diff --git a/src/Tools/Code/code_haskell.ML b/src/Tools/Code/code_haskell.ML --- a/src/Tools/Code/code_haskell.ML +++ b/src/Tools/Code/code_haskell.ML @@ -1,511 +1,511 @@ (* Title: Tools/Code/code_haskell.ML Author: Florian Haftmann, TU Muenchen Serializer for Haskell. *) signature CODE_HASKELL = sig val language_params: string val target: string val print_numeral: string -> int -> string end; structure Code_Haskell : CODE_HASKELL = struct val target = "Haskell"; val language_extensions = ["EmptyDataDecls", "RankNTypes", "ScopedTypeVariables"]; val language_pragma = "{-# LANGUAGE " ^ commas language_extensions ^ " #-}"; val language_params = space_implode " " (map (prefix "-X") language_extensions); open Basic_Code_Symbol; open Basic_Code_Thingol; open Code_Printer; infixr 5 @@; infixr 5 @|; (** Haskell serializer **) val print_haskell_string = quote o translate_string (fn c => if Symbol.is_ascii c then GHC.print_codepoint (ord c) else error "non-ASCII byte in Haskell string literal"); fun print_haskell_stmt class_syntax tyco_syntax const_syntax reserved deresolve deriving_show = let val deresolve_const = deresolve o Constant; val deresolve_tyco = deresolve o Type_Constructor; val deresolve_class = deresolve o Type_Class; fun class_name class = case class_syntax class of NONE => deresolve_class class | SOME class => class; fun print_typcontext tyvars vs = case maps (fn (v, sort) => map (pair v) sort) vs of [] => [] | constraints => enum "," "(" ")" ( map (fn (v, class) => str (class_name class ^ " " ^ lookup_var tyvars v)) constraints) @@ str " => "; fun print_typforall tyvars vs = case map fst vs of [] => [] | vnames => str "forall " :: Pretty.breaks (map (str o lookup_var tyvars) vnames) @ str "." @@ Pretty.brk 1; fun print_tyco_expr tyvars fxy (tyco, tys) = brackify fxy (str tyco :: map (print_typ tyvars BR) tys) and print_typ tyvars fxy (tyco `%% tys) = (case tyco_syntax tyco of NONE => print_tyco_expr tyvars fxy (deresolve_tyco tyco, tys) | SOME (_, print) => print (print_typ tyvars) fxy tys) | print_typ tyvars fxy (ITyVar v) = (str o lookup_var tyvars) v; fun print_typdecl tyvars (tyco, vs) = print_tyco_expr tyvars NOBR (tyco, map ITyVar vs); fun print_typscheme tyvars (vs, ty) = Pretty.block (print_typforall tyvars vs @ print_typcontext tyvars vs @| print_typ tyvars NOBR ty); fun print_term tyvars some_thm vars fxy (IConst const) = print_app tyvars some_thm vars fxy (const, []) | print_term tyvars some_thm vars fxy (t as (t1 `$ t2)) = (case Code_Thingol.unfold_const_app t of SOME app => print_app tyvars some_thm vars fxy app | _ => brackify fxy [ print_term tyvars some_thm vars NOBR t1, print_term tyvars some_thm vars BR t2 ]) | print_term tyvars some_thm vars fxy (IVar NONE) = str "_" | print_term tyvars some_thm vars fxy (IVar (SOME v)) = (str o lookup_var vars) v | print_term tyvars some_thm vars fxy (t as _ `|=> _) = let val (binds, t') = Code_Thingol.unfold_pat_abs t; val (ps, vars') = fold_map (print_bind tyvars some_thm BR o fst) binds vars; in brackets (str "\\" :: ps @ str "->" @@ print_term tyvars some_thm vars' NOBR t') end | print_term tyvars some_thm vars fxy (ICase case_expr) = (case Code_Thingol.unfold_const_app (#primitive case_expr) of SOME (app as ({ sym = Constant const, ... }, _)) => if is_none (const_syntax const) then print_case tyvars some_thm vars fxy case_expr else print_app tyvars some_thm vars fxy app | NONE => print_case tyvars some_thm vars fxy case_expr) and print_app_expr tyvars some_thm vars ({ sym, annotation, ... }, ts) = let val printed_const = case annotation of SOME ty => brackets [(str o deresolve) sym, str "::", print_typ tyvars NOBR ty] | NONE => (str o deresolve) sym in printed_const :: map (print_term tyvars some_thm vars BR) ts end and print_app tyvars = gen_print_app (print_app_expr tyvars) (print_term tyvars) const_syntax and print_bind tyvars some_thm fxy p = gen_print_bind (print_term tyvars) some_thm fxy p and print_case tyvars some_thm vars fxy { clauses = [], ... } = (brackify fxy o Pretty.breaks o map str) ["error", "\"empty case\""] | print_case tyvars some_thm vars fxy (case_expr as { clauses = [(IVar _, _)], ... }) = let val (vs, body) = Code_Thingol.unfold_let_no_pat (ICase case_expr); fun print_assignment ((some_v, _), t) vars = vars |> print_bind tyvars some_thm BR (IVar some_v) |>> (fn p => semicolon [p, str "=", print_term tyvars some_thm vars NOBR t]) val (ps, vars') = fold_map print_assignment vs vars; in brackify_block fxy (str "let {") ps (concat [str "}", str "in", print_term tyvars some_thm vars' NOBR body]) end | print_case tyvars some_thm vars fxy { term = t, typ = ty, clauses = clauses as _ :: _, ... } = let fun print_select (pat, body) = let val (p, vars') = print_bind tyvars some_thm NOBR pat vars; in semicolon [p, str "->", print_term tyvars some_thm vars' NOBR body] end; in Pretty.block_enclose (concat [str "(case", print_term tyvars some_thm vars NOBR t, str "of", str "{"], str "})") (map print_select clauses) end; fun print_stmt (Constant const, Code_Thingol.Fun (((vs, ty), raw_eqs), _)) = let val tyvars = intro_vars (map fst vs) reserved; fun print_err n = (semicolon o map str) ( deresolve_const const :: replicate n "_" @ "=" :: "error" @@ print_haskell_string const ); fun print_eqn ((ts, t), (some_thm, _)) = let val vars = reserved |> intro_base_names_for (is_none o const_syntax) deresolve (t :: ts) |> intro_vars (build (fold Code_Thingol.add_varnames ts)); in semicolon ( (str o deresolve_const) const :: map (print_term tyvars some_thm vars BR) ts @ str "=" @@ print_term tyvars some_thm vars NOBR t ) end; in Pretty.chunks ( semicolon [ (str o suffix " ::" o deresolve_const) const, print_typscheme tyvars (vs, ty) ] :: (case filter (snd o snd) raw_eqs of [] => [print_err ((length o fst o Code_Thingol.unfold_fun) ty)] | eqs => map print_eqn eqs) ) end | print_stmt (Type_Constructor tyco, Code_Thingol.Datatype (vs, [])) = let val tyvars = intro_vars vs reserved; in semicolon [ str "data", print_typdecl tyvars (deresolve_tyco tyco, vs) ] end | print_stmt (Type_Constructor tyco, Code_Thingol.Datatype (vs, [((co, _), [ty])])) = let val tyvars = intro_vars vs reserved; in semicolon ( str "newtype" :: print_typdecl tyvars (deresolve_tyco tyco, vs) :: str "=" :: (str o deresolve_const) co :: print_typ tyvars BR ty :: (if deriving_show tyco then [str "deriving (Prelude.Read, Prelude.Show)"] else []) ) end | print_stmt (Type_Constructor tyco, Code_Thingol.Datatype (vs, co :: cos)) = let val tyvars = intro_vars vs reserved; fun print_co ((co, _), tys) = concat ( (str o deresolve_const) co :: map (print_typ tyvars BR) tys ) in semicolon ( str "data" :: print_typdecl tyvars (deresolve_tyco tyco, vs) :: str "=" :: print_co co :: map ((fn p => Pretty.block [str "| ", p]) o print_co) cos @ (if deriving_show tyco then [str "deriving (Prelude.Read, Prelude.Show)"] else []) ) end | print_stmt (Type_Class class, Code_Thingol.Class (v, (classrels, classparams))) = let val tyvars = intro_vars [v] reserved; fun print_classparam (classparam, ty) = semicolon [ (str o deresolve_const) classparam, str "::", print_typ tyvars NOBR ty ] in Pretty.block_enclose ( Pretty.block [ str "class ", Pretty.block (print_typcontext tyvars [(v, map snd classrels)]), str (deresolve_class class ^ " " ^ lookup_var tyvars v), str " where {" ], str "};" ) (map print_classparam classparams) end | print_stmt (_, Code_Thingol.Classinst { class, tyco, vs, inst_params, ... }) = let val tyvars = intro_vars (map fst vs) reserved; fun print_classparam_instance ((classparam, (const, _)), (thm, _)) = case const_syntax classparam of NONE => semicolon [ (str o Long_Name.base_name o deresolve_const) classparam, str "=", print_app tyvars (SOME thm) reserved NOBR (const, []) ] | SOME (_, Code_Printer.Plain_printer s) => semicolon [ (str o Long_Name.base_name) s, str "=", print_app tyvars (SOME thm) reserved NOBR (const, []) ] | SOME (k, Code_Printer.Complex_printer _) => let val { sym = Constant c, dom, ... } = const; val (vs, rhs) = (apfst o map) fst (Code_Thingol.unfold_abs (Code_Thingol.eta_expand k (const, []))); val s = if (is_some o const_syntax) c then NONE else (SOME o Long_Name.base_name o deresolve_const) c; val vars = reserved |> intro_vars (map_filter I (s :: vs)); val lhs = IConst { sym = Constant classparam, typargs = [], dicts = [], dom = dom, annotation = NONE } `$$ map IVar vs; - (*dictionaries are not relevant at this late stage, + (*dictionaries are not relevant in Haskell, and these consts never need type annotations for disambiguation *) in semicolon [ print_term tyvars (SOME thm) vars NOBR lhs, str "=", print_term tyvars (SOME thm) vars NOBR rhs ] end; in Pretty.block_enclose ( Pretty.block [ str "instance ", Pretty.block (print_typcontext tyvars vs), str (class_name class ^ " "), print_typ tyvars BR (tyco `%% map (ITyVar o fst) vs), str " where {" ], str "};" ) (map print_classparam_instance inst_params) end; in print_stmt end; fun haskell_program_of_program ctxt module_prefix module_name reserved identifiers = let fun namify_fun upper base (nsp_fun, nsp_typ) = let val (base', nsp_fun') = Name.variant (Name.enforce_case upper base) nsp_fun; in (base', (nsp_fun', nsp_typ)) end; fun namify_typ base (nsp_fun, nsp_typ) = let val (base', nsp_typ') = Name.variant (Name.enforce_case true base) nsp_typ; in (base', (nsp_fun, nsp_typ')) end; fun namify_stmt (Code_Thingol.Fun (_, SOME _)) = pair | namify_stmt (Code_Thingol.Fun _) = namify_fun false | namify_stmt (Code_Thingol.Datatype _) = namify_typ | namify_stmt (Code_Thingol.Datatypecons _) = namify_fun true | namify_stmt (Code_Thingol.Class _) = namify_typ | namify_stmt (Code_Thingol.Classrel _) = pair | namify_stmt (Code_Thingol.Classparam _) = namify_fun false | namify_stmt (Code_Thingol.Classinst _) = pair; fun select_stmt (Code_Thingol.Fun (_, SOME _)) = false | select_stmt (Code_Thingol.Fun _) = true | select_stmt (Code_Thingol.Datatype _) = true | select_stmt (Code_Thingol.Datatypecons _) = false | select_stmt (Code_Thingol.Class _) = true | select_stmt (Code_Thingol.Classrel _) = false | select_stmt (Code_Thingol.Classparam _) = false | select_stmt (Code_Thingol.Classinst _) = true; in Code_Namespace.flat_program ctxt { module_prefix = module_prefix, module_name = module_name, reserved = reserved, identifiers = identifiers, empty_nsp = (reserved, reserved), namify_stmt = namify_stmt, modify_stmt = fn stmt => if select_stmt stmt then SOME stmt else NONE } end; val prelude_import_operators = [ "==", "/=", "<", "<=", ">=", ">", "+", "-", "*", "/", "**", ">>=", ">>", "=<<", "&&", "||", "^", "^^", ".", "$", "$!", "++", "!!" ]; val prelude_import_unqualified = [ "Eq", "error", "id", "return", "not", "fst", "snd", "map", "filter", "concat", "concatMap", "reverse", "zip", "null", "takeWhile", "dropWhile", "all", "any", "Integer", "negate", "abs", "divMod", "String" ]; val prelude_import_unqualified_constr = [ ("Bool", ["True", "False"]), ("Maybe", ["Nothing", "Just"]) ]; fun serialize_haskell module_prefix string_classes ctxt { module_name, reserved_syms, identifiers, includes, class_syntax, tyco_syntax, const_syntax } program exports = let (* build program *) val reserved = fold (insert (op =) o fst) includes reserved_syms; val { deresolver, flat_program = haskell_program } = haskell_program_of_program ctxt module_prefix module_name (Name.make_context reserved) identifiers exports program; (* print statements *) fun deriving_show tyco = let fun deriv _ "fun" = false | deriv tycos tyco = member (op =) tycos tyco orelse case try (Code_Symbol.Graph.get_node program) (Type_Constructor tyco) of SOME (Code_Thingol.Datatype (_, cs)) => forall (deriv' (tyco :: tycos)) (maps snd cs) | NONE => true and deriv' tycos (tyco `%% tys) = deriv tycos tyco andalso forall (deriv' tycos) tys | deriv' _ (ITyVar _) = true in deriv [] tyco end; fun print_stmt deresolve = print_haskell_stmt class_syntax tyco_syntax const_syntax (make_vars reserved) deresolve (if string_classes then deriving_show else K false); (* print modules *) fun module_names module_name = let val (xs, x) = split_last (Long_Name.explode module_name) in xs @ [x ^ ".hs"] end fun print_module_frame module_name header exports ps = (module_names module_name, Pretty.chunks2 ( header @ concat [str "module", case exports of SOME ps => Pretty.block [str module_name, enclose "(" ")" (commas ps)] | NONE => str module_name, str "where {" ] :: ps @| str "}" )); fun print_qualified_import module_name = semicolon [str "import qualified", str module_name]; val import_common_ps = enclose "import Prelude (" ");" (commas (map str (map (Library.enclose "(" ")") prelude_import_operators @ prelude_import_unqualified) @ map (fn (tyco, constrs) => (enclose (tyco ^ "(") ")" o commas o map str) constrs) prelude_import_unqualified_constr)) :: print_qualified_import "Prelude" :: map (print_qualified_import o fst) includes; fun print_module module_name (gr, imports) = let val deresolve = deresolver module_name; val deresolve_import = SOME o str o deresolve; val deresolve_import_attached = SOME o str o suffix "(..)" o deresolve; fun print_import (sym, (_, Code_Thingol.Fun _)) = deresolve_import sym | print_import (sym, (Code_Namespace.Public, Code_Thingol.Datatype _)) = deresolve_import_attached sym | print_import (sym, (Code_Namespace.Opaque, Code_Thingol.Datatype _)) = deresolve_import sym | print_import (sym, (Code_Namespace.Public, Code_Thingol.Class _)) = deresolve_import_attached sym | print_import (sym, (Code_Namespace.Opaque, Code_Thingol.Class _)) = deresolve_import sym | print_import (sym, (_, Code_Thingol.Classinst _)) = NONE; val import_ps = import_common_ps @ map (print_qualified_import o fst) imports; fun print_stmt' sym = case Code_Symbol.Graph.get_node gr sym of (_, NONE) => NONE | (_, SOME (export, stmt)) => SOME (if Code_Namespace.not_private export then print_import (sym, (export, stmt)) else NONE, markup_stmt sym (print_stmt deresolve (sym, stmt))); val (export_ps, body_ps) = (flat o rev o Code_Symbol.Graph.strong_conn) gr |> map_filter print_stmt' |> split_list |> apfst (map_filter I); in print_module_frame module_name [str language_pragma] (SOME export_ps) ((if null import_ps then [] else [Pretty.chunks import_ps]) @ body_ps) end; in (Code_Target.Hierarchy (map (fn (module_name, content) => ([module_name ^ ".hs"], content)) includes @ map (fn module_name => print_module module_name (Graph.get_node haskell_program module_name)) ((flat o rev o Graph.strong_conn) haskell_program)), try (deresolver "")) end; val serializer : Code_Target.serializer = Code_Target.parse_args (Scan.optional (Args.$$$ "root" -- Args.colon |-- Args.name) "" -- Scan.optional (Args.$$$ "string_classes" >> K true) false >> (fn (module_prefix, string_classes) => serialize_haskell module_prefix string_classes)); fun print_numeral typ = Library.enclose "(" (" :: " ^ typ ^ ")") o signed_string_of_int; val literals = Literals { literal_string = print_haskell_string, literal_numeral = print_numeral "Integer", literal_list = enum "," "[" "]", infix_cons = (5, ":") }; (** optional monad syntax **) fun pretty_haskell_monad c_bind = let fun dest_bind t1 t2 = case Code_Thingol.split_pat_abs t2 of SOME ((pat, ty), t') => SOME ((SOME ((pat, ty), true), t1), t') | NONE => NONE; fun dest_monad (IConst { sym = Constant c, ... } `$ t1 `$ t2) = if c = c_bind then dest_bind t1 t2 else NONE | dest_monad t = case Code_Thingol.split_let_no_pat t of SOME (((some_v, ty), tbind), t') => SOME ((SOME ((IVar some_v, ty), false), tbind), t') | NONE => NONE; val implode_monad = Code_Thingol.unfoldr dest_monad; fun print_monad print_bind print_term (NONE, t) vars = (semicolon [print_term vars NOBR t], vars) | print_monad print_bind print_term (SOME ((bind, _), true), t) vars = vars |> print_bind NOBR bind |>> (fn p => semicolon [p, str "<-", print_term vars NOBR t]) | print_monad print_bind print_term (SOME ((bind, _), false), t) vars = vars |> print_bind NOBR bind |>> (fn p => semicolon [str "let", str "{", p, str "=", print_term vars NOBR t, str "}"]); fun pretty _ print_term thm vars fxy [(t1, _), (t2, _)] = case dest_bind t1 t2 of SOME (bind, t') => let val (binds, t'') = implode_monad t' val (ps, vars') = fold_map (print_monad (gen_print_bind (K print_term) thm) print_term) (bind :: binds) vars; in brackify_block fxy (str "do { ") (ps @| print_term vars' NOBR t'') (str " }") end | NONE => brackify_infix (1, L) fxy (print_term vars (INFX (1, L)) t1, str ">>=", print_term vars (INFX (1, X)) t2) in (2, pretty) end; fun add_monad target' raw_c_bind thy = let val c_bind = Code.read_const thy raw_c_bind; in if target = target' then thy |> Code_Target.set_printings (Constant (c_bind, [(target, SOME (Code_Printer.complex_const_syntax (pretty_haskell_monad c_bind)))])) else error "Only Haskell target allows for monad syntax" end; (** Isar setup **) val _ = Theory.setup (Code_Target.add_language (target, {serializer = serializer, literals = literals, check = { env_var = "ISABELLE_GHC", make_destination = I, make_command = fn module_name => "\"$ISABELLE_GHC\" " ^ language_params ^ " -odir build -hidir build -stubdir build -e \"\" " ^ module_name ^ ".hs"}, evaluation_args = []}) #> Code_Target.set_printings (Type_Constructor ("fun", [(target, SOME (2, fn print_typ => fn fxy => fn [ty1, ty2] => brackify_infix (1, R) fxy ( print_typ (INFX (1, X)) ty1, str "->", print_typ (INFX (1, R)) ty2 )))])) #> fold (Code_Target.add_reserved target) [ "hiding", "deriving", "where", "case", "of", "infix", "infixl", "infixr", "import", "default", "forall", "let", "in", "class", "qualified", "data", "newtype", "instance", "if", "then", "else", "type", "as", "do", "module" ] #> fold (Code_Target.add_reserved target) prelude_import_unqualified #> fold (Code_Target.add_reserved target o fst) prelude_import_unqualified_constr #> fold (fold (Code_Target.add_reserved target) o snd) prelude_import_unqualified_constr); val _ = Outer_Syntax.command \<^command_keyword>\code_monad\ "define code syntax for monads" (Parse.term -- Parse.name >> (fn (raw_bind, target) => Toplevel.theory (add_monad target raw_bind))); end; (*struct*) diff --git a/src/Tools/Code/code_thingol.ML b/src/Tools/Code/code_thingol.ML --- a/src/Tools/Code/code_thingol.ML +++ b/src/Tools/Code/code_thingol.ML @@ -1,1068 +1,1069 @@ (* Title: Tools/Code/code_thingol.ML Author: Florian Haftmann, TU Muenchen Intermediate language ("Thin-gol") representing executable code. Representation and translation. *) infix 8 `%%; infix 4 `$; infix 4 `$$; infixr 3 `->; +infixr 3 `-->; infixr 3 `|=>; infixr 3 `|==>; signature BASIC_CODE_THINGOL = sig type vname = string; datatype dict = Dict of (class * class) list * plain_dict and plain_dict = Dict_Const of (string * class) * dict list list | Dict_Var of { var: vname, index: int, length: int, class: class, unique: bool }; datatype itype = `%% of string * itype list | ITyVar of vname; type const = { sym: Code_Symbol.T, typargs: itype list, dicts: dict list list, dom: itype list, annotation: itype option }; datatype iterm = IConst of const | IVar of vname option | `$ of iterm * iterm | `|=> of (vname option * itype) * iterm | ICase of { term: iterm, typ: itype, clauses: (iterm * iterm) list, primitive: iterm }; val `-> : itype * itype -> itype; + val `--> : itype list * itype -> itype; val `$$ : iterm * iterm list -> iterm; val `|==> : (vname option * itype) list * iterm -> iterm; type typscheme = (vname * sort) list * itype; end; signature CODE_THINGOL = sig include BASIC_CODE_THINGOL val unfoldl: ('a -> ('a * 'b) option) -> 'a -> 'a * 'b list val unfoldr: ('a -> ('b * 'a) option) -> 'a -> 'b list * 'a val unfold_fun: itype -> itype list * itype val unfold_fun_n: int -> itype -> itype list * itype val unfold_app: iterm -> iterm * iterm list val unfold_abs: iterm -> (vname option * itype) list * iterm val split_let: iterm -> (((iterm * itype) * iterm) * iterm) option val split_let_no_pat: iterm -> (((string option * itype) * iterm) * iterm) option val unfold_let: iterm -> ((iterm * itype) * iterm) list * iterm val unfold_let_no_pat: iterm -> ((string option * itype) * iterm) list * iterm val split_pat_abs: iterm -> ((iterm * itype) * iterm) option val unfold_pat_abs: iterm -> (iterm * itype) list * iterm val unfold_const_app: iterm -> (const * iterm list) option - val map_terms_bottom_up: (iterm -> iterm) -> iterm -> iterm val is_IVar: iterm -> bool val is_IAbs: iterm -> bool val eta_expand: int -> const * iterm list -> iterm val contains_dict_var: iterm -> bool val unambiguous_dictss: dict list list -> bool val add_constsyms: iterm -> Code_Symbol.T list -> Code_Symbol.T list val add_tyconames: iterm -> string list -> string list val fold_varnames: (string -> 'a -> 'a) -> iterm -> 'a -> 'a val add_varnames: iterm -> string list -> string list datatype stmt = NoStmt | Fun of (typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option | Datatype of vname list * ((string * vname list (*type argument wrt. canonical order*)) * itype list) list | Datatypecons of string | Class of vname * ((class * class) list * (string * itype) list) | Classrel of class * class | Classparam of class | Classinst of { class: string, tyco: string, vs: (vname * sort) list, superinsts: (class * dict list list) list, inst_params: ((string * (const * int)) * (thm * bool)) list, superinst_params: ((string * (const * int)) * (thm * bool)) list }; type program = stmt Code_Symbol.Graph.T val unimplemented: program -> string list val implemented_deps: program -> string list val map_terms_stmt: (iterm -> iterm) -> stmt -> stmt val is_constr: program -> Code_Symbol.T -> bool val is_case: stmt -> bool val group_stmts: Proof.context -> program -> ((Code_Symbol.T * stmt) list * (Code_Symbol.T * stmt) list * ((Code_Symbol.T * stmt) list * (Code_Symbol.T * stmt) list)) list val read_const_exprs: Proof.context -> string list -> string list val consts_program: Proof.context -> string list -> program val dynamic_conv: Proof.context -> (program -> typscheme * iterm -> Code_Symbol.T list -> conv) -> conv val dynamic_value: Proof.context -> ((term -> term) -> 'a -> 'a) -> (program -> term -> typscheme * iterm -> Code_Symbol.T list -> 'a) -> term -> 'a val static_conv_thingol: { ctxt: Proof.context, consts: string list } -> ({ program: program, deps: string list } -> Proof.context -> typscheme * iterm -> Code_Symbol.T list -> conv) -> Proof.context -> conv val static_conv_isa: { ctxt: Proof.context, consts: string list } -> (program -> Proof.context -> term -> conv) -> Proof.context -> conv val static_value: { ctxt: Proof.context, lift_postproc: ((term -> term) -> 'a -> 'a), consts: string list } -> ({ program: program, deps: string list } -> Proof.context -> term -> typscheme * iterm -> Code_Symbol.T list -> 'a) -> Proof.context -> term -> 'a end; structure Code_Thingol : CODE_THINGOL = struct open Basic_Code_Symbol; (** auxiliary **) fun unfoldl dest x = case dest x of NONE => (x, []) | SOME (x1, x2) => let val (x', xs') = unfoldl dest x1 in (x', xs' @ [x2]) end; fun unfoldr dest x = case dest x of NONE => ([], x) | SOME (x1, x2) => let val (xs', x') = unfoldr dest x2 in (x1 :: xs', x') end; (** language core - types, terms **) type vname = string; datatype dict = Dict of (class * class) list * plain_dict and plain_dict = Dict_Const of (string * class) * dict list list | Dict_Var of { var: vname, index: int, length: int, class: class, unique: bool }; datatype itype = `%% of string * itype list | ITyVar of vname; fun ty1 `-> ty2 = "fun" `%% [ty1, ty2]; +val op `--> = Library.foldr (op `->); + val unfold_fun = unfoldr (fn "fun" `%% [ty1, ty2] => SOME (ty1, ty2) | _ => NONE); fun unfold_fun_n n ty = let val (tys1, ty1) = unfold_fun ty; val (tys3, tys2) = chop n tys1; - val ty3 = Library.foldr (op `->) (tys2, ty1); - in (tys3, ty3) end; + in (tys3, tys2 `--> ty1) end; type const = { sym: Code_Symbol.T, typargs: itype list, dicts: dict list list, dom: itype list, annotation: itype option }; datatype iterm = IConst of const | IVar of vname option | `$ of iterm * iterm | `|=> of (vname option * itype) * iterm | ICase of { term: iterm, typ: itype, clauses: (iterm * iterm) list, primitive: iterm }; (*see also signature*) fun is_IVar (IVar _) = true | is_IVar _ = false; fun is_IAbs (_ `|=> _) = true | is_IAbs _ = false; val op `$$ = Library.foldl (op `$); val op `|==> = Library.foldr (op `|=>); val unfold_app = unfoldl - (fn op `$ t => SOME t + (fn op `$ t_t => SOME t_t | _ => NONE); val unfold_abs = unfoldr - (fn op `|=> t => SOME t + (fn op `|=> v_t => SOME v_t | _ => NONE); -val split_let = - (fn ICase { term = t, typ = ty, clauses = [(p, body)], ... } => SOME (((p, ty), t), body) - | _ => NONE); +fun split_let (ICase { term = t, typ = ty, clauses = [(p, body)], ... }) = + SOME (((p, ty), t), body) + | split_let _ = NONE; -val split_let_no_pat = - (fn ICase { term = t, typ = ty, clauses = [(IVar v, body)], ... } => SOME (((v, ty), t), body) - | _ => NONE); +fun split_let_no_pat (ICase { term = t, typ = ty, clauses = [(IVar v, body)], ... }) = + SOME (((v, ty), t), body) + | split_let_no_pat _ = NONE; val unfold_let = unfoldr split_let; val unfold_let_no_pat = unfoldr split_let_no_pat; fun unfold_const_app t = case unfold_app t of (IConst c, ts) => SOME (c, ts) | _ => NONE; fun fold_constexprs f = let fun fold' (IConst c) = f c | fold' (IVar _) = I | fold' (t1 `$ t2) = fold' t1 #> fold' t2 | fold' (_ `|=> t) = fold' t - | fold' (ICase { term = t, clauses = clauses, ... }) = fold' t - #> fold (fn (p, body) => fold' p #> fold' body) clauses + | fold' (ICase { term = t, clauses = clauses, ... }) = + fold' t #> fold (fn (p, body) => fold' p #> fold' body) clauses in fold' end; val add_constsyms = fold_constexprs (fn { sym, ... } => insert (op =) sym); fun add_tycos (tyco `%% tys) = insert (op =) tyco #> fold add_tycos tys | add_tycos (ITyVar _) = I; val add_tyconames = fold_constexprs (fn { typargs = tys, ... } => fold add_tycos tys); fun fold_varnames f = let fun fold_aux add_vars f = let fun fold_term _ (IConst _) = I | fold_term vs (IVar (SOME v)) = if member (op =) vs v then I else f v | fold_term _ (IVar NONE) = I | fold_term vs (t1 `$ t2) = fold_term vs t1 #> fold_term vs t2 | fold_term vs ((SOME v, _) `|=> t) = fold_term (insert (op =) v vs) t | fold_term vs ((NONE, _) `|=> t) = fold_term vs t | fold_term vs (ICase { term = t, clauses = clauses, ... }) = fold_term vs t #> fold (fold_clause vs) clauses and fold_clause vs (p, t) = fold_term (add_vars p vs) t; in fold_term [] end fun add_vars t = fold_aux add_vars (insert (op =)) t; in fold_aux add_vars f end; val add_varnames = fold_varnames (insert (op =)); val declare_varnames = fold_varnames Name.declare; fun exists_var t v = fold_varnames (fn w => fn b => v = w orelse b) t false; +fun invent_params used tys = + (map o apfst) SOME (Name.invent_names (Name.build_context used) "a" tys); + fun split_pat_abs ((NONE, ty) `|=> t) = SOME ((IVar NONE, ty), t) | split_pat_abs ((SOME v, ty) `|=> t) = SOME (case t of ICase { term = IVar (SOME w), clauses = [(p, body)], ... } => if v = w andalso (exists_var p v orelse not (exists_var body v)) then ((p, ty), body) else ((IVar (SOME v), ty), t) | _ => ((IVar (SOME v), ty), t)) | split_pat_abs _ = NONE; val unfold_pat_abs = unfoldr split_pat_abs; fun unfold_abs_eta [] t = ([], t) - | unfold_abs_eta (_ :: tys) (v_ty `|=> t) = + | unfold_abs_eta (_ :: tys) ((v, _) `|=> t) = let - val (vs_tys, t') = unfold_abs_eta tys t; - in (v_ty :: vs_tys, t') end + val (vs, t') = unfold_abs_eta tys t; + in (v :: vs, t') end | unfold_abs_eta tys t = let - val ctxt = Name.build_context (declare_varnames t); - val vs_tys = (map o apfst) SOME (Name.invent_names ctxt "a" tys); - in (vs_tys, t `$$ map (IVar o fst) vs_tys) end; + val vs = map fst (invent_params (declare_varnames t) tys); + in (vs, t `$$ map IVar vs) end; -fun eta_expand k (const as { dom = tys, ... }, ts) = +fun eta_expand wanted (const as { dom = tys, ... }, ts) = let - val j = length ts; - val l = k - j; - val _ = if l > length tys - then error "Impossible eta-expansion" else (); - val vars = Name.build_context (fold declare_varnames ts); - val vs_tys = (map o apfst) SOME - (Name.invent_names vars "a" ((take l o drop j) tys)); + val given = length ts; + val delta = wanted - given; + val vs_tys = invent_params (fold declare_varnames ts) + (((take delta o drop given) tys)); in vs_tys `|==> IConst const `$$ ts @ map (IVar o fst) vs_tys end; fun map_terms_bottom_up f (t as IConst _) = f t | map_terms_bottom_up f (t as IVar _) = f t | map_terms_bottom_up f (t1 `$ t2) = f (map_terms_bottom_up f t1 `$ map_terms_bottom_up f t2) | map_terms_bottom_up f ((v, ty) `|=> t) = f ((v, ty) `|=> map_terms_bottom_up f t) | map_terms_bottom_up f (ICase { term = t, typ = ty, clauses = clauses, primitive = t0 }) = f (ICase { term = map_terms_bottom_up f t, typ = ty, clauses = (map o apply2) (map_terms_bottom_up f) clauses, primitive = map_terms_bottom_up f t0 }); fun distill_minimized_clause tys t = let fun restrict_vars_to vs = map_terms_bottom_up (fn IVar (SOME v) => IVar (if member (op =) vs v then SOME v else NONE) | t => t); fun purge_unused_vars_in t = restrict_vars_to (build (add_varnames t)); fun distill' vs_map pat_args v i clauses = let val pat_vs = build (fold add_varnames (nth_drop i pat_args)); fun varnames_disjunctive pat = null (inter (op =) pat_vs (build (add_varnames pat))); in if forall (fn (pat', body') => varnames_disjunctive pat' (*prevent mingled scopes resulting in duplicated variables in pattern arguments*) andalso (exists_var pat' v (*reducible if shadowed by pattern*) orelse not (exists_var body' v))) clauses (*reducible if absent in body*) then clauses |> maps (fn (pat', body') => distill vs_map (nth_map i (K pat') pat_args |> map (purge_unused_vars_in body')) body') |> SOME else NONE end and distill vs_map pat_args (body as ICase { term = IVar (SOME v), clauses = clauses, ... }) = (case AList.lookup (op =) vs_map v of SOME i => distill' (AList.delete (op =) v vs_map) pat_args v i clauses |> the_default [(pat_args, body)] | NONE => [(pat_args, body)]) | distill vs_map pat_args body = [(pat_args, body)]; - val (vTs, body) = unfold_abs_eta tys t; - val vs = map fst vTs; + val (vs, body) = unfold_abs_eta tys t; val vs_map = build (fold_index (fn (i, SOME v) => cons (v, i) | _ => I) vs); in distill vs_map (map IVar vs) body end; fun exists_dict_var f (Dict (_, d)) = exists_plain_dict_var_pred f d and exists_plain_dict_var_pred f (Dict_Const (_, dss)) = exists_dictss_var f dss | exists_plain_dict_var_pred f (Dict_Var x) = f x and exists_dictss_var f dss = (exists o exists) (exists_dict_var f) dss; fun contains_dict_var (IConst { dicts = dss, ... }) = exists_dictss_var (K true) dss | contains_dict_var (IVar _) = false | contains_dict_var (t1 `$ t2) = contains_dict_var t1 orelse contains_dict_var t2 | contains_dict_var (_ `|=> t) = contains_dict_var t | contains_dict_var (ICase { primitive = t, ... }) = contains_dict_var t; val unambiguous_dictss = not o exists_dictss_var (fn { unique, ... } => not unique); (** statements, abstract programs **) type typscheme = (vname * sort) list * itype; datatype stmt = NoStmt | Fun of (typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option | Datatype of vname list * ((string * vname list) * itype list) list | Datatypecons of string | Class of vname * ((class * class) list * (string * itype) list) | Classrel of class * class | Classparam of class | Classinst of { class: string, tyco: string, vs: (vname * sort) list, superinsts: (class * dict list list) list, inst_params: ((string * (const * int)) * (thm * bool)) list, superinst_params: ((string * (const * int)) * (thm * bool)) list }; type program = stmt Code_Symbol.Graph.T; val unimplemented = build o Code_Symbol.Graph.fold (fn (Constant c, (NoStmt, _)) => cons c | _ => I); fun implemented_deps program = Code_Symbol.Graph.keys program |> subtract (op =) (Code_Symbol.Graph.all_preds program (map Constant (unimplemented program))) |> map_filter (fn Constant c => SOME c | _ => NONE); fun map_classparam_instances_as_term f = (map o apfst o apsnd o apfst) (fn const => case f (IConst const) of IConst const' => const') fun map_terms_stmt f NoStmt = NoStmt | map_terms_stmt f (Fun ((tysm, eqs), case_cong)) = Fun ((tysm, (map o apfst) (fn (ts, t) => (map f ts, f t)) eqs), case_cong) | map_terms_stmt f (stmt as Datatype _) = stmt | map_terms_stmt f (stmt as Datatypecons _) = stmt | map_terms_stmt f (stmt as Class _) = stmt | map_terms_stmt f (stmt as Classrel _) = stmt | map_terms_stmt f (stmt as Classparam _) = stmt | map_terms_stmt f (Classinst { class, tyco, vs, superinsts, inst_params, superinst_params }) = Classinst { class = class, tyco = tyco, vs = vs, superinsts = superinsts, inst_params = map_classparam_instances_as_term f inst_params, superinst_params = map_classparam_instances_as_term f superinst_params }; fun is_constr program sym = case Code_Symbol.Graph.get_node program sym of Datatypecons _ => true | _ => false; fun is_case (Fun (_, SOME _)) = true | is_case _ = false; fun linear_stmts program = rev (Code_Symbol.Graph.strong_conn program) |> map (AList.make (Code_Symbol.Graph.get_node program)); fun group_stmts ctxt program = let fun is_fun (_, Fun _) = true | is_fun _ = false; fun is_datatypecons (_, Datatypecons _) = true | is_datatypecons _ = false; fun is_datatype (_, Datatype _) = true | is_datatype _ = false; fun is_class (_, Class _) = true | is_class _ = false; fun is_classrel (_, Classrel _) = true | is_classrel _ = false; fun is_classparam (_, Classparam _) = true | is_classparam _ = false; fun is_classinst (_, Classinst _) = true | is_classinst _ = false; fun group stmts = if forall (is_datatypecons orf is_datatype) stmts then (filter is_datatype stmts, [], ([], [])) else if forall (is_class orf is_classrel orf is_classparam) stmts then ([], filter is_class stmts, ([], [])) else if forall (is_fun orf is_classinst) stmts then ([], [], List.partition is_fun stmts) else error ("Illegal mutual dependencies: " ^ (commas o map (Code_Symbol.quote ctxt o fst)) stmts); in linear_stmts program |> map group end; (** translation kernel **) (* generic mechanisms *) fun ensure_stmt symbolize generate x (deps, program) = let val sym = symbolize x; val add_dep = case deps of [] => I | dep :: _ => Code_Symbol.Graph.add_edge (dep, sym); in if can (Code_Symbol.Graph.get_node program) sym then program |> add_dep |> pair deps |> pair x else program |> Code_Symbol.Graph.default_node (sym, NoStmt) |> add_dep |> curry generate (sym :: deps) ||> snd |-> (fn stmt => (Code_Symbol.Graph.map_node sym) (K stmt)) |> pair deps |> pair x end; exception PERMISSIVE of unit; fun translation_error ctxt permissive some_thm deps msg sub_msg = if permissive then raise PERMISSIVE () else let val thm_msg = Option.map (fn thm => "in code equation " ^ Thm.string_of_thm ctxt thm) some_thm; val dep_msg = if null (tl deps) then NONE else SOME ("with dependency " ^ space_implode " -> " (map (Code_Symbol.quote ctxt) (rev deps))); val thm_dep_msg = case (thm_msg, dep_msg) of (SOME thm_msg, SOME dep_msg) => "\n(" ^ thm_msg ^ ",\n" ^ dep_msg ^ ")" | (SOME thm_msg, NONE) => "\n(" ^ thm_msg ^ ")" | (NONE, SOME dep_msg) => "\n(" ^ dep_msg ^ ")" | (NONE, NONE) => "" in error (msg ^ thm_dep_msg ^ ":\n" ^ sub_msg) end; fun maybe_permissive f prgrm = f prgrm |>> SOME handle PERMISSIVE () => (NONE, prgrm); fun not_wellsorted ctxt permissive some_thm deps ty sort e = let val err_class = Sorts.class_error (Context.Proof ctxt) e; val err_typ = "Type " ^ Syntax.string_of_typ ctxt ty ^ " not of sort " ^ Syntax.string_of_sort ctxt sort; in translation_error ctxt permissive some_thm deps "Wellsortedness error" (err_typ ^ "\n" ^ err_class) end; (* inference of type annotations for disambiguation with type classes *) fun mk_tagged_type (true, T) = Type ("", [T]) | mk_tagged_type (false, T) = T; fun dest_tagged_type (Type ("", [T])) = (true, T) | dest_tagged_type T = (false, T); val fastype_of_tagged_term = fastype_of o map_types (snd o dest_tagged_type); fun tag_term (proj_sort, _) eqngr = let val has_sort_constraints = exists (not o null) o map proj_sort o Code_Preproc.sortargs eqngr; fun tag (Const (_, T')) (Const (c, T)) = Const (c, mk_tagged_type (not (null (Term.add_tvarsT T' [])) andalso has_sort_constraints c, T)) | tag (t1 $ u1) (t $ u) = tag t1 t $ tag u1 u | tag (Abs (_, _, t1)) (Abs (x, T, t)) = Abs (x, T, tag t1 t) | tag (Free _) (t as Free _) = t | tag (Var _) (t as Var _) = t | tag (Bound _) (t as Bound _) = t; in tag end fun annotate ctxt algbr eqngr (c, ty) args rhs = let val erase = map_types (fn _ => Type_Infer.anyT []); val reinfer = singleton (Type_Infer_Context.infer_types ctxt); val lhs = list_comb (Const (c, ty), map (map_types Type.strip_sorts o fst) args); val reinferred_rhs = snd (Logic.dest_equals (reinfer (Logic.mk_equals (lhs, erase rhs)))); in tag_term algbr eqngr reinferred_rhs rhs end fun annotate_eqns ctxt algbr eqngr (c, ty) eqns = let val ctxt' = ctxt |> Proof_Context.theory_of |> Proof_Context.init_global |> Config.put Type_Infer_Context.const_sorts false; (*avoid spurious fixed variables: there is no eigen context for equations*) in map (apfst (fn (args, (rhs, some_abs)) => (args, (annotate ctxt' algbr eqngr (c, ty) args rhs, some_abs)))) eqns end; (* abstract dictionary construction *) datatype typarg_witness = Weakening of (class * class) list * plain_typarg_witness and plain_typarg_witness = Global of (string * class) * typarg_witness list list | Local of { var: string, index: int, sort: sort, unique: bool }; fun brand_unique unique (w as Global _) = w | brand_unique unique (Local { var, index, sort, unique = _ }) = Local { var = var, index = index, sort = sort, unique = unique }; fun construct_dictionaries ctxt (proj_sort, algebra) permissive some_thm (ty, sort) (deps, program) = let fun class_relation unique (Weakening (classrels, x), sub_class) super_class = Weakening ((sub_class, super_class) :: classrels, brand_unique unique x); fun type_constructor (tyco, _) dss class = Weakening ([], Global ((tyco, class), (map o map) fst dss)); fun type_variable (TFree (v, sort)) = let val sort' = proj_sort sort; in map_index (fn (n, class) => (Weakening ([], Local { var = v, index = n, sort = sort', unique = true }), class)) sort' end; val typarg_witnesses = Sorts.of_sort_derivation algebra {class_relation = fn _ => fn unique => Sorts.classrel_derivation algebra (class_relation unique), type_constructor = type_constructor, type_variable = type_variable} (ty, proj_sort sort) handle Sorts.CLASS_ERROR e => not_wellsorted ctxt permissive some_thm deps ty sort e; in (typarg_witnesses, (deps, program)) end; (* translation *) fun is_undefined_clause ctxt (_, IConst { sym = Constant c, ... }) = Code.is_undefined (Proof_Context.theory_of ctxt) c | is_undefined_clause ctxt _ = false; fun ensure_tyco ctxt algbr eqngr permissive tyco = let val thy = Proof_Context.theory_of ctxt; val ((vs, cos), _) = Code.get_type thy tyco; val stmt_datatype = fold_map (translate_tyvar_sort ctxt algbr eqngr permissive) vs #>> map fst ##>> fold_map (fn (c, (vs, tys)) => ensure_const ctxt algbr eqngr permissive c ##>> pair (map (unprefix "'" o fst) vs) ##>> fold_map (translate_typ ctxt algbr eqngr permissive) tys) cos #>> Datatype; in ensure_stmt Type_Constructor stmt_datatype tyco end and ensure_const ctxt algbr eqngr permissive c = let val thy = Proof_Context.theory_of ctxt; fun stmt_datatypecons tyco = ensure_tyco ctxt algbr eqngr permissive tyco #>> Datatypecons; fun stmt_classparam class = ensure_class ctxt algbr eqngr permissive class #>> Classparam; fun stmt_fun cert = case Code.equations_of_cert thy cert of (_, NONE) => pair NoStmt | ((vs, ty), SOME eqns) => let val eqns' = annotate_eqns ctxt algbr eqngr (c, ty) eqns val some_case_cong = Code.get_case_cong thy c; in fold_map (translate_tyvar_sort ctxt algbr eqngr permissive) vs ##>> translate_typ ctxt algbr eqngr permissive ty ##>> translate_eqns ctxt algbr eqngr permissive eqns' #>> (fn (_, NONE) => NoStmt | (tyscm, SOME eqns) => Fun ((tyscm, eqns), some_case_cong)) end; val stmt_const = case Code.get_type_of_constr_or_abstr thy c of SOME (tyco, _) => stmt_datatypecons tyco | NONE => (case Axclass.class_of_param thy c of SOME class => stmt_classparam class | NONE => stmt_fun (Code_Preproc.cert eqngr c)) in ensure_stmt Constant stmt_const c end and ensure_class ctxt (algbr as (_, algebra)) eqngr permissive class = let val thy = Proof_Context.theory_of ctxt; val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class; val cs = #params (Axclass.get_info thy class); val stmt_class = fold_map (fn super_class => ensure_classrel ctxt algbr eqngr permissive (class, super_class)) super_classes ##>> fold_map (fn (c, ty) => ensure_const ctxt algbr eqngr permissive c ##>> translate_typ ctxt algbr eqngr permissive ty) cs #>> (fn info => Class (unprefix "'" Name.aT, info)) in ensure_stmt Type_Class stmt_class class end and ensure_classrel ctxt algbr eqngr permissive (sub_class, super_class) = let val stmt_classrel = ensure_class ctxt algbr eqngr permissive sub_class ##>> ensure_class ctxt algbr eqngr permissive super_class #>> Classrel; in ensure_stmt Class_Relation stmt_classrel (sub_class, super_class) end and ensure_inst ctxt (algbr as (_, algebra)) eqngr permissive (tyco, class) = let val thy = Proof_Context.theory_of ctxt; val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class; val these_class_params = these o try (#params o Axclass.get_info thy); val class_params = these_class_params class; val superclass_params = maps these_class_params ((Sorts.complete_sort algebra o Sorts.super_classes algebra) class); val vs = Name.invent_names Name.context "'a" (Sorts.mg_domain algebra tyco [class]); val sorts' = Sorts.mg_domain (Sign.classes_of thy) tyco [class]; val vs' = map2 (fn (v, sort1) => fn sort2 => (v, Sorts.inter_sort (Sign.classes_of thy) (sort1, sort2))) vs sorts'; val arity_typ = Type (tyco, map TFree vs); val arity_typ' = Type (tyco, map (fn (v, sort) => TVar ((v, 0), sort)) vs'); fun translate_super_instance super_class = ensure_class ctxt algbr eqngr permissive super_class ##>> translate_dicts ctxt algbr eqngr permissive NONE (arity_typ, [super_class]) #>> (fn (super_class, [Dict ([], Dict_Const (_, dss))]) => (super_class, dss)); fun translate_classparam_instance (c, ty) = let val raw_const = Const (c, map_type_tfree (K arity_typ') ty); - val dom_length = length (fst (strip_type ty)) + val dom_length = length (binder_types ty); val thm = Axclass.unoverload_conv ctxt (Thm.cterm_of ctxt raw_const); val const = (apsnd Logic.unvarifyT_global o dest_Const o snd o Logic.dest_equals o Thm.prop_of) thm; in ensure_const ctxt algbr eqngr permissive c ##>> translate_const ctxt algbr eqngr permissive (SOME thm) (const, NONE) #>> (fn (c, IConst const') => ((c, (const', dom_length)), (thm, true))) end; val stmt_inst = ensure_class ctxt algbr eqngr permissive class ##>> ensure_tyco ctxt algbr eqngr permissive tyco ##>> fold_map (translate_tyvar_sort ctxt algbr eqngr permissive) vs ##>> fold_map translate_super_instance super_classes ##>> fold_map translate_classparam_instance class_params ##>> fold_map translate_classparam_instance superclass_params #>> (fn (((((class, tyco), vs), superinsts), inst_params), superinst_params) => Classinst { class = class, tyco = tyco, vs = vs, superinsts = superinsts, inst_params = inst_params, superinst_params = superinst_params }); in ensure_stmt Class_Instance stmt_inst (tyco, class) end and translate_typ ctxt algbr eqngr permissive (TFree (v, _)) = pair (ITyVar (unprefix "'" v)) | translate_typ ctxt algbr eqngr permissive (Type (tyco, tys)) = ensure_tyco ctxt algbr eqngr permissive tyco ##>> fold_map (translate_typ ctxt algbr eqngr permissive) tys #>> (fn (tyco, tys) => tyco `%% tys) and translate_term ctxt algbr eqngr permissive some_thm (Const (c, ty), some_abs) = translate_app ctxt algbr eqngr permissive some_thm (((c, ty), []), some_abs) | translate_term ctxt algbr eqngr permissive some_thm (Free (v, _), some_abs) = pair (IVar (SOME v)) | translate_term ctxt algbr eqngr permissive some_thm (Abs (v, ty, t), some_abs) = let val ((v', _), t') = Term.dest_abs_global (Abs (Name.desymbolize (SOME false) v, ty, t)); val v'' = if Term.used_free v' t' then SOME v' else NONE in translate_typ ctxt algbr eqngr permissive ty ##>> translate_term ctxt algbr eqngr permissive some_thm (t', some_abs) #>> (fn (ty, t) => (v'', ty) `|=> t) end | translate_term ctxt algbr eqngr permissive some_thm (t as _ $ _, some_abs) = case strip_comb t of (Const (c, ty), ts) => translate_app ctxt algbr eqngr permissive some_thm (((c, ty), ts), some_abs) | (t', ts) => translate_term ctxt algbr eqngr permissive some_thm (t', some_abs) ##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) ts #>> (fn (t, ts) => t `$$ ts) and translate_eqn ctxt algbr eqngr permissive ((args, (rhs, some_abs)), (some_thm, proper)) = fold_map (translate_term ctxt algbr eqngr permissive some_thm) args ##>> translate_term ctxt algbr eqngr permissive some_thm (rhs, some_abs) #>> rpair (some_thm, proper) and translate_eqns ctxt algbr eqngr permissive eqns = maybe_permissive (fold_map (translate_eqn ctxt algbr eqngr permissive) eqns) and translate_const ctxt algbr eqngr permissive some_thm ((c, ty), some_abs) (deps, program) = let val thy = Proof_Context.theory_of ctxt; val _ = if (case some_abs of NONE => true | SOME abs => not (c = abs)) andalso Code.is_abstr thy c then translation_error ctxt permissive some_thm deps "Abstraction violation" ("constant " ^ Code.string_of_const thy c) else () in translate_const_proper ctxt algbr eqngr permissive some_thm (c, ty) (deps, program) end and translate_const_proper ctxt algbr eqngr permissive some_thm (c, ty) = let val thy = Proof_Context.theory_of ctxt; val (annotate, ty') = dest_tagged_type ty; val typargs = Sign.const_typargs thy (c, ty'); val sorts = Code_Preproc.sortargs eqngr c; val (dom, range) = Term.strip_type ty'; in ensure_const ctxt algbr eqngr permissive c ##>> fold_map (translate_typ ctxt algbr eqngr permissive) typargs ##>> fold_map (translate_dicts ctxt algbr eqngr permissive some_thm) (typargs ~~ sorts) ##>> fold_map (translate_typ ctxt algbr eqngr permissive) (ty' :: dom) #>> (fn (((c, typargs), dss), annotation :: dom) => IConst { sym = Constant c, typargs = typargs, dicts = dss, dom = dom, annotation = if annotate then SOME annotation else NONE }) end and translate_app_const ctxt algbr eqngr permissive some_thm ((c_ty, ts), some_abs) = translate_const ctxt algbr eqngr permissive some_thm (c_ty, some_abs) ##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) ts #>> (fn (t, ts) => t `$$ ts) and translate_case ctxt algbr eqngr permissive some_thm (t_pos, []) (c_ty, ts) = let fun project_term xs = nth xs t_pos; val project_clause = the_single o nth_drop t_pos; val ty_case = project_term (binder_types (snd c_ty)); fun distill_clauses ty_case t = map (fn ([pat], body) => (pat, body)) (distill_minimized_clause [ty_case] t) in translate_const ctxt algbr eqngr permissive some_thm (c_ty, NONE) ##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) ts ##>> translate_typ ctxt algbr eqngr permissive ty_case #>> (fn ((t_app, ts), ty_case) => ICase { term = project_term ts, typ = ty_case, clauses = (filter_out (is_undefined_clause ctxt) o distill_clauses ty_case o project_clause) ts, primitive = t_app `$$ ts }) end | translate_case ctxt algbr eqngr permissive some_thm (t_pos, case_pats) (c_ty, ts) = let fun project_term xs = nth xs t_pos; fun project_cases xs = xs |> nth_drop t_pos |> curry (op ~~) case_pats |> map_filter (fn (NONE, _) => NONE | (SOME _, x) => SOME x); val ty_case = project_term (binder_types (snd c_ty)); val constrs = map_filter I case_pats ~~ project_cases ts |> map (fn ((c, n), t) => ((c, (take n o binder_types o fastype_of_tagged_term) t ---> ty_case), n)); fun distill_clauses constrs ts_clause = maps (fn ((constr as IConst { dom = tys, ... }, n), t) => map (fn (pat_args, body) => (constr `$$ pat_args, body)) (distill_minimized_clause (take n tys) t)) (constrs ~~ ts_clause); in translate_const ctxt algbr eqngr permissive some_thm (c_ty, NONE) ##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) ts ##>> translate_typ ctxt algbr eqngr permissive ty_case ##>> fold_map (fn (c_ty, n) => translate_const ctxt algbr eqngr permissive some_thm (c_ty, NONE) #>> rpair n) constrs #>> (fn (((t_app, ts), ty_case), constrs) => ICase { term = project_term ts, typ = ty_case, clauses = (filter_out (is_undefined_clause ctxt) o distill_clauses constrs o project_cases) ts, primitive = t_app `$$ ts }) end -and translate_app_case ctxt algbr eqngr permissive some_thm (num_args, pattern_schema) ((c, ty), ts) = - if length ts < num_args then +and translate_app_case ctxt algbr eqngr permissive some_thm (wanted, pattern_schema) ((c, ty), ts) = + if length ts < wanted then let - val k = length ts; - val tys = (take (num_args - k) o drop k o fst o strip_type) ty; - val names = Name.build_context (ts |> (fold o fold_aterms) Term.declare_term_frees); - val vs = Name.invent_names names "a" tys; + val given = length ts; + val delta = wanted - given; + val tys = (take delta o drop given o binder_types) ty; + val used = Name.build_context ((fold o fold_aterms) Term.declare_term_frees ts); + val vs_tys = Name.invent_names used "a" tys; in fold_map (translate_typ ctxt algbr eqngr permissive) tys - ##>> translate_case ctxt algbr eqngr permissive some_thm pattern_schema ((c, ty), ts @ map Free vs) - #>> (fn (tys, t) => map2 (fn (v, _) => pair (SOME v)) vs tys `|==> t) + ##>> translate_case ctxt algbr eqngr permissive some_thm pattern_schema ((c, ty), ts @ map Free vs_tys) + #>> (fn (tys, t) => map2 (fn (v, _) => pair (SOME v)) vs_tys tys `|==> t) end - else if length ts > num_args then - translate_case ctxt algbr eqngr permissive some_thm pattern_schema ((c, ty), take num_args ts) - ##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) (drop num_args ts) + else if length ts > wanted then + translate_case ctxt algbr eqngr permissive some_thm pattern_schema ((c, ty), take wanted ts) + ##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) (drop wanted ts) #>> (fn (t, ts) => t `$$ ts) else translate_case ctxt algbr eqngr permissive some_thm pattern_schema ((c, ty), ts) and translate_app ctxt algbr eqngr permissive some_thm (c_ty_ts as ((c, _), _), some_abs) = case Code.get_case_schema (Proof_Context.theory_of ctxt) c of SOME case_schema => translate_app_case ctxt algbr eqngr permissive some_thm case_schema c_ty_ts | NONE => translate_app_const ctxt algbr eqngr permissive some_thm (c_ty_ts, some_abs) and translate_tyvar_sort ctxt (algbr as (proj_sort, _)) eqngr permissive (v, sort) = fold_map (ensure_class ctxt algbr eqngr permissive) (proj_sort sort) #>> (fn sort => (unprefix "'" v, sort)) and translate_dicts ctxt algbr eqngr permissive some_thm (ty, sort) = let fun mk_dict (Weakening (classrels, d)) = fold_map (ensure_classrel ctxt algbr eqngr permissive) classrels ##>> mk_plain_dict d #>> Dict and mk_plain_dict (Global (inst, dss)) = ensure_inst ctxt algbr eqngr permissive inst ##>> (fold_map o fold_map) mk_dict dss #>> Dict_Const | mk_plain_dict (Local { var, index, sort, unique }) = ensure_class ctxt algbr eqngr permissive (nth sort index) #>> (fn class => Dict_Var { var = unprefix "'" var, index = index, length = length sort, class = class, unique = unique }) in construct_dictionaries ctxt algbr permissive some_thm (ty, sort) #-> (fn typarg_witnesses => fold_map mk_dict typarg_witnesses) end; (* store *) structure Program = Code_Data ( type T = program; val empty = Code_Symbol.Graph.empty; ); fun invoke_generation ignore_cache ctxt generate thing = Program.change_yield (if ignore_cache then NONE else SOME (Proof_Context.theory_of ctxt)) (fn program => ([], program) |> generate thing |-> (fn thing => fn (_, program) => (thing, program))); (* program generation *) fun check_abstract_constructors thy consts = case filter (Code.is_abstr thy) consts of [] => () | abstrs => error ("Cannot export abstract constructor(s): " ^ commas (map (Code.string_of_const thy) abstrs)); fun invoke_generation_for_consts ctxt { ignore_cache, permissive } { algebra, eqngr } consts = let val thy = Proof_Context.theory_of ctxt; val _ = if permissive then () else check_abstract_constructors thy consts; in Code_Preproc.timed "translating program" #ctxt (fn { ctxt, algebra, eqngr, consts } => invoke_generation ignore_cache ctxt (fold_map (ensure_const ctxt algebra eqngr permissive)) consts) { ctxt = ctxt, algebra = algebra, eqngr = eqngr, consts = consts } end; fun invoke_generation_for_consts' ctxt ignore_cache_and_permissive consts = invoke_generation_for_consts ctxt { ignore_cache = ignore_cache_and_permissive, permissive = ignore_cache_and_permissive } (Code_Preproc.obtain ignore_cache_and_permissive { ctxt = ctxt, consts = consts, terms = []}) consts |> snd; fun invoke_generation_for_consts'' ctxt algebra_eqngr = invoke_generation_for_consts ctxt { ignore_cache = true, permissive = false } algebra_eqngr #> (fn (deps, program) => { deps = deps, program = program }); fun consts_program_permissive ctxt = invoke_generation_for_consts' ctxt true; fun consts_program ctxt consts = let fun project program = Code_Symbol.Graph.restrict (member (op =) (Code_Symbol.Graph.all_succs program (map Constant consts))) program; in invoke_generation_for_consts' ctxt false consts |> project end; (* value evaluation *) fun ensure_value ctxt algbr eqngr t = let val ty = fastype_of t; val vs = fold_term_types (K (fold_atyps (insert (eq_fst op =) o dest_TFree))) t []; val t' = annotate ctxt algbr eqngr (\<^const_name>\Pure.dummy_pattern\, ty) [] t; val dummy_constant = Constant \<^const_name>\Pure.dummy_pattern\; val stmt_value = fold_map (translate_tyvar_sort ctxt algbr eqngr false) vs ##>> translate_typ ctxt algbr eqngr false ty ##>> translate_term ctxt algbr eqngr false NONE (t', NONE) #>> (fn ((vs, ty), t) => Fun (((vs, ty), [(([], t), (NONE, true))]), NONE)); fun term_value (_, program1) = let val Fun ((vs_ty, [(([], t), _)]), _) = Code_Symbol.Graph.get_node program1 dummy_constant; val deps' = Code_Symbol.Graph.immediate_succs program1 dummy_constant; val program2 = Code_Symbol.Graph.del_node dummy_constant program1; val deps_all = Code_Symbol.Graph.all_succs program2 deps'; val program3 = Code_Symbol.Graph.restrict (member (op =) deps_all) program2; in ((program3, ((vs_ty, t), deps')), (deps', program2)) end; in ensure_stmt Constant stmt_value \<^const_name>\Pure.dummy_pattern\ #> snd #> term_value end; fun dynamic_evaluation comp ctxt algebra eqngr t = let val ((program, (vs_ty_t', deps)), _) = Code_Preproc.timed "translating term" #ctxt (fn { ctxt, algebra, eqngr, t } => invoke_generation false ctxt (ensure_value ctxt algebra eqngr) t) { ctxt = ctxt, algebra = algebra, eqngr = eqngr, t = t }; in comp program t vs_ty_t' deps end; fun dynamic_conv ctxt conv = Code_Preproc.dynamic_conv ctxt (dynamic_evaluation (fn program => fn _ => conv program) ctxt); fun dynamic_value ctxt postproc comp = Code_Preproc.dynamic_value ctxt postproc (dynamic_evaluation comp ctxt); fun static_evaluation ctxt consts algebra_eqngr static_eval = static_eval (invoke_generation_for_consts'' ctxt algebra_eqngr consts); fun static_evaluation_thingol ctxt consts (algebra_eqngr as { algebra, eqngr }) static_eval = let fun evaluation program dynamic_eval ctxt t = let val ((_, ((vs_ty', t'), deps)), _) = Code_Preproc.timed "translating term" #ctxt (fn { ctxt, t } => ensure_value ctxt algebra eqngr t ([], program)) { ctxt = ctxt, t = t }; in dynamic_eval ctxt t (vs_ty', t') deps end; in static_evaluation ctxt consts algebra_eqngr (fn program_deps => evaluation (#program program_deps) (static_eval program_deps)) end; fun static_evaluation_isa ctxt consts algebra_eqngr static_eval = static_evaluation ctxt consts algebra_eqngr (fn program_deps => (static_eval (#program program_deps))); fun static_conv_thingol (ctxt_consts as { ctxt, consts }) conv = Code_Preproc.static_conv ctxt_consts (fn algebra_eqngr => static_evaluation_thingol ctxt consts algebra_eqngr (fn program_deps => let val static_conv = conv program_deps; in fn ctxt => fn _ => fn vs_ty => fn deps => static_conv ctxt vs_ty deps end)); fun static_conv_isa (ctxt_consts as { ctxt, consts }) conv = Code_Preproc.static_conv ctxt_consts (fn algebra_eqngr => static_evaluation_isa ctxt consts algebra_eqngr conv); fun static_value (ctxt_postproc_consts as { ctxt, consts, ... }) comp = Code_Preproc.static_value ctxt_postproc_consts (fn algebra_eqngr => static_evaluation_thingol ctxt consts algebra_eqngr comp); (** constant expressions **) fun read_const_exprs_internal ctxt = let val thy = Proof_Context.theory_of ctxt; fun this_theory name = if Context.theory_name thy = name then thy else Context.get_theory {long = false} thy name; fun consts_of thy' = fold (fn (c, (_, NONE)) => cons c | _ => I) (#constants (Consts.dest (Sign.consts_of thy'))) [] |> filter_out (Code.is_abstr thy); fun belongs_here thy' c = forall (fn thy'' => not (Sign.declared_const thy'' c)) (Theory.parents_of thy'); fun consts_of_select thy' = filter (belongs_here thy') (consts_of thy'); fun read_const_expr str = (case Syntax.parse_input ctxt (K NONE) (K Markup.empty) (SOME o Symbol_Pos.implode o #1) str of SOME "_" => ([], consts_of thy) | SOME s => (case try (unsuffix "._") s of SOME name => ([], consts_of_select (this_theory name)) | NONE => ([Code.read_const thy str], [])) | NONE => ([Code.read_const thy str], [])); in apply2 flat o split_list o map read_const_expr end; fun read_const_exprs_all ctxt = op @ o read_const_exprs_internal ctxt; fun read_const_exprs ctxt const_exprs = let val (consts, consts_permissive) = read_const_exprs_internal ctxt const_exprs; val consts' = consts_program_permissive ctxt consts_permissive |> implemented_deps |> filter_out (Code.is_abstr (Proof_Context.theory_of ctxt)); in union (op =) consts' consts end; (** diagnostic commands **) fun code_depgr ctxt consts = let val { eqngr, ... } = Code_Preproc.obtain true { ctxt = ctxt, consts = consts, terms = [] }; val all_consts = Graph.all_succs eqngr consts; in Graph.restrict (member (op =) all_consts) eqngr end; fun code_thms ctxt = Pretty.writeln o Code_Preproc.pretty ctxt o code_depgr ctxt; fun coalesce_strong_conn gr = let val xss = Graph.strong_conn gr; val xss_ys = map (fn xs => (xs, commas xs)) xss; val y_for = the o AList.lookup (op =) (maps (fn (xs, y) => map (fn x => (x, y)) xs) xss_ys); fun coalesced_succs_for xs = maps (Graph.immediate_succs gr) xs |> subtract (op =) xs |> map y_for |> distinct (op =); val succs = map (fn (xs, _) => (xs, coalesced_succs_for xs)) xss_ys; in map (fn (xs, y) => ((y, xs), (maps (Graph.get_node gr) xs, (the o AList.lookup (op =) succs) xs))) xss_ys end; fun code_deps ctxt consts = let val thy = Proof_Context.theory_of ctxt; fun mk_entry ((name, consts), (ps, deps)) = let val label = commas (map (Code.string_of_const thy) consts); in ((name, Graph_Display.content_node label (Pretty.str label :: ps)), deps) end; in code_depgr ctxt consts |> Graph.map (K (Code.pretty_cert thy o snd)) |> coalesce_strong_conn |> map mk_entry |> Graph_Display.display_graph end; local fun code_thms_cmd ctxt = code_thms ctxt o read_const_exprs_all ctxt; fun code_deps_cmd ctxt = code_deps ctxt o read_const_exprs_all ctxt; in val _ = Outer_Syntax.command \<^command_keyword>\code_thms\ "print system of code equations for code" (Scan.repeat1 Parse.term >> (fn cs => Toplevel.keep (fn st => code_thms_cmd (Toplevel.context_of st) cs))); val _ = Outer_Syntax.command \<^command_keyword>\code_deps\ "visualize dependencies of code equations for code" (Scan.repeat1 Parse.term >> (fn cs => Toplevel.keep (fn st => code_deps_cmd (Toplevel.context_of st) cs))); end; end; (*struct*) structure Basic_Code_Thingol: BASIC_CODE_THINGOL = Code_Thingol;