) (OR) NOT 0 (- 1)\ by standard show \boolean_algebra.xor (AND) (OR) NOT = (XOR)\ apply (auto simp add: fun_eq_iff bit.xor_def bit_eq_iff bit_and_iff bit_or_iff bit_not_iff bit_xor_iff) apply (simp_all add: bit_exp_iff, simp_all add: bit_def) apply (metis local.bit_exp_iff local.bits_div_by_0) apply (metis local.bit_exp_iff local.bits_div_by_0) done qed lemma push_bit_minus: \push_bit n (- a) = - push_bit n a\ by (simp add: push_bit_eq_mult) lemma take_bit_not_take_bit: \take_bit n (NOT (take_bit n a)) = take_bit n (NOT a)\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_not_iff) lemma take_bit_not_iff: "take_bit n (NOT a) = take_bit n (NOT b) \ take_bit n a = take_bit n b" apply (simp add: bit_eq_iff bit_not_iff bit_take_bit_iff) apply (simp add: bit_exp_iff) apply (use local.exp_eq_0_imp_not_bit in blast) done end subsubsection \Instance \<^typ>\nat\\ locale zip_nat = single: abel_semigroup f for f :: "bool \ bool \ bool" (infixl "\<^bold>*" 70) + assumes end_of_bits: "\ False \<^bold>* False" begin lemma False_P_imp: "False \<^bold>* True \ P" if "False \<^bold>* P" using that end_of_bits by (cases P) simp_all function F :: "nat \ nat \ nat" (infixl "\<^bold>\" 70) where "m \<^bold>\ n = (if m = 0 \ n = 0 then 0 else of_bool (odd m \<^bold>* odd n) + (m div 2) \<^bold>\ (n div 2) * 2)" by auto termination by (relation "measure (case_prod (+))") auto lemma zero_left_eq: "0 \<^bold>\ n = of_bool (False \<^bold>* True) * n" by (induction n rule: nat_bit_induct) (simp_all add: end_of_bits) lemma zero_right_eq: "m \<^bold>\ 0 = of_bool (True \<^bold>* False) * m" by (induction m rule: nat_bit_induct) (simp_all add: end_of_bits) lemma simps [simp]: "0 \<^bold>\ 0 = 0" "0 \<^bold>\ n = of_bool (False \<^bold>* True) * n" "m \<^bold>\ 0 = of_bool (True \<^bold>* False) * m" "m > 0 \ n > 0 \ m \<^bold>\ n = of_bool (odd m \<^bold>* odd n) + (m div 2) \<^bold>\ (n div 2) * 2" by (simp_all only: zero_left_eq zero_right_eq) simp lemma rec: "m \<^bold>\ n = of_bool (odd m \<^bold>* odd n) + (m div 2) \<^bold>\ (n div 2) * 2" by (cases "m = 0 \ n = 0") (auto simp add: end_of_bits) declare F.simps [simp del] sublocale abel_semigroup F proof show "m \<^bold>\ n \<^bold>\ q = m \<^bold>\ (n \<^bold>\ q)" for m n q :: nat proof (induction m arbitrary: n q rule: nat_bit_induct) case zero show ?case by simp next case (even m) with rec [of "2 * m"] rec [of _ q] show ?case by (cases "even n") (auto simp add: ac_simps dest: False_P_imp) next case (odd m) with rec [of "Suc (2 * m)"] rec [of _ q] show ?case by (cases "even n"; cases "even q") (auto dest: False_P_imp simp add: ac_simps) qed show "m \<^bold>\ n = n \<^bold>\ m" for m n :: nat proof (induction m arbitrary: n rule: nat_bit_induct) case zero show ?case by (simp add: ac_simps) next case (even m) with rec [of "2 * m" n] rec [of n "2 * m"] show ?case by (simp add: ac_simps) next case (odd m) with rec [of "Suc (2 * m)" n] rec [of n "Suc (2 * m)"] show ?case by (simp add: ac_simps) qed qed lemma self [simp]: "n \<^bold>\ n = of_bool (True \<^bold>* True) * n" by (induction n rule: nat_bit_induct) (simp_all add: end_of_bits) lemma even_iff [simp]: "even (m \<^bold>\ n) \ \ (odd m \<^bold>* odd n)" proof (induction m arbitrary: n rule: nat_bit_induct) case zero show ?case by (cases "even n") (simp_all add: end_of_bits) next case (even m) then show ?case by (simp add: rec [of "2 * m"]) next case (odd m) then show ?case by (simp add: rec [of "Suc (2 * m)"]) qed end instantiation nat :: semiring_bit_operations begin global_interpretation and_nat: zip_nat "(\)" defines and_nat = and_nat.F by standard auto global_interpretation and_nat: semilattice "(AND) :: nat \ nat \ nat" proof (rule semilattice.intro, fact and_nat.abel_semigroup_axioms, standard) show "n AND n = n" for n :: nat by (simp add: and_nat.self) qed declare and_nat.simps [simp] \ \inconsistent declaration handling by \global_interpretation\ in \instantiation\\ global_interpretation or_nat: zip_nat "(\)" defines or_nat = or_nat.F by standard auto global_interpretation or_nat: semilattice "(OR) :: nat \ nat \ nat" proof (rule semilattice.intro, fact or_nat.abel_semigroup_axioms, standard) show "n OR n = n" for n :: nat by (simp add: or_nat.self) qed declare or_nat.simps [simp] \ \inconsistent declaration handling by \global_interpretation\ in \instantiation\\ global_interpretation xor_nat: zip_nat "(\)" defines xor_nat = xor_nat.F by standard auto declare xor_nat.simps [simp] \ \inconsistent declaration handling by \global_interpretation\ in \instantiation\\ instance proof fix m n q :: nat show \bit (m AND n) q \ bit m q \ bit n q\ proof (rule sym, induction q arbitrary: m n) case 0 then show ?case by (simp add: and_nat.even_iff) next case (Suc q) with and_nat.rec [of m n] show ?case by simp qed show \bit (m OR n) q \ bit m q \ bit n q\ proof (rule sym, induction q arbitrary: m n) case 0 then show ?case by (simp add: or_nat.even_iff) next case (Suc q) with or_nat.rec [of m n] show ?case by simp qed show \bit (m XOR n) q \ bit m q \ bit n q\ proof (rule sym, induction q arbitrary: m n) case 0 then show ?case by (simp add: xor_nat.even_iff) next case (Suc q) with xor_nat.rec [of m n] show ?case by simp qed qed end global_interpretation or_nat: semilattice_neutr "(OR)" "0 :: nat" by standard simp global_interpretation xor_nat: comm_monoid "(XOR)" "0 :: nat" by standard simp lemma Suc_0_and_eq [simp]: - "Suc 0 AND n = n mod 2" - by (cases n) auto + \Suc 0 AND n = of_bool (odd n)\ + using one_and_eq [of n] by simp lemma and_Suc_0_eq [simp]: - "n AND Suc 0 = n mod 2" - using Suc_0_and_eq [of n] by (simp add: ac_simps) + \n AND Suc 0 = of_bool (odd n)\ + using and_one_eq [of n] by simp lemma Suc_0_or_eq [simp]: - "Suc 0 OR n = n + of_bool (even n)" - by (cases n) (simp_all add: ac_simps) + \Suc 0 OR n = n + of_bool (even n)\ + using one_or_eq [of n] by simp lemma or_Suc_0_eq [simp]: - "n OR Suc 0 = n + of_bool (even n)" - using Suc_0_or_eq [of n] by (simp add: ac_simps) + \n OR Suc 0 = n + of_bool (even n)\ + using or_one_eq [of n] by simp lemma Suc_0_xor_eq [simp]: - "Suc 0 XOR n = n + of_bool (even n) - of_bool (odd n)" - by (cases n) (simp_all add: ac_simps) + \Suc 0 XOR n = n + of_bool (even n) - of_bool (odd n)\ + using one_xor_eq [of n] by simp lemma xor_Suc_0_eq [simp]: - "n XOR Suc 0 = n + of_bool (even n) - of_bool (odd n)" - using Suc_0_xor_eq [of n] by (simp add: ac_simps) + \n XOR Suc 0 = n + of_bool (even n) - of_bool (odd n)\ + using xor_one_eq [of n] by simp subsubsection \Instance \<^typ>\int\\ abbreviation (input) complement :: "int \ int" where "complement k \ - k - 1" lemma complement_half: "complement (k * 2) div 2 = complement k" by simp lemma complement_div_2: "complement (k div 2) = complement k div 2" by linarith locale zip_int = single: abel_semigroup f for f :: "bool \ bool \ bool" (infixl "\<^bold>*" 70) begin lemma False_False_imp_True_True: "True \<^bold>* True" if "False \<^bold>* False" proof (rule ccontr) assume "\ True \<^bold>* True" with that show False using single.assoc [of False True True] by (cases "False \<^bold>* True") simp_all qed function F :: "int \ int \ int" (infixl "\<^bold>\" 70) where "k \<^bold>\ l = (if k \ {0, - 1} \ l \ {0, - 1} then - of_bool (odd k \<^bold>* odd l) else of_bool (odd k \<^bold>* odd l) + (k div 2) \<^bold>\ (l div 2) * 2)" by auto termination by (relation "measure (\(k, l). nat (\k\ + \l\))") auto lemma zero_left_eq: "0 \<^bold>\ l = (case (False \<^bold>* False, False \<^bold>* True) of (False, False) \ 0 | (False, True) \ l | (True, False) \ complement l | (True, True) \ - 1)" by (induction l rule: int_bit_induct) (simp_all split: bool.split) lemma minus_left_eq: "- 1 \<^bold>\ l = (case (True \<^bold>* False, True \<^bold>* True) of (False, False) \ 0 | (False, True) \ l | (True, False) \ complement l | (True, True) \ - 1)" by (induction l rule: int_bit_induct) (simp_all split: bool.split) lemma zero_right_eq: "k \<^bold>\ 0 = (case (False \<^bold>* False, False \<^bold>* True) of (False, False) \ 0 | (False, True) \ k | (True, False) \ complement k | (True, True) \ - 1)" by (induction k rule: int_bit_induct) (simp_all add: ac_simps split: bool.split) lemma minus_right_eq: "k \<^bold>\ - 1 = (case (True \<^bold>* False, True \<^bold>* True) of (False, False) \ 0 | (False, True) \ k | (True, False) \ complement k | (True, True) \ - 1)" by (induction k rule: int_bit_induct) (simp_all add: ac_simps split: bool.split) lemma simps [simp]: "0 \<^bold>\ 0 = - of_bool (False \<^bold>* False)" "- 1 \<^bold>\ 0 = - of_bool (True \<^bold>* False)" "0 \<^bold>\ - 1 = - of_bool (False \<^bold>* True)" "- 1 \<^bold>\ - 1 = - of_bool (True \<^bold>* True)" "0 \<^bold>\ l = (case (False \<^bold>* False, False \<^bold>* True) of (False, False) \ 0 | (False, True) \ l | (True, False) \ complement l | (True, True) \ - 1)" "- 1 \<^bold>\ l = (case (True \<^bold>* False, True \<^bold>* True) of (False, False) \ 0 | (False, True) \ l | (True, False) \ complement l | (True, True) \ - 1)" "k \<^bold>\ 0 = (case (False \<^bold>* False, False \<^bold>* True) of (False, False) \ 0 | (False, True) \ k | (True, False) \ complement k | (True, True) \ - 1)" "k \<^bold>\ - 1 = (case (True \<^bold>* False, True \<^bold>* True) of (False, False) \ 0 | (False, True) \ k | (True, False) \ complement k | (True, True) \ - 1)" "k \ 0 \ k \ - 1 \ l \ 0 \ l \ - 1 \ k \<^bold>\ l = of_bool (odd k \<^bold>* odd l) + (k div 2) \<^bold>\ (l div 2) * 2" by simp_all[4] (simp_all only: zero_left_eq minus_left_eq zero_right_eq minus_right_eq, simp) declare F.simps [simp del] lemma rec: "k \<^bold>\ l = of_bool (odd k \<^bold>* odd l) + (k div 2) \<^bold>\ (l div 2) * 2" by (cases "k \ {0, - 1} \ l \ {0, - 1}") (auto simp add: ac_simps F.simps [of k l] split: bool.split) sublocale abel_semigroup F proof show "k \<^bold>\ l \<^bold>\ r = k \<^bold>\ (l \<^bold>\ r)" for k l r :: int proof (induction k arbitrary: l r rule: int_bit_induct) case zero have "complement l \<^bold>\ r = complement (l \<^bold>\ r)" if "False \<^bold>* False" "\ False \<^bold>* True" proof (induction l arbitrary: r rule: int_bit_induct) case zero from that show ?case by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits) next case minus from that show ?case by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits) next case (even l) with that rec [of _ r] show ?case by (cases "even r") (auto simp add: complement_half ac_simps False_False_imp_True_True split: bool.splits) next case (odd l) moreover have "- l - 1 = - 1 - l" by simp ultimately show ?case using that rec [of _ r] by (cases "even r") (auto simp add: ac_simps False_False_imp_True_True split: bool.splits) qed then show ?case by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits) next case minus have "complement l \<^bold>\ r = complement (l \<^bold>\ r)" if "\ True \<^bold>* True" "False \<^bold>* True" proof (induction l arbitrary: r rule: int_bit_induct) case zero from that show ?case by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits) next case minus from that show ?case by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits) next case (even l) with that rec [of _ r] show ?case by (cases "even r") (auto simp add: complement_half ac_simps False_False_imp_True_True split: bool.splits) next case (odd l) moreover have "- l - 1 = - 1 - l" by simp ultimately show ?case using that rec [of _ r] by (cases "even r") (auto simp add: ac_simps False_False_imp_True_True split: bool.splits) qed then show ?case by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits) next case (even k) with rec [of "k * 2"] rec [of _ r] show ?case by (cases "even r"; cases "even l") (auto simp add: ac_simps False_False_imp_True_True) next case (odd k) with rec [of "1 + k * 2"] rec [of _ r] show ?case by (cases "even r"; cases "even l") (auto simp add: ac_simps False_False_imp_True_True) qed show "k \<^bold>\ l = l \<^bold>\ k" for k l :: int proof (induction k arbitrary: l rule: int_bit_induct) case zero show ?case by simp next case minus show ?case by simp next case (even k) with rec [of "k * 2" l] rec [of l "k * 2"] show ?case by (simp add: ac_simps) next case (odd k) with rec [of "k * 2 + 1" l] rec [of l "k * 2 + 1"] show ?case by (simp add: ac_simps) qed qed lemma self [simp]: "k \<^bold>\ k = (case (False \<^bold>* False, True \<^bold>* True) of (False, False) \ 0 | (False, True) \ k | (True, True) \ - 1)" by (induction k rule: int_bit_induct) (auto simp add: False_False_imp_True_True split: bool.split) lemma even_iff [simp]: "even (k \<^bold>\ l) \ \ (odd k \<^bold>* odd l)" proof (induction k arbitrary: l rule: int_bit_induct) case zero show ?case by (cases "even l") (simp_all split: bool.splits) next case minus show ?case by (cases "even l") (simp_all split: bool.splits) next case (even k) then show ?case by (simp add: rec [of "k * 2"]) next case (odd k) then show ?case by (simp add: rec [of "1 + k * 2"]) qed end instantiation int :: ring_bit_operations begin definition not_int :: "int \ int" where "not_int = complement" global_interpretation and_int: zip_int "(\)" defines and_int = and_int.F by standard declare and_int.simps [simp] \ \inconsistent declaration handling by \global_interpretation\ in \instantiation\\ global_interpretation and_int: semilattice "(AND) :: int \ int \ int" proof (rule semilattice.intro, fact and_int.abel_semigroup_axioms, standard) show "k AND k = k" for k :: int by (simp add: and_int.self) qed global_interpretation or_int: zip_int "(\)" defines or_int = or_int.F by standard declare or_int.simps [simp] \ \inconsistent declaration handling by \global_interpretation\ in \instantiation\\ global_interpretation or_int: semilattice "(OR) :: int \ int \ int" proof (rule semilattice.intro, fact or_int.abel_semigroup_axioms, standard) show "k OR k = k" for k :: int by (simp add: or_int.self) qed global_interpretation xor_int: zip_int "(\)" defines xor_int = xor_int.F by standard declare xor_int.simps [simp] \ \inconsistent declaration handling by \global_interpretation\ in \instantiation\\ lemma bit_not_iff_int: \bit (NOT k) n \ \ bit k n\ for k :: int by (induction n arbitrary: k) (simp_all add: not_int_def flip: complement_div_2) instance proof fix k l :: int and n :: nat show \- k = NOT (k - 1)\ by (simp add: not_int_def) show \bit (k AND l) n \ bit k n \ bit l n\ proof (rule sym, induction n arbitrary: k l) case 0 then show ?case by (simp add: and_int.even_iff) next case (Suc n) with and_int.rec [of k l] show ?case by simp qed show \bit (k OR l) n \ bit k n \ bit l n\ proof (rule sym, induction n arbitrary: k l) case 0 then show ?case by (simp add: or_int.even_iff) next case (Suc n) with or_int.rec [of k l] show ?case by simp qed show \bit (k XOR l) n \ bit k n \ bit l n\ proof (rule sym, induction n arbitrary: k l) case 0 then show ?case by (simp add: xor_int.even_iff) next case (Suc n) with xor_int.rec [of k l] show ?case by simp qed qed (simp_all add: minus_1_div_exp_eq_int bit_not_iff_int) end lemma not_int_div_2: "NOT k div 2 = NOT (k div 2)" for k :: int by (simp add: complement_div_2 not_int_def) lemma not_int_rec [simp]: "k \ 0 \ k \ - 1 \ NOT k = of_bool (even k) + 2 * NOT (k div 2)" for k :: int by (auto simp add: not_int_def elim: oddE) end