diff --git a/thys/CAVA_Automata/CAVA_Base/CAVA_Base.thy b/thys/CAVA_Automata/CAVA_Base/CAVA_Base.thy --- a/thys/CAVA_Automata/CAVA_Base/CAVA_Base.thy +++ b/thys/CAVA_Automata/CAVA_Base/CAVA_Base.thy @@ -1,35 +1,34 @@ section "Setup of Environment for CAVA Model Checker" theory CAVA_Base imports Collections.CollectionsV1 (*-- {* Compatibility with ICF 1.0 *}*) Collections.Refine_Dflt Statistics (*-- {* Collecting statistics by instrumenting the formalization *}*) CAVA_Code_Target (*-- {* Code Generator Setup *}*) begin hide_const (open) CollectionsV1.ahs_rel (* (* Select-function that selects element from set *) (* TODO: Move! Is select properly integrated into autoref? *) definition select where "select S \ if S={} then RETURN None else RES {Some s | s. s\S}" lemma select_correct: "select X \ SPEC (\r. case r of None \ X={} | Some x \ x\X)" unfolding select_def apply (refine_rcg refine_vcg) by auto *) text \Cleaning up the namespace a bit\ hide_type (open) Word.word - no_notation test_bit (infixl "!!" 100) text \Some custom setup in cava, that does not match HOL defaults:\ declare Let_def[simp add] end diff --git a/thys/Collections/GenCF/Impl/Impl_Uv_Set.thy b/thys/Collections/GenCF/Impl/Impl_Uv_Set.thy --- a/thys/Collections/GenCF/Impl/Impl_Uv_Set.thy +++ b/thys/Collections/GenCF/Impl/Impl_Uv_Set.thy @@ -1,396 +1,396 @@ theory Impl_Uv_Set imports "../../Iterator/Iterator" "../Intf/Intf_Set" Native_Word.Uint begin subsection \Bit-Vectors as Lists of Words\ subsubsection \Lookup\ primrec lookup :: "nat \ ('a::len) word list \ bool" where "lookup _ [] \ False" | "lookup n (w#ws) - \ (if n (if n ( if n < LENGTH('a) * length w1 then lookup n w1 else lookup (n - LENGTH('a) * length w1) w2)" by (induction w1 arbitrary: n) auto lemma lookup_zeroes[simp]: "lookup i (replicate n (0::'a::len word)) = False" by (induction n arbitrary: i) auto lemma lookup_out_of_bound: fixes uv :: "'a::len word list" assumes "\ i < LENGTH('a::len) * length uv" shows "\ lookup i uv" using assms by (induction uv arbitrary: i) auto subsubsection \Empty\ definition empty :: "'a::len word list" where "empty = []" subsubsection \Set and Reset Bit\ function single_bit :: "nat \ ('a::len) word list" where "single_bit n = ( if (n i = n" apply (induction n arbitrary: i rule: single_bit.induct) apply (subst single_bit.simps) - apply (auto simp: bin_nth_sc_gen) + apply (auto simp: bin_nth_sc_gen bit_simps) done primrec set_bit :: "nat \ 'a::len word list \ 'a::len word list" where "set_bit i [] = single_bit i" | "set_bit i (w#ws) = ( if i (lookup i ws \ i=j)" apply (induction ws arbitrary: i j) - apply (auto simp add: test_bit_eq_bit word_size Bit_Operations.bit_set_bit_iff) + apply (auto simp add: word_size Bit_Operations.bit_set_bit_iff) done primrec reset_bit :: "nat \ 'a::len word list \ 'a::len word list" where "reset_bit i [] = []" | "reset_bit i (w#ws) = ( if i (lookup i ws \ i\j)" apply (induction ws arbitrary: i j) - apply (auto simp: test_bit_eq_bit word_size bit_unset_bit_iff) + apply (auto simp: word_size bit_unset_bit_iff) done subsubsection \Binary Operations\ definition is_bin_op_impl :: "(bool\bool\bool) \ ('a::len word \ 'a::len word \ 'a::len word) \ bool" where "is_bin_op_impl f g \ - (\w v. \i f (test_bit w i) (test_bit v i))" + (\w v. \i f (bit w i) (bit v i))" definition "is_strict_bin_op_impl f g \ is_bin_op_impl f g \ f False False = False" fun binary :: "('a::len word \ 'a::len word \ 'a::len word) \ 'a::len word list \ 'a::len word list \ 'a::len word list" where "binary f [] [] = []" | "binary f [] (w#ws) = f 0 w # binary f [] ws" | "binary f (v#vs) [] = f v 0 # binary f vs []" | "binary f (v#vs) (w#ws) = f v w # binary f vs ws" lemma binary_lookup: assumes "is_strict_bin_op_impl f g" shows "lookup i (binary g ws vs) \ f (lookup i ws) (lookup i vs)" using assms apply (induction g ws vs arbitrary: i rule: binary.induct) apply (auto simp: is_strict_bin_op_impl_def is_bin_op_impl_def) done subsection \Abstraction to Sets of Naturals\ definition "\ uv \ {n. lookup n uv}" lemma memb_correct: "lookup i ws \ i\\ ws" by (auto simp: \_def) lemma empty_correct: "\ empty = {}" by (simp add: \_def empty_def) lemma single_bit_correct: "\ (single_bit n) = {n}" by (simp add: \_def) lemma insert_correct: "\ (set_bit i ws) = Set.insert i (\ ws)" by (auto simp add: \_def) lemma delete_correct: "\ (reset_bit i ws) = (\ ws) - {i}" by (auto simp add: \_def) lemma binary_correct: assumes "is_strict_bin_op_impl f g" shows "\ (binary g ws vs) = { i . f (i\\ ws) (i\\ vs) }" unfolding \_def by (auto simp add: binary_lookup[OF assms]) fun union :: "'a::len word list \ 'a::len word list \ 'a::len word list" where "union [] ws = ws" | "union vs [] = vs" | "union (v#vs) (w#ws) = (v OR w) # union vs ws" lemma union_lookup[simp]: fixes vs :: "'a::len word list" shows "lookup i (union vs ws) \ lookup i vs \ lookup i ws" apply (induction vs ws arbitrary: i rule: union.induct) apply (auto simp: word_ao_nth) done lemma union_correct: "\ (union ws vs) = \ ws \ \ vs" by (auto simp add: \_def) fun inter :: "'a::len word list \ 'a::len word list \ 'a::len word list" where "inter [] ws = []" | "inter vs [] = []" | "inter (v#vs) (w#ws) = (v AND w) # inter vs ws" lemma inter_lookup[simp]: fixes vs :: "'a::len word list" shows "lookup i (inter vs ws) \ lookup i vs \ lookup i ws" apply (induction vs ws arbitrary: i rule: inter.induct) apply (auto simp: word_ao_nth) done lemma inter_correct: "\ (inter ws vs) = \ ws \ \ vs" by (auto simp add: \_def) fun diff :: "'a::len word list \ 'a::len word list \ 'a::len word list" where "diff [] ws = []" | "diff vs [] = vs" | "diff (v#vs) (w#ws) = (v AND NOT w) # diff vs ws" lemma diff_lookup[simp]: fixes vs :: "'a::len word list" shows "lookup i (diff vs ws) \ lookup i vs - lookup i ws" apply (induction vs ws arbitrary: i rule: diff.induct) apply (auto simp: word_ops_nth_size word_size) done lemma diff_correct: "\ (diff ws vs) = \ ws - \ vs" by (auto simp add: \_def) fun zeroes :: "'a::len word list \ bool" where "zeroes [] \ True" | "zeroes (w#ws) \ w=0 \ zeroes ws" lemma zeroes_lookup: "zeroes ws \ (\i. \lookup i ws)" apply (induction ws) apply (auto simp: word_eq_iff) by (metis diff_add_inverse2 not_add_less2) lemma isEmpty_correct: "zeroes ws \ \ ws = {}" by (auto simp: zeroes_lookup \_def) fun equal :: "'a::len word list \ 'a::len word list \ bool" where "equal [] [] \ True" | "equal [] ws \ zeroes ws" | "equal vs [] \ zeroes vs" | "equal (v#vs) (w#ws) \ v=w \ equal vs ws" lemma equal_lookup: fixes vs ws :: "'a::len word list" shows "equal vs ws \ (\i. lookup i vs = lookup i ws)" proof (induction vs ws rule: equal.induct) fix v w and vs ws :: "'a::len word list" assume IH: "equal vs ws = (\i. lookup i vs = lookup i ws)" show "equal (v # vs) (w # ws) = (\i. lookup i (v # vs) = lookup i (w # ws))" proof (rule iffI, rule allI) fix i assume "equal (v#vs) (w#ws)" thus "lookup i (v # vs) = lookup i (w # ws)" by (auto simp: IH) next assume "\i. lookup i (v # vs) = lookup i (w # ws)" thus "equal (v # vs) (w # ws)" apply (auto simp: word_eq_iff IH) apply metis apply metis apply (drule_tac x="i + LENGTH('a)" in spec) apply auto [] apply (drule_tac x="i + LENGTH('a)" in spec) apply auto [] done qed qed (auto simp: zeroes_lookup) lemma equal_correct: "equal vs ws \ \ vs = \ ws" by (auto simp: \_def equal_lookup) fun subseteq :: "'a::len word list \ 'a::len word list \ bool" where "subseteq [] ws \ True" | "subseteq vs [] \ zeroes vs" | "subseteq (v#vs) (w#ws) \ (v AND NOT w = 0) \ subseteq vs ws" lemma subseteq_lookup: fixes vs ws :: "'a::len word list" shows "subseteq vs ws \ (\i. lookup i vs \ lookup i ws)" apply (induction vs ws rule: subseteq.induct) apply simp apply (auto simp: zeroes_lookup) [] apply (auto simp: word_ops_nth_size word_size word_eq_iff) by (metis diff_add_inverse2 not_add_less2) lemma subseteq_correct: "subseteq vs ws \ \ vs \ \ ws" by (auto simp: \_def subseteq_lookup) fun subset :: "'a::len word list \ 'a::len word list \ bool" where "subset [] ws \ \zeroes ws" | "subset vs [] \ False" | "subset (v#vs) (w#ws) \ (if v=w then subset vs ws else subseteq (v#vs) (w#ws))" lemma subset_lookup: fixes vs ws :: "'a::len word list" shows "subset vs ws \ ((\i. lookup i vs \ lookup i ws) \ (\i. \lookup i vs \ lookup i ws))" apply (induction vs ws rule: subset.induct) apply (simp add: zeroes_lookup) apply (simp add: zeroes_lookup) [] - apply (simp del: subseteq_correct add: subseteq_lookup) + apply (simp add: subseteq_lookup) apply safe apply simp_all apply (auto simp: word_ops_nth_size word_size word_eq_iff) done lemma subset_correct: "subset vs ws \ \ vs \ \ ws" by (auto simp: \_def subset_lookup) fun disjoint :: "'a::len word list \ 'a::len word list \ bool" where "disjoint [] ws \ True" | "disjoint vs [] \ True" | "disjoint (v#vs) (w#ws) \ (v AND w = 0) \ disjoint vs ws" lemma disjoint_lookup: fixes vs ws :: "'a::len word list" shows "disjoint vs ws \ (\i. \(lookup i vs \ lookup i ws))" apply (induction vs ws rule: disjoint.induct) apply simp apply simp apply (auto simp: word_ops_nth_size word_size word_eq_iff) by (metis diff_add_inverse2 not_add_less2) lemma disjoint_correct: "disjoint vs ws \ \ vs \ \ ws = {}" by (auto simp: \_def disjoint_lookup) subsection \Lifting to Uint\ type_synonym uint_vector = "uint list" lift_definition uv_\ :: "uint_vector \ nat set" is \ . lift_definition uv_lookup :: "nat \ uint_vector \ bool" is lookup . lift_definition uv_empty :: "uint_vector" is empty . lift_definition uv_single_bit :: "nat \ uint_vector" is single_bit . lift_definition uv_set_bit :: "nat \ uint_vector \ uint_vector" is set_bit . lift_definition uv_reset_bit :: "nat \ uint_vector \ uint_vector" is reset_bit . lift_definition uv_union :: "uint_vector \ uint_vector \ uint_vector" is union . lift_definition uv_inter :: "uint_vector \ uint_vector \ uint_vector" is inter . lift_definition uv_diff :: "uint_vector \ uint_vector \ uint_vector" is diff . lift_definition uv_zeroes :: "uint_vector \ bool" is zeroes . lift_definition uv_equal :: "uint_vector \ uint_vector \ bool" is equal . lift_definition uv_subseteq :: "uint_vector \ uint_vector \ bool" is subseteq . lift_definition uv_subset :: "uint_vector \ uint_vector \ bool" is subset . lift_definition uv_disjoint :: "uint_vector \ uint_vector \ bool" is disjoint . lemmas uv_memb_correct = memb_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_empty_correct = empty_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_single_bit_correct = single_bit_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_insert_correct = insert_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_delete_correct = delete_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_union_correct = union_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_inter_correct = inter_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_diff_correct = diff_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_isEmpty_correct = isEmpty_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_equal_correct = equal_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_subseteq_correct = subseteq_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_subset_correct = subset_correct[where 'a=dflt_size, Transfer.transferred] lemmas uv_disjoint_correct = disjoint_correct[where 'a=dflt_size, Transfer.transferred] lemmas [where 'a=dflt_size, Transfer.transferred, code] = lookup.simps empty_def single_bit.simps set_bit.simps reset_bit.simps union.simps inter.simps diff.simps zeroes.simps equal.simps subseteq.simps subset.simps disjoint.simps hide_const (open) \ lookup empty single_bit set_bit reset_bit union inter diff zeroes equal subseteq subset disjoint subsection \Autoref Setup\ definition uv_set_rel_def_internal: "uv_set_rel Rk \ if Rk=nat_rel then br uv_\ (\_. True) else {}" lemma uv_set_rel_def: "\nat_rel\uv_set_rel \ br uv_\ (\_. True)" unfolding uv_set_rel_def_internal relAPP_def by simp lemmas [autoref_rel_intf] = REL_INTFI[of "uv_set_rel" i_set] lemma uv_set_rel_sv[relator_props]: "single_valued (\nat_rel\uv_set_rel)" unfolding uv_set_rel_def by auto lemma uv_autoref[autoref_rules,param]: "(uv_lookup,(\)) \ nat_rel \ \nat_rel\uv_set_rel \ bool_rel" "(uv_empty,{}) \ \nat_rel\uv_set_rel" "(uv_set_bit,insert) \ nat_rel \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel" "(uv_reset_bit,op_set_delete) \ nat_rel \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel" "(uv_union,(\)) \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel" "(uv_inter,(\)) \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel" "(uv_diff,(-)) \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel" "(uv_zeroes,op_set_isEmpty) \ \nat_rel\uv_set_rel \ bool_rel" "(uv_equal,(=)) \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel \ bool_rel" "(uv_subseteq,(\)) \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel \ bool_rel" "(uv_subset,(\)) \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel \ bool_rel" "(uv_disjoint,op_set_disjoint) \ \nat_rel\uv_set_rel \ \nat_rel\uv_set_rel \ bool_rel" by (auto simp: uv_set_rel_def br_def simp: uv_memb_correct uv_empty_correct uv_insert_correct uv_delete_correct simp: uv_union_correct uv_inter_correct uv_diff_correct uv_isEmpty_correct simp: uv_equal_correct uv_subseteq_correct uv_subset_correct uv_disjoint_correct) export_code uv_lookup uv_empty uv_single_bit uv_set_bit uv_reset_bit uv_union uv_inter uv_diff uv_zeroes uv_equal uv_subseteq uv_subset uv_disjoint checking SML Scala Haskell? OCaml? end diff --git a/thys/Complx/ex/SumArr.thy b/thys/Complx/ex/SumArr.thy --- a/thys/Complx/ex/SumArr.thy +++ b/thys/Complx/ex/SumArr.thy @@ -1,460 +1,468 @@ (* * Copyright 2016, Data61, CSIRO * * This software may be distributed and modified according to the terms of * the BSD 2-Clause license. Note that NO WARRANTY is provided. * See "LICENSE_BSD2.txt" for details. * * @TAG(DATA61_BSD) *) section \Case-study\ theory SumArr imports "../OG_Syntax" Word_Lib.Word_32 begin type_synonym routine = nat type_synonym word32 = "32 word" type_synonym funcs = "string \ nat" datatype faults = Overflow | InvalidMem type_synonym 'a array = "'a list" text \Sumarr computes the combined sum of all the elements of multiple arrays. It does this by running a number of threads in parallel, each computing the sum of elements of one of the arrays, and then adding the result to a global variable gsum shared by all threads. \ record sumarr_state = \ \local variables of threads\ tarr :: "routine \ word32 array" tid :: "routine \ word32" ti :: "routine \ word32" tsum :: "routine \ word32" \ \global variables\ glock :: nat gsum :: word32 gdone :: word32 garr :: "(word32 array) array" \ \ghost variables\ ghost_lock :: "routine \ bool" definition NSUM :: word32 where "NSUM = 10" definition MAXSUM :: word32 where "MAXSUM = 1500" definition array_length :: "'a array \ word32" where "array_length arr \ of_nat (length arr)" definition array_nth :: "'a array \ word32 \'a" where "array_nth arr n \ arr ! unat n" definition array_in_bound :: "'a array \ word32 \ bool" where "array_in_bound arr idx \ unat idx < (length arr)" definition array_nat_sum :: "('a :: len) word array \ nat" where "array_nat_sum arr \ sum_list (map unat arr)" definition "local_sum arr \ of_nat (min (unat MAXSUM) (array_nat_sum arr))" definition "global_sum arr \ sum_list (map local_sum arr)" definition "tarr_inv s i \ length (tarr s i) = unat NSUM \ tarr s i = garr s ! i" abbreviation - "sumarr_inv_till_lock s i \ \gdone s !! i \ ((\ (ghost_lock s) (1 - i)) \ ((gdone s = 0 \ gsum s = 0) \ - (gdone s !! (1 - i) \ gsum s = local_sum (garr s !(1 - i)))))" + "sumarr_inv_till_lock s i \ \ bit (gdone s) i \ ((\ (ghost_lock s) (1 - i)) \ ((gdone s = 0 \ gsum s = 0) \ + (bit (gdone s) (1 - i) \ gsum s = local_sum (garr s !(1 - i)))))" abbreviation "lock_inv s \ (glock s = fromEnum (ghost_lock s 0) + fromEnum (ghost_lock s 1)) \ (\(ghost_lock s) 0 \ \(ghost_lock s) 1)" abbreviation "garr_inv s i \ (\a b. garr s = [a, b]) \ length (garr s ! (1-i)) = unat NSUM" abbreviation "sumarr_inv s i \ lock_inv s \ tarr_inv s i \ garr_inv s i \ tid s i = (of_nat i + 1)" definition lock :: "routine \ (sumarr_state, funcs, faults) ann_com" where "lock i \ \ \sumarr_inv i \ \tsum i = local_sum (\tarr i) \ \sumarr_inv_till_lock i\ AWAIT \glock = 0 THEN \glock:=1,, \ghost_lock:=\ghost_lock (i:= True) END" definition - "sumarr_in_lock1 s i \ \gdone s !! i \ ((gdone s = 0 \ gsum s = local_sum (tarr s i)) \ - (gdone s !! (1 - i) \ \ gdone s !! i \ gsum s = global_sum (garr s)))" + "sumarr_in_lock1 s i \ \bit (gdone s) i \ ((gdone s = 0 \ gsum s = local_sum (tarr s i)) \ + (bit (gdone s) (1 - i) \ \ bit (gdone s) i \ gsum s = global_sum (garr s)))" definition - "sumarr_in_lock2 s i \ (gdone s !! i \ \ gdone s !! (1 - i) \ gsum s = local_sum (tarr s i)) \ - (gdone s !! i \ gdone s !! (1 - i) \ gsum s = global_sum (garr s))" + "sumarr_in_lock2 s i \ (bit (gdone s) i \ \ bit (gdone s) (1 - i) \ gsum s = local_sum (tarr s i)) \ + (bit (gdone s) i \ bit (gdone s) (1 - i) \ gsum s = global_sum (garr s))" definition unlock :: "routine \ (sumarr_state, funcs, faults) ann_com" where "unlock i \ \ \sumarr_inv i \ \tsum i = local_sum (\tarr i) \ \glock = 1 \ - \ghost_lock i \ \gdone !! (unat (\tid i - 1)) \ \sumarr_in_lock2 i \ + \ghost_lock i \ bit \gdone (unat (\tid i - 1)) \ \sumarr_in_lock2 i \ \\glock := 0,, \ghost_lock:=\ghost_lock (i:= False)\" definition - "local_postcond s i \ (\ (ghost_lock s) (1 - i) \ gsum s = (if gdone s !! 0 \ gdone s !! 1 + "local_postcond s i \ (\ (ghost_lock s) (1 - i) \ gsum s = (if bit (gdone s) 0 \ bit (gdone s) 1 then global_sum (garr s) - else local_sum (garr s ! i))) \ gdone s !! i \ \ghost_lock s i" + else local_sum (garr s ! i))) \ bit (gdone s) i \ \ghost_lock s i" definition sumarr :: "routine \ (sumarr_state, funcs, faults) ann_com" where "sumarr i \ \\sumarr_inv i \ \sumarr_inv_till_lock i\ \tsum:=\tsum(i:=0) ;; \ \tsum i = 0 \ \sumarr_inv i \ \sumarr_inv_till_lock i\ \ti:=\ti(i:=0) ;; TRY \ \tsum i = 0 \ \sumarr_inv i \ \ti i = 0 \ \sumarr_inv_till_lock i\ WHILE \ti i < NSUM INV \ \sumarr_inv i \ \ti i \ NSUM \ \tsum i \ MAXSUM \ \tsum i = local_sum (take (unat (\ti i)) (\tarr i)) \ \sumarr_inv_till_lock i\ DO \ \sumarr_inv i \ \ti i < NSUM \ \tsum i \ MAXSUM \ \tsum i = local_sum (take (unat (\ti i)) (\tarr i)) \ \sumarr_inv_till_lock i\ (InvalidMem, \ array_in_bound (\tarr i) (\ti i) \) \ \ \sumarr_inv i \ \ti i < NSUM \ \tsum i \ MAXSUM \ \tsum i = local_sum (take (unat (\ti i)) (\tarr i)) \ \sumarr_inv_till_lock i\ \tsum:=\tsum(i:=\tsum i + array_nth (\tarr i) (\ti i));; \ \sumarr_inv i \ \ti i < NSUM \ local_sum (take (unat (\ti i)) (\tarr i)) \ MAXSUM \ (\tsum i < MAXSUM \ array_nth (\tarr i) (\ti i) < MAXSUM \ \tsum i = local_sum (take (Suc (unat (\ti i))) (\tarr i))) \ (array_nth (\tarr i) (\ti i) \ MAXSUM \ \tsum i \ MAXSUM\ local_sum (\tarr i) = MAXSUM) \ \sumarr_inv_till_lock i \ (InvalidMem, \ array_in_bound (\tarr i) (\ti i) \) \ \ \sumarr_inv i \ \ti i < NSUM \ (\tsum i < MAXSUM \ array_nth (\tarr i) (\ti i) < MAXSUM \ \tsum i = local_sum (take (Suc (unat (\ti i))) (\tarr i))) \ (array_nth (\tarr i) (\ti i) \ MAXSUM \ \tsum i \ MAXSUM \ local_sum (\tarr i) = MAXSUM) \ \sumarr_inv_till_lock i\ IF array_nth (\tarr i) (\ti i) \ MAXSUM \ \tsum i \ MAXSUM THEN \ \sumarr_inv i \ \ti i < NSUM \ local_sum (\tarr i) = MAXSUM \ \sumarr_inv_till_lock i\ \tsum:=\tsum(i:=MAXSUM);; \ \sumarr_inv i \ \ti i < NSUM \ \tsum i \ MAXSUM \ \tsum i = local_sum (\tarr i) \ \sumarr_inv_till_lock i \ THROW ELSE \ \sumarr_inv i \ \ti i < NSUM \ \tsum i \ MAXSUM \ \tsum i = local_sum (take (Suc (unat (\ti i))) (\tarr i)) \ \sumarr_inv_till_lock i\ SKIP FI;; \ \sumarr_inv i \ \ti i < NSUM \ \tsum i \ MAXSUM \ \tsum i = local_sum (take (Suc (unat (\ti i))) (\tarr i)) \ \sumarr_inv_till_lock i \ \ti:=\ti(i:=\ti i + 1) OD CATCH \ \sumarr_inv i \ \tsum i = local_sum (\tarr i) \ \sumarr_inv_till_lock i\ SKIP END;; \ \sumarr_inv i \ \tsum i = local_sum (\tarr i) \ \sumarr_inv_till_lock i\ SCALL (''lock'', i) 0;; \ \sumarr_inv i \ \tsum i = local_sum (\tarr i) \ \glock = 1 \ \ghost_lock i \ \sumarr_inv_till_lock i \ \gsum:=\gsum + \tsum i ;; \ \sumarr_inv i \ \tsum i = local_sum (\tarr i) \ \glock = 1 \ \ghost_lock i \ \sumarr_in_lock1 i \ \gdone:=(\gdone OR \tid i) ;; \ \sumarr_inv i \ \tsum i = local_sum (\tarr i) \ \glock = 1 \ - \ghost_lock i \ \gdone !! (unat (\tid i - 1)) \ \sumarr_in_lock2 i \ + \ghost_lock i \ bit \gdone (unat (\tid i - 1)) \ \sumarr_in_lock2 i \ SCALL (''unlock'', i) 0" definition precond where "precond s \ (glock s) = 0 \ (gsum s) = 0\ (gdone s) = 0 \ (\a b. garr s = [a, b]) \ (\xs\set (garr s). length xs = unat NSUM) \ (ghost_lock s) 0 = False \ (ghost_lock s) 1 = False" definition postcond where "postcond s \ (gsum s) = global_sum (garr s) \ - (\i < 2. (gdone s) !! i)" + (\i < 2. bit (gdone s) i)" definition "call_sumarr i \ \length (\garr ! i) = unat NSUM \ \lock_inv \ \garr_inv i \ \sumarr_inv_till_lock i\ CALLX (\s. s\tarr:=(tarr s)(i:=garr s ! i), tid:=(tid s)(i:=of_nat i+1), ti:=(ti s)(i:=undefined), tsum:=(tsum s)(i:=undefined)\) \\sumarr_inv i \ \sumarr_inv_till_lock i\ (''sumarr'', i) 0 (\s t. t\tarr:= (tarr t)(i:=(tarr s) i), tid:=(tid t)(i:=(tid s i)), ti:=(ti t)(i:=(ti s i)), tsum:=(tsum t)(i:=(tsum s i))\) (\_ _. Skip) \\local_postcond i\ \\local_postcond i\ \False\ \False\" definition "\ \ map_of (map (\i. ((''sumarr'', i), com (sumarr i))) [0..<2]) ++ map_of (map (\i. ((''lock'', i), com (lock i))) [0..<2]) ++ map_of (map (\i. ((''unlock'', i), com (unlock i))) [0..<2])" definition "\ \ map_of (map (\i. ((''sumarr'', i), [ann (sumarr i)])) [0..<2]) ++ map_of (map (\i. ((''lock'', i), [ann (lock i)])) [0..<2]) ++ map_of (map (\i. ((''unlock'', i), [ann (unlock i)])) [0..<2])" declare [[goals_limit = 10]] lemma [simp]: "local_sum [] = 0" by (simp add: local_sum_def array_nat_sum_def) lemma MAXSUM_le_plus: "x < MAXSUM \ MAXSUM \ MAXSUM + x" unfolding MAXSUM_def apply (rule word_le_plus[rotated], assumption) apply clarsimp done lemma local_sum_Suc: "\n < length arr; local_sum (take n arr) + arr ! n < MAXSUM; arr ! n < MAXSUM\ \ local_sum (take n arr) + arr ! n = local_sum (take (Suc n) arr)" apply (subst take_Suc_conv_app_nth) apply clarsimp apply (clarsimp simp: local_sum_def array_nat_sum_def ) apply (subst (asm) min_def, clarsimp split: if_splits) apply (clarsimp simp: MAXSUM_le_plus word_not_le[symmetric]) apply (subst min_absorb2) apply (subst of_nat_mono_maybe_le[where 'a=32]) apply (clarsimp simp: MAXSUM_def) apply (clarsimp simp: MAXSUM_def) apply unat_arith apply (clarsimp simp: MAXSUM_def) apply unat_arith apply clarsimp done lemma local_sum_MAXSUM: "k < length arr \ MAXSUM \ arr ! k \ local_sum arr = MAXSUM" apply (clarsimp simp: local_sum_def array_nat_sum_def) apply (rule word_unat.Rep_inverse') apply (rule min_absorb1[symmetric]) apply (subst (asm) word_le_nat_alt) apply (rule le_trans[rotated]) apply (rule elem_le_sum_list) apply simp apply clarsimp done lemma local_sum_MAXSUM': \local_sum arr = MAXSUM\ if \k < length arr\ \MAXSUM \ local_sum (take k arr) + arr ! k\ \local_sum (take k arr) \ MAXSUM\ \arr ! k \ MAXSUM\ proof - define vs u ws where \vs = take k arr\ \u = arr ! k\ \ws = drop (Suc k) arr\ with \k < length arr\ have *: \arr = vs @ u # ws\ and **: \take k arr = vs\ \arr ! k = u\ by (simp_all add: id_take_nth_drop) from that show ?thesis apply (simp add: **) apply (simp add: *) apply (simp add: local_sum_def array_nat_sum_def ac_simps) find_theorems \min _ (_ + _)\ apply (rule word_unat.Rep_inverse') apply (rule min_absorb1[symmetric]) apply (subst (asm) word_le_nat_alt) apply (subst (asm) unat_plus_simple[THEN iffD1]) apply (rule word_add_le_mono2[where i=0, simplified]) apply (clarsimp simp: MAXSUM_def) apply unat_arith apply simp_all apply (rule le_trans, assumption) apply (rule add_mono) apply simp_all apply (meson min.bounded_iff take_bit_nat_less_eq_self trans_le_add1) done qed lemma word_min_0[simp]: "min (x::'a::len word) 0 = 0" "min 0 (x::'a::len word) = 0" by (simp add:min_def)+ ML \fun TRY' tac i = TRY (tac i)\ lemma imp_disjL_context': "((P \ R) \ (Q \ R)) = ((P \ R) \ (\P \ Q \ R))" by auto lemma map_of_prod_1[simp]: "i < n \ map_of (map (\i. ((p, i), g i)) [0.. p \ q \ (m ++ map_of (map (\i. ((p, i), g i)) [0.. \ (''sumarr'',n) = Some (com (sumarr n))" "n < 2 \ \ (''sumarr'',n) = Some ([ann (sumarr n)])" "n < 2 \ \ (''lock'',n) = Some (com (lock n))" "n < 2 \ \ (''lock'',n) = Some ([ann (lock n)])" "n < 2 \ \ (''unlock'',n) = Some (com (unlock n))" "n < 2 \ \ (''unlock'',n) = Some ([ann (unlock n)])" "[ann (sumarr n)]!0 = ann (sumarr n)" "[ann (lock n)]!0 = ann (lock n)" "[ann (unlock n)]!0 = ann (unlock n)" by (simp add: \_def \_def)+ lemmas sumarr_proc_simp_unfolded = sumarr_proc_simp[unfolded sumarr_def unlock_def lock_def oghoare_simps] lemma oghoare_sumarr: -notes sumarr_proc_simp_unfolded[proc_simp add] -shows - "i < 2 \ - \, \ - |\\<^bsub>/F\<^esub> sumarr i \\local_postcond i\, \False\" + \\, \ |\\<^bsub>/F\<^esub> sumarr i \\local_postcond i\, \False\\ if \i < 2\ +proof - + from that have \i = 0 \ i = 1\ by auto + note sumarr_proc_simp_unfolded[proc_simp add] + show ?thesis + using that apply - unfolding sumarr_def unlock_def lock_def ann_call_def call_def block_def apply simp - apply oghoare (*23*) + apply oghoare (*24*) unfolding tarr_inv_def array_length_def array_nth_def array_in_bound_def sumarr_in_lock1_def sumarr_in_lock2_def apply (tactic "PARALLEL_ALLGOALS ((TRY' o SOLVED') (clarsimp_tac (@{context} addsimps @{thms local_postcond_def global_sum_def ex_in_conv[symmetric]}) THEN_ALL_NEW fast_force_tac (@{context} addSDs @{thms less_2_cases} addIs @{thms local_sum_Suc unat_mono} ) - ))") (*2*) + ))") (*4*) + using \i = 0 \ i = 1\ apply rule + apply (clarsimp simp add: bit_simps even_or_iff) + apply (clarsimp simp add: bit_simps even_or_iff) apply clarsimp apply (rule conjI) apply (fastforce intro!: local_sum_Suc unat_mono) apply (subst imp_disjL_context') apply (rule conjI) apply clarsimp apply (erule local_sum_MAXSUM[rotated]) apply unat_arith apply (clarsimp simp: not_le) apply (erule (1) local_sum_MAXSUM'[rotated] ; unat_arith) apply clarsimp - apply unat_arith + apply unat_arith + apply (fact that) done +qed lemma less_than_two_2[simp]: "i < 2 \ Suc 0 - i < 2" by arith lemma oghoare_call_sumarr: notes sumarr_proc_simp[proc_simp add] shows "i < 2 \ \, \ |\\<^bsub>/F\<^esub> call_sumarr i \\local_postcond i\, \False\" unfolding call_sumarr_def ann_call_def call_def block_def tarr_inv_def apply oghoare (*10*) apply (clarsimp; fail | ((simp only: pre.simps)?, rule oghoare_sumarr))+ apply (clarsimp simp: sumarr_def tarr_inv_def) apply (clarsimp simp: local_postcond_def; fail)+ done lemma less_than_two_inv[simp]: "i < 2 \ j < 2 \ i \ j \ Suc 0 - i = j" by simp -lemma inter_aux_call_sumarr[simplified]: -notes sumarr_proc_simp_unfolded[proc_simp add] com.simps[oghoare_simps add] -shows +lemma inter_aux_call_sumarr [simplified]: + notes sumarr_proc_simp_unfolded [proc_simp add] + com.simps [oghoare_simps add] + bit_simps [simp] + shows "i < 2 \ j < 2 \ i \ j \ interfree_aux \ \ F (com (call_sumarr i), (ann (call_sumarr i), \\local_postcond i\, \False\), com (call_sumarr j), ann (call_sumarr j))" unfolding call_sumarr_def ann_call_def call_def block_def tarr_inv_def sumarr_def lock_def unlock_def apply oghoare_interfree_aux (*650*) unfolding tarr_inv_def local_postcond_def sumarr_in_lock1_def sumarr_in_lock2_def by (tactic "PARALLEL_ALLGOALS ( TRY' (remove_single_Bound_mem @{context}) THEN' (TRY' o SOLVED') (clarsimp_tac @{context} THEN_ALL_NEW fast_force_tac (@{context} addSDs @{thms less_2_cases}) ))") (* 2 minutes *) lemma pre_call_sumarr: "i < 2 \ precond x \ x \ pre (ann (call_sumarr i))" unfolding precond_def call_sumarr_def ann_call_def by (fastforce dest: less_2_cases simp: array_length_def) lemma post_call_sumarr: "local_postcond x 0 \ local_postcond x 1 \ postcond x" unfolding postcond_def local_postcond_def by (fastforce dest: less_2_cases split: if_splits) lemma sumarr_correct: "\, \ |\\<^bsub>/F\<^esub> \\precond\ COBEGIN SCHEME [0 \ m < 2] call_sumarr m \\local_postcond m\,\False\ COEND \\postcond\, \False\" apply oghoare (* 5 subgoals *) apply (fastforce simp: pre_call_sumarr) apply (rule oghoare_call_sumarr, simp) apply (clarsimp simp: post_call_sumarr) apply (simp add: inter_aux_call_sumarr) apply clarsimp done end diff --git a/thys/IP_Addresses/NumberWang_IPv6.thy b/thys/IP_Addresses/NumberWang_IPv6.thy --- a/thys/IP_Addresses/NumberWang_IPv6.thy +++ b/thys/IP_Addresses/NumberWang_IPv6.thy @@ -1,230 +1,230 @@ theory NumberWang_IPv6 imports Word_Lib.Word_Lemmas Word_Lib.Word_Syntax Word_Lib.Reversed_Bit_Lists begin section\Helper Lemmas for Low-Level Operations on Machine Words\ text\Needed for IPv6 Syntax\ lemma length_drop_bl: "length (dropWhile Not (to_bl (of_bl bs))) \ length bs" proof - have length_takeWhile_Not_replicate_False: "length (takeWhile Not (replicate n False @ ls)) = n + length (takeWhile Not ls)" for n ls by(subst takeWhile_append2) simp+ show ?thesis by(simp add: word_rep_drop dropWhile_eq_drop length_takeWhile_Not_replicate_False) qed lemma bl_drop_leading_zeros: "(of_bl:: bool list \ 'a::len word) (dropWhile Not bs) = (of_bl:: bool list \ 'a::len word) bs" by(induction bs) simp_all lemma bl_length_drop_bound: assumes "length (dropWhile Not bs) \ n" shows "length (dropWhile Not (to_bl ((of_bl:: bool list \ 'a::len word) bs))) \ n" proof - have bl_length_drop_twice: "length (dropWhile Not (to_bl ((of_bl:: bool list \ 'a::len word) (dropWhile Not bs)))) = length (dropWhile Not (to_bl ((of_bl:: bool list \ 'a::len word) bs)))" by(simp add: bl_drop_leading_zeros) from length_drop_bl have *: "length (dropWhile Not (to_bl ((of_bl:: bool list \ 'a::len word) bs))) \ length (dropWhile Not bs)" apply(rule dual_order.trans) apply(subst bl_length_drop_twice) .. show ?thesis apply(rule order.trans, rule *) using assms by(simp) qed lemma length_drop_mask_outer: fixes ip::"'a::len word" shows "LENGTH('a) - n' = len \ length (dropWhile Not (to_bl (ip AND (mask n << n') >> n'))) \ len" apply(subst word_and_mask_shiftl) apply(subst shiftl_shiftr1) apply(simp; fail) apply(simp) apply(subst and_mask) apply(simp add: word_size) apply(simp add: length_drop_mask) done lemma length_drop_mask_inner: fixes ip::"'a::len word" shows "n \ LENGTH('a) - n' \ length (dropWhile Not (to_bl (ip AND (mask n << n') >> n'))) \ n" apply(subst word_and_mask_shiftl) apply(subst shiftl_shiftr3) apply(simp; fail) apply(simp) apply(simp add: word_size) apply(simp add: mask_twice) apply(simp add: length_drop_mask) done lemma mask128: "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF = (mask 128 :: 'a::len word)" by (simp add: mask_eq) (*-------------- things for ipv6 syntax round trip property two ------------------*) (*n small, m large*) lemma helper_masked_ucast_generic: fixes b::"16 word" assumes "n + 16 \ m" and "m < 128" shows "((ucast:: 16 word \ 128 word) b << n) && (mask 16 << m) = 0" proof - have "x < 2 ^ (m - n)" if mnh2: "x < 0x10000" for x::"128 word" proof - from assms(1) have mnh3: "16 \ m - n" by fastforce have power_2_16_nat: "(16::nat) \ n \ (65535::nat) < 2 ^ n" if a:"16 \ n"for n proof - have power2_rule: "a \ b \ (2::nat)^a \ 2 ^ b" for a b by fastforce show ?thesis apply(subgoal_tac "65536 \ 2 ^ n") apply(subst Nat.less_eq_Suc_le) apply(simp; fail) apply(subgoal_tac "(65536::nat) = 2^16") subgoal using power2_rule \16 \ n\ by presburger by(simp) qed have "65536 = unat (65536::128 word)" by auto moreover from mnh2 have "unat x < unat (65536::128 word)" by(rule Word.unat_mono) ultimately have x: "unat x < 65536" by simp with mnh3 have "unat x < 2 ^ (m - n)" using power_2_16_nat [of \m - n\] by simp with assms(2) show ?thesis by(subst word_less_nat_alt) simp qed hence mnhelper2: "(of_bl::bool list \ 128 word) (to_bl b) < 2 ^ (m - n)" apply(subgoal_tac "(of_bl::bool list \ 128 word) (to_bl b) < 2^(LENGTH(16))") apply(simp; fail) by(rule of_bl_length_less) simp+ have mnhelper3: "(of_bl::bool list \ 128 word) (to_bl b) * 2 ^ n < 2 ^ m" apply(rule div_lt_mult) apply(rule word_less_two_pow_divI) using assms by(simp_all add: mnhelper2 p2_gt_0) from assms show ?thesis apply(subst ucast_bl)+ apply(subst shiftl_of_bl) apply(subst of_bl_append) apply simp apply(subst word_and_mask_shiftl) apply(subst shiftr_div_2n_w) subgoal by(simp add: word_size; fail) apply(subst word_div_less) subgoal by(rule mnhelper3) apply simp done qed lemma unat_of_bl_128_16_less_helper: fixes b::"16 word" shows "unat ((of_bl::bool list \ 128 word) (to_bl b)) < 2^16" proof - from word_bl_Rep' have 1: "length (to_bl b) = 16" by simp have "unat ((of_bl::bool list \ 128 word) (to_bl b)) < 2^(length (to_bl b))" by(fact unat_of_bl_length) with 1 show ?thesis by auto qed lemma unat_of_bl_128_16_le_helper: "unat ((of_bl:: bool list \ 128 word) (to_bl (b::16 word))) \ 65535" proof - from unat_of_bl_128_16_less_helper[of b] have "unat ((of_bl:: bool list \ 128 word) (to_bl b)) < 65536" by simp from Suc_leI[OF this] show ?thesis by simp qed (*reverse*) lemma helper_masked_ucast_reverse_generic: fixes b::"16 word" assumes "m + 16 \ n" and "n \ 128 - 16" shows "((ucast:: 16 word \ 128 word) b << n) && (mask 16 << m) = 0" proof - have power_less_128_helper: "2 ^ n * unat ((of_bl::bool list \ 128 word) (to_bl b)) < 2 ^ LENGTH(128)" if n: "n \ 128 - 16" for n proof - have help_mult: "n \ l \ 2 ^ n * x < 2 ^ l \ x < 2 ^ (l - n)" for x::nat and l by (simp add: nat_mult_power_less_eq semiring_normalization_rules(7)) from n show ?thesis apply(subst help_mult) subgoal by (simp) apply(rule order_less_le_trans) apply(rule unat_of_bl_128_16_less_helper) apply(rule Power.power_increasing) apply(simp_all) done qed have *: "2 ^ m * (2 ^ (n - m) * unat ((of_bl::bool list \ 128 word) (to_bl b))) = 2 ^ n * unat ((of_bl::bool list \ 128 word) (to_bl b))" proof(cases "unat ((of_bl::bool list \ 128 word) (to_bl b)) = 0") case True thus ?thesis by simp next case False have help_mult: "x \ 0 \ b * (c * x) = a * (x::nat) \ b * c = a" for x a b c by simp from assms show ?thesis apply(subst help_mult[OF False]) apply(subst Power.monoid_mult_class.power_add[symmetric]) apply(simp) done qed from assms have "unat ((2 ^ n)::128 word) * unat ((of_bl::bool list \ 128 word) (to_bl b)) mod 2 ^ LENGTH(128) = 2 ^ m * (2 ^ (n - m) * unat ((of_bl::bool list \ 128 word) (to_bl b)) mod 2 ^ LENGTH(128))" apply(subst nat_mod_eq') subgoal apply(subst unat_power_lower) subgoal by(simp; fail) subgoal by (rule power_less_128_helper) simp done apply(subst nat_mod_eq') subgoal by(rule power_less_128_helper) simp apply(subst unat_power_lower) apply(simp; fail) apply(simp only: *) done hence ex_k: "\k. unat ((2 ^ n)::128 word) * unat ((of_bl::bool list \ 128 word) (to_bl b)) mod 2 ^ LENGTH(128) = 2 ^ m * k" by blast hence aligned: "is_aligned ((of_bl::bool list \ 128 word) (to_bl b) << n) m" unfolding is_aligned_iff_dvd_nat unfolding dvd_def unfolding shiftl_t2n unfolding Word.unat_word_ariths(2) by assumption from assms have of_bl_to_bl_shift_mask: "((of_bl::bool list \ 128 word) (to_bl b) << n) && mask (16 + m) = 0" using is_aligned_mask is_aligned_shiftl by force (*sledgehammer*) show ?thesis apply(subst ucast_bl)+ apply(subst word_and_mask_shiftl) apply(subst aligned_shiftr_mask_shiftl) subgoal by (fact aligned) subgoal by (fact of_bl_to_bl_shift_mask) done qed lemma helper_masked_ucast_equal_generic: fixes b::"16 word" assumes "n \ 128 - 16" shows "ucast (((ucast:: 16 word \ 128 word) b << n) && (mask 16 << n) >> n) = b" proof - have ucast_mask: "(ucast:: 16 word \ 128 word) b && mask 16 = ucast b" by transfer (simp flip: take_bit_eq_mask) from assms have "ucast (((ucast:: 16 word \ 128 word) b && mask (128 - n) && mask 16) && mask (128 - n)) = b" - by (auto simp add: nth_ucast word_size intro: word_eqI) + by (auto simp add: bit_simps word_size intro!: bit_word_eqI) thus ?thesis apply(subst word_and_mask_shiftl) apply(subst shiftl_shiftr3) apply(simp; fail) apply(simp) apply(subst shiftl_shiftr3) apply(simp_all add: word_size and.assoc) done qed end diff --git a/thys/LLL_Basis_Reduction/Missing_Lemmas.thy b/thys/LLL_Basis_Reduction/Missing_Lemmas.thy --- a/thys/LLL_Basis_Reduction/Missing_Lemmas.thy +++ b/thys/LLL_Basis_Reduction/Missing_Lemmas.thy @@ -1,832 +1,830 @@ (* Authors: Jose Divasón Sebastiaan Joosten René Thiemann Akihisa Yamada License: BSD *) section \Missing lemmas\ text \This theory contains many results that are important but not specific for our development. They could be moved to the stardard library and some other AFP entries.\ theory Missing_Lemmas imports Berlekamp_Zassenhaus.Sublist_Iteration (* for thm upt_append *) Berlekamp_Zassenhaus.Square_Free_Int_To_Square_Free_GFp (* for thm large_mod_0 *) Algebraic_Numbers.Resultant Jordan_Normal_Form.Conjugate Jordan_Normal_Form.Missing_VectorSpace Jordan_Normal_Form.VS_Connect Berlekamp_Zassenhaus.Finite_Field_Factorization_Record_Based (* for transfer rules for thm vec_of_list_Nil *) Berlekamp_Zassenhaus.Berlekamp_Hensel (* for unique_factorization_m_factor *) begin -no_notation test_bit (infixl "!!" 100) - hide_const(open) module.smult up_ring.monom up_ring.coeff (**** Could be merged to HOL/Rings.thy ****) class ordered_semiring_1 = Rings.ordered_semiring_0 + monoid_mult + zero_less_one begin subclass semiring_1.. lemma of_nat_ge_zero[intro!]: "of_nat n \ 0" using add_right_mono[of _ _ 1] by (induct n, auto) (* Following lemmas are moved from @{class ordered_idom}. *) lemma zero_le_power [simp]: "0 \ a \ 0 \ a ^ n" by (induct n) simp_all lemma power_mono: "a \ b \ 0 \ a \ a ^ n \ b ^ n" by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) lemma one_le_power [simp]: "1 \ a \ 1 \ a ^ n" using power_mono [of 1 a n] by simp lemma power_le_one: "0 \ a \ a \ 1 \ a ^ n \ 1" using power_mono [of a 1 n] by simp lemma power_gt1_lemma: assumes gt1: "1 < a" shows "1 < a * a ^ n" proof - from gt1 have "0 \ a" by (fact order_trans [OF zero_le_one less_imp_le]) from gt1 have "1 * 1 < a * 1" by simp also from gt1 have "\ \ a * a ^ n" by (simp only: mult_mono \0 \ a\ one_le_power order_less_imp_le zero_le_one order_refl) finally show ?thesis by simp qed lemma power_gt1: "1 < a \ 1 < a ^ Suc n" by (simp add: power_gt1_lemma) lemma one_less_power [simp]: "1 < a \ 0 < n \ 1 < a ^ n" by (cases n) (simp_all add: power_gt1_lemma) lemma power_decreasing: "n \ N \ 0 \ a \ a \ 1 \ a ^ N \ a ^ n" proof (induction N) case (Suc N) then have "a * a^N \ 1 * a^n" if "n \ N" using that by (intro mult_mono) auto then show ?case using Suc by (auto simp add: le_Suc_eq) qed (auto) lemma power_increasing: "n \ N \ 1 \ a \ a ^ n \ a ^ N" proof (induction N) case (Suc N) then have "1 * a^n \ a * a^N" if "n \ N" using that by (intro mult_mono) (auto simp add: order_trans[OF zero_le_one]) then show ?case using Suc by (auto simp add: le_Suc_eq) qed (auto) lemma power_Suc_le_self: "0 \ a \ a \ 1 \ a ^ Suc n \ a" using power_decreasing [of 1 "Suc n" a] by simp end lemma prod_list_nonneg: "(\ x. (x :: 'a :: ordered_semiring_1) \ set xs \ x \ 0) \ prod_list xs \ 0" by (induct xs, auto) subclass (in ordered_idom) ordered_semiring_1 by unfold_locales auto (**** End of lemmas that could be moved to HOL/Rings.thy ****) (* missing lemma on logarithms *) lemma log_prod: assumes "0 < a" "a \ 1" "\ x. x \ X \ 0 < f x" shows "log a (prod f X) = sum (log a o f) X" using assms(3) proof (induct X rule: infinite_finite_induct) case (insert x F) have "log a (prod f (insert x F)) = log a (f x * prod f F)" using insert by simp also have "\ = log a (f x) + log a (prod f F)" by (rule log_mult[OF assms(1-2) insert(4) prod_pos], insert insert, auto) finally show ?case using insert by auto qed auto (* TODO: Jordan_Normal_Form/Missing_Ring.ordered_idom should be redefined *) subclass (in ordered_idom) zero_less_one by (unfold_locales, auto) hide_fact Missing_Ring.zero_less_one (**** The following lemmas could be part of the standard library ****) instance real :: ordered_semiring_strict by (intro_classes, auto) instance real :: linordered_idom.. (*This is a generalisation of thm less_1_mult*) lemma less_1_mult': fixes a::"'a::linordered_semidom" shows "1 < a \ 1 \ b \ 1 < a * b" by (metis le_less less_1_mult mult.right_neutral) lemma upt_minus_eq_append: "i\j \ i\j-k \ [i.. [0.. A" and ff: "\a. a \ A \ f (f a) = a" shows "bij_betw f A A" by (intro bij_betwI[OF f f], simp_all add: ff) lemma range_subsetI: assumes "\x. f x = g (h x)" shows "range f \ range g" using assms by auto lemma Gcd_uminus: fixes A::"int set" assumes "finite A" shows "Gcd A = Gcd (uminus ` A)" using assms by (induct A, auto) lemma aux_abs_int: fixes c :: int assumes "c \ 0" shows "\x\ \ \x * c\" proof - have "abs x = abs x * 1" by simp also have "\ \ abs x * abs c" by (rule mult_left_mono, insert assms, auto) finally show ?thesis unfolding abs_mult by auto qed lemma mod_0_abs_less_imp_0: fixes a::int assumes a1: "[a = 0] (mod m)" and a2: "abs(a)0" using assms by auto thus ?thesis using assms unfolding cong_def using int_mod_pos_eq large_mod_0 zless_imp_add1_zle by (metis abs_of_nonneg le_less not_less zabs_less_one_iff zmod_trivial_iff) qed (* an intro version of sum_list_0 *) lemma sum_list_zero: assumes "set xs \ {0}" shows "sum_list xs = 0" using assms by (induct xs, auto) (* About @{const max} *) lemma max_idem [simp]: shows "max a a = a" by (simp add: max_def) lemma hom_max: assumes "a \ b \ f a \ f b" shows "f (max a b) = max (f a) (f b)" using assms by (auto simp: max_def) lemma le_max_self: fixes a b :: "'a :: preorder" assumes "a \ b \ b \ a" shows "a \ max a b" and "b \ max a b" using assms by (auto simp: max_def) lemma le_max: fixes a b :: "'a :: preorder" assumes "c \ a \ c \ b" and "a \ b \ b \ a" shows "c \ max a b" using assms(1) le_max_self[OF assms(2)] by (auto dest: order_trans) fun max_list where "max_list [] = (THE x. False)" (* more convenient than "undefined" *) | "max_list [x] = x" | "max_list (x # y # xs) = max x (max_list (y # xs))" declare max_list.simps(1) [simp del] declare max_list.simps(2-3)[code] lemma max_list_Cons: "max_list (x#xs) = (if xs = [] then x else max x (max_list xs))" by (cases xs, auto) lemma max_list_mem: "xs \ [] \ max_list xs \ set xs" by (induct xs, auto simp: max_list_Cons max_def) lemma mem_set_imp_le_max_list: fixes xs :: "'a :: preorder list" assumes "\a b. a \ set xs \ b \ set xs \ a \ b \ b \ a" and "a \ set xs" shows "a \ max_list xs" proof (insert assms, induct xs arbitrary:a) case Nil with assms show ?case by auto next case (Cons x xs) show ?case proof (cases "xs = []") case False have "x \ max_list xs \ max_list xs \ x" apply (rule Cons(2)) using max_list_mem[of xs] False by auto note 1 = le_max_self[OF this] from Cons have "a = x \ a \ set xs" by auto then show ?thesis proof (elim disjE) assume a: "a = x" show ?thesis by (unfold a max_list_Cons, auto simp: False intro!: 1) next assume "a \ set xs" then have "a \ max_list xs" by (intro Cons, auto) with 1 have "a \ max x (max_list xs)" by (auto dest: order_trans) then show ?thesis by (unfold max_list_Cons, auto simp: False) qed qed (insert Cons, auto) qed lemma le_max_list: fixes xs :: "'a :: preorder list" assumes ord: "\a b. a \ set xs \ b \ set xs \ a \ b \ b \ a" and ab: "a \ b" and b: "b \ set xs" shows "a \ max_list xs" proof- note ab also have "b \ max_list xs" by (rule mem_set_imp_le_max_list, fact ord, fact b) finally show ?thesis. qed lemma max_list_le: fixes xs :: "'a :: preorder list" assumes a: "\x. x \ set xs \ x \ a" and xs: "xs \ []" shows "max_list xs \ a" using max_list_mem[OF xs] a by auto lemma max_list_as_Greatest: assumes "\x y. x \ set xs \ y \ set xs \ x \ y \ y \ x" shows "max_list xs = (GREATEST a. a \ set xs)" proof (cases "xs = []") case True then show ?thesis by (unfold Greatest_def, auto simp: max_list.simps(1)) next case False from assms have 1: "x \ set xs \ x \ max_list xs" for x by (auto intro: le_max_list) have 2: "max_list xs \ set xs" by (fact max_list_mem[OF False]) have "\!x. x \ set xs \ (\y. y \ set xs \ y \ x)" (is "\!x. ?P x") proof (intro ex1I) from 1 2 show "?P (max_list xs)" by auto next fix x assume 3: "?P x" with 1 have "x \ max_list xs" by auto moreover from 2 3 have "max_list xs \ x" by auto ultimately show "x = max_list xs" by auto qed note 3 = theI_unique[OF this,symmetric] from 1 2 show ?thesis by (unfold Greatest_def Cons 3, auto) qed lemma hom_max_list_commute: assumes "xs \ []" and "\x y. x \ set xs \ y \ set xs \ h (max x y) = max (h x) (h y)" shows "h (max_list xs) = max_list (map h xs)" by (insert assms, induct xs, auto simp: max_list_Cons max_list_mem) (*Efficient rev [i.. nat \ nat list" ("(1[_>.._])") where rev_upt_0: "[0>..j] = []" | rev_upt_Suc: "[(Suc i)>..j] = (if i \ j then i # [i>..j] else [])" lemma rev_upt_rec: "[i>..j] = (if i>j then [i>..Suc j] @ [j] else [])" by (induct i, auto) definition rev_upt_aux :: "nat \ nat \ nat list \ nat list" where "rev_upt_aux i j js = [i>..j] @ js" lemma upt_aux_rec [code]: "rev_upt_aux i j js = (if j\i then js else rev_upt_aux i (Suc j) (j#js))" by (induct j, auto simp add: rev_upt_aux_def rev_upt_rec) lemma rev_upt_code[code]: "[i>..j] = rev_upt_aux i j []" by(simp add: rev_upt_aux_def) lemma upt_rev_upt: "rev [j>..i] = [i....i]" by (induct j, auto) lemma length_rev_upt [simp]: "length [i>..j] = i - j" by (induct i) (auto simp add: Suc_diff_le) lemma nth_rev_upt [simp]: "j + k < i \ [i>..j] ! k = i - 1 - k" proof - assume jk_i: "j + k < i" have "[i>..j] = rev [j....n]) ! i = f (m - 1 - i)" proof - have "(map f [m>..n]) ! i = f ([m>..n] ! i)" by (rule nth_map, auto simp add: i) also have "... = f (m - 1 - i)" proof (rule arg_cong[of _ _ f], rule nth_rev_upt) show "n + i < m" using i by linarith qed finally show ?thesis . qed lemma coeff_mult_monom: "coeff (p * monom a d) i = (if d \ i then a * coeff p (i - d) else 0)" using coeff_monom_mult[of a d p] by (simp add: ac_simps) (**** End of the lemmas which may be part of the standard library ****) (**** The following lemmas could be moved to Algebraic_Numbers/Resultant.thy ****) lemma vec_of_poly_0 [simp]: "vec_of_poly 0 = 0\<^sub>v 1" by (auto simp: vec_of_poly_def) lemma vec_index_vec_of_poly [simp]: "i \ degree p \ vec_of_poly p $ i = coeff p (degree p - i)" by (simp add: vec_of_poly_def Let_def) lemma poly_of_vec_vec: "poly_of_vec (vec n f) = Poly (rev (map f [0.. Suc) [0..) = Poly (rev (map (f \ Suc) [0.. = poly_of_vec (vec n (f \ Suc)) + monom (f 0) n" by (fold Suc, simp) also have "\ = poly_of_vec (vec (Suc n) f)" apply (unfold poly_of_vec_def Let_def dim_vec sum.lessThan_Suc) by (auto simp add: Suc_diff_Suc) finally show ?case.. qed lemma sum_list_map_dropWhile0: assumes f0: "f 0 = 0" shows "sum_list (map f (dropWhile ((=) 0) xs)) = sum_list (map f xs)" by (induct xs, auto simp add: f0) lemma coeffs_poly_of_vec: "coeffs (poly_of_vec v) = rev (dropWhile ((=) 0) (list_of_vec v))" proof- obtain n f where v: "v = vec n f" by transfer auto show ?thesis by (simp add: v poly_of_vec_vec) qed lemma poly_of_vec_vCons: "poly_of_vec (vCons a v) = monom a (dim_vec v) + poly_of_vec v" (is "?l = ?r") by (auto intro: poly_eqI simp: coeff_poly_of_vec vec_index_vCons) lemma poly_of_vec_as_Poly: "poly_of_vec v = Poly (rev (list_of_vec v))" by (induct v, auto simp:poly_of_vec_vCons Poly_snoc ac_simps) lemma poly_of_vec_add: assumes "dim_vec a = dim_vec b" shows "poly_of_vec (a + b) = poly_of_vec a + poly_of_vec b" using assms by (auto simp add: poly_eq_iff coeff_poly_of_vec) (*TODO: replace the one in Resultant.thy*) lemma degree_poly_of_vec_less: assumes "0 < dim_vec v" and "dim_vec v \ n" shows "degree (poly_of_vec v) < n" using degree_poly_of_vec_less assms by (auto dest: less_le_trans) lemma (in vec_module) poly_of_vec_finsum: assumes "f \ X \ carrier_vec n" shows "poly_of_vec (finsum V f X) = (\i\X. poly_of_vec (f i))" proof (cases "finite X") case False then show ?thesis by auto next case True show ?thesis proof (insert True assms, induct X rule: finite_induct) case IH: (insert a X) have [simp]: "f x \ carrier_vec n" if x: "x \ X" for x using x IH.prems unfolding Pi_def by auto have [simp]: "f a \ carrier_vec n" using IH.prems unfolding Pi_def by auto have [simp]: "dim_vec (finsum V f X) = n" by simp have [simp]: "dim_vec (f a) = n" by simp show ?case proof (cases "a \ X") case True then show ?thesis by (auto simp: insert_absorb IH) next case False then have "(finsum V f (insert a X)) = f a + (finsum V f X)" by (auto intro: finsum_insert IH) also have "poly_of_vec ... = poly_of_vec (f a) + poly_of_vec (finsum V f X)" by (rule poly_of_vec_add, simp) also have "... = (\i\insert a X. poly_of_vec (f i))" using IH False by (subst sum.insert, auto) finally show ?thesis . qed qed auto qed (*This function transforms a polynomial to a vector of dimension n*) definition "vec_of_poly_n p n = vec n (\i. if i < n - degree p - 1 then 0 else coeff p (n - i - 1))" (* TODO: make it abbreviation? *) lemma vec_of_poly_as: "vec_of_poly_n p (Suc (degree p)) = vec_of_poly p" by (induct p, auto simp: vec_of_poly_def vec_of_poly_n_def) lemma vec_of_poly_n_0 [simp]: "vec_of_poly_n p 0 = vNil" by (auto simp: vec_of_poly_n_def) lemma vec_dim_vec_of_poly_n [simp]: "dim_vec (vec_of_poly_n p n) = n" "vec_of_poly_n p n \ carrier_vec n" unfolding vec_of_poly_n_def by auto lemma dim_vec_of_poly [simp]: "dim_vec (vec_of_poly f) = degree f + 1" by (simp add: vec_of_poly_as[symmetric]) lemma vec_index_of_poly_n: assumes "i < n" shows "vec_of_poly_n p n $ i = (if i < n - Suc (degree p) then 0 else coeff p (n - i - 1))" using assms by (auto simp: vec_of_poly_n_def Let_def) lemma vec_of_poly_n_pCons[simp]: shows "vec_of_poly_n (pCons a p) (Suc n) = vec_of_poly_n p n @\<^sub>v vec_of_list [a]" (is "?l = ?r") proof (unfold vec_eq_iff, intro conjI allI impI) show "dim_vec ?l = dim_vec ?r" by auto show "i < dim_vec ?r \ ?l $ i = ?r $ i" for i by (cases "n - i", auto simp: coeff_pCons less_Suc_eq_le vec_index_of_poly_n) qed lemma vec_of_poly_pCons: shows "vec_of_poly (pCons a p) = (if p = 0 then vec_of_list [a] else vec_of_poly p @\<^sub>v vec_of_list [a])" by (cases "degree p", auto simp: vec_of_poly_as[symmetric]) lemma list_of_vec_of_poly [simp]: "list_of_vec (vec_of_poly p) = (if p = 0 then [0] else rev (coeffs p))" by (induct p, auto simp: vec_of_poly_pCons) lemma poly_of_vec_of_poly_n: assumes p: "degree p n" for i by (rule coeff_eq_0, insert i2 p, simp) ultimately show ?thesis using assms unfolding poly_eq_iff unfolding coeff_poly_of_vec by auto qed lemma vec_of_poly_n0[simp]: "vec_of_poly_n 0 n = 0\<^sub>v n" unfolding vec_of_poly_n_def by auto lemma vec_of_poly_n_add: "vec_of_poly_n (a + b) n = vec_of_poly_n a n + vec_of_poly_n b n" proof (induct n arbitrary: a b) case 0 then show ?case by auto next case (Suc n) then show ?case by (cases a, cases b, auto) qed lemma vec_of_poly_n_poly_of_vec: assumes n: "dim_vec g = n" shows "vec_of_poly_n (poly_of_vec g) n = g" proof (auto simp add: poly_of_vec_def vec_of_poly_n_def assms vec_eq_iff Let_def) have d: "degree (\ii degree (poly_of_vec g)" using n by linarith then show "g $ i = 0" using i1 i2 i3 by (metis (no_types, lifting) Suc_diff_Suc coeff_poly_of_vec diff_Suc_less diff_diff_cancel leD le_degree less_imp_le_nat n neq0_conv) next fix i assume "i < n" thus "coeff (\i\<^sub>v (vec_of_poly_n b n)) = smult a b" using assms by (auto simp add: poly_eq_iff coeff_poly_of_vec vec_of_poly_n_def coeff_eq_0) (*TODO: replace the one in Resultant.thy*) definition vec_of_poly_rev_shifted where "vec_of_poly_rev_shifted p n s j \ vec n (\i. if i \ j \ j \ s + i then coeff p (s + i - j) else 0)" lemma vec_of_poly_rev_shifted_dim[simp]: "dim_vec (vec_of_poly_rev_shifted p n s j) = n" unfolding vec_of_poly_rev_shifted_def by auto lemma col_sylvester_sub: (* TODO: from this directly derive col_sylvester *) assumes j: "j < m + n" shows "col (sylvester_mat_sub m n p q) j = vec_of_poly_rev_shifted p n m j @\<^sub>v vec_of_poly_rev_shifted q m n j" (is "?l = ?r") proof show "dim_vec ?l = dim_vec ?r" by simp fix i assume "i < dim_vec ?r" then have i: "i < m+n" by auto show "?l $ i = ?r $ i" unfolding vec_of_poly_rev_shifted_def apply (subst index_col) using i apply simp using j apply simp apply (subst sylvester_mat_sub_index) using i apply simp using j apply simp apply (cases "i < n") using i apply force using i apply (auto simp: not_less not_le intro!: coeff_eq_0) done qed lemma vec_of_poly_rev_shifted_scalar_prod: fixes p v defines "q \ poly_of_vec v" assumes m: "degree p \ m" and n: "dim_vec v = n" assumes j: "j < m+n" shows "vec_of_poly_rev_shifted p n m (n+m-Suc j) \ v = coeff (p * q) j" (is "?l = ?r") proof - have id1: "\ i. m + i - (n + m - Suc j) = i + Suc j - n" using j by auto let ?g = "\ i. if i \ n + m - Suc j \ n - Suc j \ i then coeff p (i + Suc j - n) * v $ i else 0" have "?thesis = ((\i = 0..i\j. coeff p i * (if j - i < n then v $ (n - Suc (j - i)) else 0)))" (is "_ = (?l = ?r)") unfolding vec_of_poly_rev_shifted_def coeff_mult m scalar_prod_def n q_def coeff_poly_of_vec by (subst sum.cong, insert id1, auto) also have "..." proof - have "?r = (\i\j. (if j - i < n then coeff p i * v $ (n - Suc (j - i)) else 0))" (is "_ = sum ?f _") by (rule sum.cong, auto) also have "sum ?f {..j} = sum ?f ({i. i \ j \ j - i < n} \ {i. i \ j \ \ j - i < n})" (is "_ = sum _ (?R1 \ ?R2)") by (rule sum.cong, auto) also have "\ = sum ?f ?R1 + sum ?f ?R2" by (subst sum.union_disjoint, auto) also have "sum ?f ?R2 = 0" by (rule sum.neutral, auto) also have "sum ?f ?R1 + 0 = sum (\ i. coeff p i * v $ (i + n - Suc j)) ?R1" (is "_ = sum ?F _") by (subst sum.cong, auto simp: ac_simps) also have "\ = sum ?F ((?R1 \ {..m}) \ (?R1 - {..m}))" (is "_ = sum _ (?R \ ?R')") by (rule sum.cong, auto) also have "\ = sum ?F ?R + sum ?F ?R'" by (subst sum.union_disjoint, auto) also have "sum ?F ?R' = 0" proof - { fix x assume "x > m" with m have "?F x = 0" by (subst coeff_eq_0, auto) } thus ?thesis by (subst sum.neutral, auto) qed finally have r: "?r = sum ?F ?R" by simp have "?l = sum ?g ({i. i < n \ i \ n + m - Suc j \ n - Suc j \ i} \ {i. i < n \ \ (i \ n + m - Suc j \ n - Suc j \ i)})" (is "_ = sum _ (?L1 \ ?L2)") by (rule sum.cong, auto) also have "\ = sum ?g ?L1 + sum ?g ?L2" by (subst sum.union_disjoint, auto) also have "sum ?g ?L2 = 0" by (rule sum.neutral, auto) also have "sum ?g ?L1 + 0 = sum (\ i. coeff p (i + Suc j - n) * v $ i) ?L1" (is "_ = sum ?G _") by (subst sum.cong, auto) also have "\ = sum ?G (?L1 \ {i. i + Suc j - n \ m} \ (?L1 - {i. i + Suc j - n \ m}))" (is "_ = sum _ (?L \ ?L')") by (subst sum.cong, auto) also have "\ = sum ?G ?L + sum ?G ?L'" by (subst sum.union_disjoint, auto) also have "sum ?G ?L' = 0" proof - { fix x assume "x + Suc j - n > m" with m have "?G x = 0" by (subst coeff_eq_0, auto) } thus ?thesis by (subst sum.neutral, auto) qed finally have l: "?l = sum ?G ?L" by simp let ?bij = "\ i. i + n - Suc j" { fix x assume x: "j < m + n" "Suc (x + j) - n \ m" "x < n" "n - Suc j \ x" define y where "y = x + Suc j - n" from x have "x + Suc j \ n" by auto with x have xy: "x = ?bij y" unfolding y_def by auto from x have y: "y \ ?R" unfolding y_def by auto have "x \ ?bij ` ?R" unfolding xy using y by blast } note tedious = this show ?thesis unfolding l r by (rule sum.reindex_cong[of ?bij], insert j, auto simp: inj_on_def tedious) qed finally show ?thesis by simp qed lemma sylvester_sub_poly: fixes p q :: "'a :: comm_semiring_0 poly" assumes m: "degree p \ m" assumes n: "degree q \ n" assumes v: "v \ carrier_vec (m+n)" shows "poly_of_vec ((sylvester_mat_sub m n p q)\<^sup>T *\<^sub>v v) = poly_of_vec (vec_first v n) * p + poly_of_vec (vec_last v m) * q" (is "?l = ?r") proof (rule poly_eqI) fix i let ?Tv = "(sylvester_mat_sub m n p q)\<^sup>T *\<^sub>v v" have dim: "dim_vec (vec_first v n) = n" "dim_vec (vec_last v m) = m" "dim_vec ?Tv = n + m" using v by auto have if_distrib: "\ x y z. (if x then y else (0 :: 'a)) * z = (if x then y * z else 0)" by auto show "coeff ?l i = coeff ?r i" proof (cases "i < m+n") case False hence i_mn: "i \ m+n" and i_n: "\x. x \ i \ x < n \ x < n" and i_m: "\x. x \ i \ x < m \ x < m" by auto have "coeff ?r i = (\ x < n. vec_first v n $ (n - Suc x) * coeff p (i - x)) + (\ x < m. vec_last v m $ (m - Suc x) * coeff q (i - x))" (is "_ = sum ?f _ + sum ?g _") unfolding coeff_add coeff_mult Let_def unfolding coeff_poly_of_vec dim if_distrib unfolding atMost_def apply(subst sum.inter_filter[symmetric],simp) apply(subst sum.inter_filter[symmetric],simp) unfolding mem_Collect_eq unfolding i_n i_m unfolding lessThan_def by simp also { fix x assume x: "x < n" have "coeff p (i-x) = 0" apply(rule coeff_eq_0) using i_mn x m by auto hence "?f x = 0" by auto } hence "sum ?f {..T *\<^sub>v v) $ (n + m - Suc i)" unfolding coeff_poly_of_vec dim sum.distrib[symmetric] by auto also have "... = coeff (p * poly_of_vec (vec_first v n) + q * poly_of_vec (vec_last v m)) i" apply(subst index_mult_mat_vec) using True apply simp apply(subst row_transpose) using True apply simp apply(subst col_sylvester_sub) using True apply simp apply(subst vec_first_last_append[of v n m,symmetric]) using v apply(simp add: add.commute) apply(subst scalar_prod_append) apply (rule carrier_vecI,simp)+ apply (subst vec_of_poly_rev_shifted_scalar_prod[OF m],simp) using True apply simp apply (subst add.commute[of n m]) apply (subst vec_of_poly_rev_shifted_scalar_prod[OF n]) apply simp using True apply simp by simp also have "... = (\x\i. (if x < n then vec_first v n $ (n - Suc x) else 0) * coeff p (i - x)) + (\x\i. (if x < m then vec_last v m $ (m - Suc x) else 0) * coeff q (i - x))" unfolding coeff_poly_of_vec[of "vec_first v n",unfolded dim_vec_first,symmetric] unfolding coeff_poly_of_vec[of "vec_last v m",unfolded dim_vec_last,symmetric] unfolding coeff_mult[symmetric] by (simp add: mult.commute) also have "... = coeff ?r i" unfolding coeff_add coeff_mult Let_def unfolding coeff_poly_of_vec dim.. finally show ?thesis. qed qed (**** End of the lemmas which could be moved to Algebraic_Numbers/Resultant.thy ****) (**** The following lemmas could be moved to Computational_Algebra/Polynomial.thy ****) lemma normalize_field [simp]: "normalize (a :: 'a :: {field, semiring_gcd}) = (if a = 0 then 0 else 1)" using unit_factor_normalize by fastforce lemma content_field [simp]: "content (p :: 'a :: {field,semiring_gcd} poly) = (if p = 0 then 0 else 1)" by (induct p, auto simp: content_def) lemma primitive_part_field [simp]: "primitive_part (p :: 'a :: {field,semiring_gcd} poly) = p" by (cases "p = 0", auto intro!: primitive_part_prim) lemma primitive_part_dvd: "primitive_part a dvd a" by (metis content_times_primitive_part dvd_def dvd_refl mult_smult_right) lemma degree_abs [simp]: "degree \p\ = degree p" by (auto simp: abs_poly_def) lemma degree_gcd1: assumes a_not0: "a \ 0" shows "degree (gcd a b) \ degree a" proof - let ?g = "gcd a b" have gcd_dvd_b: "?g dvd a" by simp from this obtain c where a_gc: "a = ?g * c" unfolding dvd_def by auto have g_not0: "?g \0" using a_not0 a_gc by auto have c0: "c \ 0" using a_not0 a_gc by auto have "degree ?g \ degree (?g * c)" by (rule degree_mult_right_le[OF c0]) also have "... = degree a" using a_gc by auto finally show ?thesis . qed lemma primitive_part_neg [simp]: fixes a::"'a :: {factorial_ring_gcd,factorial_semiring_multiplicative} poly" shows "primitive_part (-a) = - primitive_part a" proof - have "primitive_part (-a) = primitive_part (smult (-1) a)" by auto then show ?thesis unfolding primitive_part_smult by (simp add: is_unit_unit_factor) qed lemma content_uminus[simp]: fixes f::"int poly" shows "content (-f) = content f" proof - have "-f = - (smult 1 f)" by auto also have "... = smult (-1) f" using smult_minus_left by auto finally have "content (-f) = content (smult (-1) f)" by auto also have "... = normalize (- 1) * content f" unfolding content_smult .. finally show ?thesis by auto qed lemma pseudo_mod_monic: fixes f g :: "'a::{comm_ring_1,semiring_1_no_zero_divisors} poly" defines "r \ pseudo_mod f g" assumes monic_g: "monic g" shows "\q. f = g * q + r" "r = 0 \ degree r < degree g" proof - let ?cg = "coeff g (degree g)" let ?cge = "?cg ^ (Suc (degree f) - degree g)" define a where "a = ?cge" from r_def[unfolded pseudo_mod_def] obtain q where pdm: "pseudo_divmod f g = (q, r)" by (cases "pseudo_divmod f g") auto have g: "g \ 0" using monic_g by auto from pseudo_divmod[OF g pdm] have id: "smult a f = g * q + r" and "r = 0 \ degree r < degree g" by (auto simp: a_def) have a1: "a = 1" unfolding a_def using monic_g by auto hence id2: "f = g * q + r" using id by auto show "r = 0 \ degree r < degree g" by fact from g have "a \ 0" by (auto simp: a_def) with id2 show "\q. f = g * q + r" by auto qed lemma monic_imp_div_mod_int_poly_degree: fixes p :: "'a::{comm_ring_1,semiring_1_no_zero_divisors} poly" assumes m: "monic u" shows "\q r. p = q*u + r \ (r = 0 \ degree r < degree u)" using pseudo_mod_monic[OF m] using mult.commute by metis corollary monic_imp_div_mod_int_poly_degree2: fixes p :: "'a::{comm_ring_1,semiring_1_no_zero_divisors} poly" assumes m: "monic u" and deg_u: "degree u > 0" shows "\q r. p = q*u + r \ (degree r < degree u)" proof - obtain q r where "p = q * u + r" and r: "(r = 0 \ degree r < degree u)" using monic_imp_div_mod_int_poly_degree[OF m, of p] by auto moreover have "degree r < degree u" using deg_u r by auto ultimately show ?thesis by auto qed (**** End of the lemmas that could be moved to Computational_Algebra/Polynomial.thy ****) (* To be categorized *) lemma (in zero_hom) hom_upper_triangular: "A \ carrier_mat n n \ upper_triangular A \ upper_triangular (map_mat hom A)" by (auto simp: upper_triangular_def) end diff --git a/thys/Native_Word/Bits_Integer.thy b/thys/Native_Word/Bits_Integer.thy --- a/thys/Native_Word/Bits_Integer.thy +++ b/thys/Native_Word/Bits_Integer.thy @@ -1,688 +1,684 @@ (* Title: Bits_Integer.thy Author: Andreas Lochbihler, ETH Zurich *) chapter \Bit operations for target language integers\ theory Bits_Integer imports More_Bits_Int Code_Symbolic_Bits_Int begin lemmas [transfer_rule] = identity_quotient fun_quotient Quotient_integer[folded integer.pcr_cr_eq] lemma undefined_transfer: assumes "Quotient R Abs Rep T" shows "T (Rep undefined) undefined" using assms unfolding Quotient_alt_def by blast bundle undefined_transfer = undefined_transfer[transfer_rule] section \More lemmas about @{typ integer}s\ context includes integer.lifting begin lemma bitval_integer_transfer [transfer_rule]: "(rel_fun (=) pcr_integer) of_bool of_bool" by(auto simp add: of_bool_def integer.pcr_cr_eq cr_integer_def) lemma integer_of_nat_less_0_conv [simp]: "\ integer_of_nat n < 0" by(transfer) simp lemma int_of_integer_pow: "int_of_integer (x ^ n) = int_of_integer x ^ n" by(induct n) simp_all lemma pow_integer_transfer [transfer_rule]: "(rel_fun pcr_integer (rel_fun (=) pcr_integer)) (^) (^)" by(auto 4 3 simp add: integer.pcr_cr_eq cr_integer_def int_of_integer_pow) lemma sub1_lt_0_iff [simp]: "Code_Numeral.sub n num.One < 0 \ False" by(cases n)(simp_all add: Code_Numeral.sub_code) lemma nat_of_integer_numeral [simp]: "nat_of_integer (numeral n) = numeral n" by transfer simp lemma nat_of_integer_sub1_conv_pred_numeral [simp]: "nat_of_integer (Code_Numeral.sub n num.One) = pred_numeral n" by(cases n)(simp_all add: Code_Numeral.sub_code) lemma nat_of_integer_1 [simp]: "nat_of_integer 1 = 1" by transfer simp lemma dup_1 [simp]: "Code_Numeral.dup 1 = 2" by transfer simp section \Bit operations on @{typ integer}\ text \Bit operations on @{typ integer} are the same as on @{typ int}\ lift_definition bin_rest_integer :: "integer \ integer" is \\k . k div 2\ . lift_definition bin_last_integer :: "integer \ bool" is odd . lift_definition Bit_integer :: "integer \ bool \ integer" is \\k b. of_bool b + 2 * k\ . end instance integer :: semiring_bit_syntax .. context includes lifting_syntax integer.lifting begin -lemma test_bit_integer_transfer [transfer_rule]: - \(pcr_integer ===> (=)) bit (!!)\ - unfolding test_bit_eq_bit by transfer_prover - lemma shiftl_integer_transfer [transfer_rule]: \(pcr_integer ===> (=) ===> pcr_integer) (\k n. push_bit n k) (<<)\ unfolding shiftl_eq_push_bit by transfer_prover lemma shiftr_integer_transfer [transfer_rule]: \(pcr_integer ===> (=) ===> pcr_integer) (\k n. drop_bit n k) (>>)\ unfolding shiftr_eq_drop_bit by transfer_prover end instantiation integer :: lsb begin context includes integer.lifting begin lift_definition lsb_integer :: "integer \ bool" is lsb . instance by (standard; transfer) (fact lsb_odd) end end instantiation integer :: msb begin context includes integer.lifting begin lift_definition msb_integer :: "integer \ bool" is msb . instance .. end end instantiation integer :: set_bit begin context includes integer.lifting begin lift_definition set_bit_integer :: "integer \ nat \ bool \ integer" is set_bit . instance apply standard apply transfer apply (simp add: bit_simps) done end end abbreviation (input) wf_set_bits_integer where "wf_set_bits_integer \ wf_set_bits_int" section \Target language implementations\ text \ Unfortunately, this is not straightforward, because these API functions have different signatures and preconditions on the parameters: \begin{description} \item[Standard ML] Shifts in IntInf are given as word, but not IntInf. \item[Haskell] In the Data.Bits.Bits type class, shifts and bit indices are given as Int rather than Integer. \end{description} Additional constants take only parameters of type @{typ integer} rather than @{typ nat} and check the preconditions as far as possible (e.g., being non-negative) in a portable way. Manual implementations inside code\_printing perform the remaining range checks and convert these @{typ integer}s into the right type. For normalisation by evaluation, we derive custom code equations, because NBE does not know these code\_printing serialisations and would otherwise loop. \ code_identifier code_module Bits_Integer \ (SML) Bits_Int and (OCaml) Bits_Int and (Haskell) Bits_Int and (Scala) Bits_Int code_printing code_module Bits_Integer \ (SML) \structure Bits_Integer : sig val set_bit : IntInf.int -> IntInf.int -> bool -> IntInf.int val shiftl : IntInf.int -> IntInf.int -> IntInf.int val shiftr : IntInf.int -> IntInf.int -> IntInf.int val test_bit : IntInf.int -> IntInf.int -> bool end = struct val maxWord = IntInf.pow (2, Word.wordSize); fun set_bit x n b = if n < maxWord then if b then IntInf.orb (x, IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n))) else IntInf.andb (x, IntInf.notb (IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n)))) else raise (Fail ("Bit index too large: " ^ IntInf.toString n)); fun shiftl x n = if n < maxWord then IntInf.<< (x, Word.fromLargeInt (IntInf.toLarge n)) else raise (Fail ("Shift operand too large: " ^ IntInf.toString n)); fun shiftr x n = if n < maxWord then IntInf.~>> (x, Word.fromLargeInt (IntInf.toLarge n)) else raise (Fail ("Shift operand too large: " ^ IntInf.toString n)); fun test_bit x n = if n < maxWord then IntInf.andb (x, IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n))) <> 0 else raise (Fail ("Bit index too large: " ^ IntInf.toString n)); end; (*struct Bits_Integer*)\ code_reserved SML Bits_Integer code_printing code_module Bits_Integer \ (OCaml) \module Bits_Integer : sig val shiftl : Z.t -> Z.t -> Z.t val shiftr : Z.t -> Z.t -> Z.t val test_bit : Z.t -> Z.t -> bool end = struct (* We do not need an explicit range checks here, because Big_int.int_of_big_int raises Failure if the argument does not fit into an int. *) let shiftl x n = Z.shift_left x (Z.to_int n);; let shiftr x n = Z.shift_right x (Z.to_int n);; let test_bit x n = Z.testbit x (Z.to_int n);; end;; (*struct Bits_Integer*)\ code_reserved OCaml Bits_Integer code_printing code_module Data_Bits \ (Haskell) \ module Data_Bits where { import qualified Data.Bits; {- The ...Bounded functions assume that the Integer argument for the shift or bit index fits into an Int, is non-negative and (for types of fixed bit width) less than bitSize -} infixl 7 .&.; infixl 6 `xor`; infixl 5 .|.; (.&.) :: Data.Bits.Bits a => a -> a -> a; (.&.) = (Data.Bits..&.); xor :: Data.Bits.Bits a => a -> a -> a; xor = Data.Bits.xor; (.|.) :: Data.Bits.Bits a => a -> a -> a; (.|.) = (Data.Bits..|.); complement :: Data.Bits.Bits a => a -> a; complement = Data.Bits.complement; testBitUnbounded :: Data.Bits.Bits a => a -> Integer -> Bool; testBitUnbounded x b | b <= toInteger (Prelude.maxBound :: Int) = Data.Bits.testBit x (fromInteger b) | otherwise = error ("Bit index too large: " ++ show b) ; testBitBounded :: Data.Bits.Bits a => a -> Integer -> Bool; testBitBounded x b = Data.Bits.testBit x (fromInteger b); setBitUnbounded :: Data.Bits.Bits a => a -> Integer -> Bool -> a; setBitUnbounded x n b | n <= toInteger (Prelude.maxBound :: Int) = if b then Data.Bits.setBit x (fromInteger n) else Data.Bits.clearBit x (fromInteger n) | otherwise = error ("Bit index too large: " ++ show n) ; setBitBounded :: Data.Bits.Bits a => a -> Integer -> Bool -> a; setBitBounded x n True = Data.Bits.setBit x (fromInteger n); setBitBounded x n False = Data.Bits.clearBit x (fromInteger n); shiftlUnbounded :: Data.Bits.Bits a => a -> Integer -> a; shiftlUnbounded x n | n <= toInteger (Prelude.maxBound :: Int) = Data.Bits.shiftL x (fromInteger n) | otherwise = error ("Shift operand too large: " ++ show n) ; shiftlBounded :: Data.Bits.Bits a => a -> Integer -> a; shiftlBounded x n = Data.Bits.shiftL x (fromInteger n); shiftrUnbounded :: Data.Bits.Bits a => a -> Integer -> a; shiftrUnbounded x n | n <= toInteger (Prelude.maxBound :: Int) = Data.Bits.shiftR x (fromInteger n) | otherwise = error ("Shift operand too large: " ++ show n) ; shiftrBounded :: (Ord a, Data.Bits.Bits a) => a -> Integer -> a; shiftrBounded x n = Data.Bits.shiftR x (fromInteger n); }\ and \ \@{theory HOL.Quickcheck_Narrowing} maps @{typ integer} to Haskell's Prelude.Int type instead of Integer. For compatibility with the Haskell target, we nevertheless provide bounded and unbounded functions.\ (Haskell_Quickcheck) \ module Data_Bits where { import qualified Data.Bits; {- The functions assume that the Int argument for the shift or bit index is non-negative and (for types of fixed bit width) less than bitSize -} infixl 7 .&.; infixl 6 `xor`; infixl 5 .|.; (.&.) :: Data.Bits.Bits a => a -> a -> a; (.&.) = (Data.Bits..&.); xor :: Data.Bits.Bits a => a -> a -> a; xor = Data.Bits.xor; (.|.) :: Data.Bits.Bits a => a -> a -> a; (.|.) = (Data.Bits..|.); complement :: Data.Bits.Bits a => a -> a; complement = Data.Bits.complement; testBitUnbounded :: Data.Bits.Bits a => a -> Prelude.Int -> Bool; testBitUnbounded = Data.Bits.testBit; testBitBounded :: Data.Bits.Bits a => a -> Prelude.Int -> Bool; testBitBounded = Data.Bits.testBit; setBitUnbounded :: Data.Bits.Bits a => a -> Prelude.Int -> Bool -> a; setBitUnbounded x n True = Data.Bits.setBit x n; setBitUnbounded x n False = Data.Bits.clearBit x n; setBitBounded :: Data.Bits.Bits a => a -> Prelude.Int -> Bool -> a; setBitBounded x n True = Data.Bits.setBit x n; setBitBounded x n False = Data.Bits.clearBit x n; shiftlUnbounded :: Data.Bits.Bits a => a -> Prelude.Int -> a; shiftlUnbounded = Data.Bits.shiftL; shiftlBounded :: Data.Bits.Bits a => a -> Prelude.Int -> a; shiftlBounded = Data.Bits.shiftL; shiftrUnbounded :: Data.Bits.Bits a => a -> Prelude.Int -> a; shiftrUnbounded = Data.Bits.shiftR; shiftrBounded :: (Ord a, Data.Bits.Bits a) => a -> Prelude.Int -> a; shiftrBounded = Data.Bits.shiftR; }\ code_reserved Haskell Data_Bits code_printing code_module Bits_Integer \ (Scala) \object Bits_Integer { def setBit(x: BigInt, n: BigInt, b: Boolean) : BigInt = if (n.isValidInt) if (b) x.setBit(n.toInt) else x.clearBit(n.toInt) else sys.error("Bit index too large: " + n.toString) def shiftl(x: BigInt, n: BigInt) : BigInt = if (n.isValidInt) x << n.toInt else sys.error("Shift index too large: " + n.toString) def shiftr(x: BigInt, n: BigInt) : BigInt = if (n.isValidInt) x << n.toInt else sys.error("Shift index too large: " + n.toString) def testBit(x: BigInt, n: BigInt) : Boolean = if (n.isValidInt) x.testBit(n.toInt) else sys.error("Bit index too large: " + n.toString) } /* object Bits_Integer */\ code_printing constant "(AND) :: integer \ integer \ integer" \ (SML) "IntInf.andb ((_),/ (_))" and (OCaml) "Z.logand" and (Haskell) "((Data'_Bits..&.) :: Integer -> Integer -> Integer)" and (Haskell_Quickcheck) "((Data'_Bits..&.) :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and (Scala) infixl 3 "&" | constant "(OR) :: integer \ integer \ integer" \ (SML) "IntInf.orb ((_),/ (_))" and (OCaml) "Z.logor" and (Haskell) "((Data'_Bits..|.) :: Integer -> Integer -> Integer)" and (Haskell_Quickcheck) "((Data'_Bits..|.) :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and (Scala) infixl 1 "|" | constant "(XOR) :: integer \ integer \ integer" \ (SML) "IntInf.xorb ((_),/ (_))" and (OCaml) "Z.logxor" and (Haskell) "(Data'_Bits.xor :: Integer -> Integer -> Integer)" and (Haskell_Quickcheck) "(Data'_Bits.xor :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and (Scala) infixl 2 "^" | constant "NOT :: integer \ integer" \ (SML) "IntInf.notb" and (OCaml) "Z.lognot" and (Haskell) "(Data'_Bits.complement :: Integer -> Integer)" and (Haskell_Quickcheck) "(Data'_Bits.complement :: Prelude.Int -> Prelude.Int)" and (Scala) "_.unary'_~" code_printing constant bin_rest_integer \ (SML) "IntInf.div ((_), 2)" and (OCaml) "Z.shift'_right/ _/ 1" and (Haskell) "(Data'_Bits.shiftrUnbounded _ 1 :: Integer)" and (Haskell_Quickcheck) "(Data'_Bits.shiftrUnbounded _ 1 :: Prelude.Int)" and (Scala) "_ >> 1" context includes integer.lifting begin lemma bitNOT_integer_code [code]: fixes i :: integer shows "NOT i = - i - 1" by transfer(simp add: int_not_def) lemma bin_rest_integer_code [code nbe]: "bin_rest_integer i = i div 2" by transfer rule lemma bin_last_integer_code [code]: "bin_last_integer i \ i AND 1 \ 0" by transfer (rule bin_last_conv_AND) lemma bin_last_integer_nbe [code nbe]: "bin_last_integer i \ i mod 2 \ 0" by transfer(simp add: bin_last_def) lemma bitval_bin_last_integer [code_unfold]: "of_bool (bin_last_integer i) = i AND 1" by transfer(rule bitval_bin_last) end definition integer_test_bit :: "integer \ integer \ bool" where "integer_test_bit x n = (if n < 0 then undefined x n else bit x (nat_of_integer n))" declare [[code drop: \bit :: integer \ nat \ bool\]] lemma bit_integer_code [code]: "bit x n \ integer_test_bit x (integer_of_nat n)" by (simp add: integer_test_bit_def) lemma integer_test_bit_code [code]: "integer_test_bit x (Code_Numeral.Neg n) = undefined x (Code_Numeral.Neg n)" "integer_test_bit 0 0 = False" "integer_test_bit 0 (Code_Numeral.Pos n) = False" "integer_test_bit (Code_Numeral.Pos num.One) 0 = True" "integer_test_bit (Code_Numeral.Pos (num.Bit0 n)) 0 = False" "integer_test_bit (Code_Numeral.Pos (num.Bit1 n)) 0 = True" "integer_test_bit (Code_Numeral.Pos num.One) (Code_Numeral.Pos n') = False" "integer_test_bit (Code_Numeral.Pos (num.Bit0 n)) (Code_Numeral.Pos n') = integer_test_bit (Code_Numeral.Pos n) (Code_Numeral.sub n' num.One)" "integer_test_bit (Code_Numeral.Pos (num.Bit1 n)) (Code_Numeral.Pos n') = integer_test_bit (Code_Numeral.Pos n) (Code_Numeral.sub n' num.One)" "integer_test_bit (Code_Numeral.Neg num.One) 0 = True" "integer_test_bit (Code_Numeral.Neg (num.Bit0 n)) 0 = False" "integer_test_bit (Code_Numeral.Neg (num.Bit1 n)) 0 = True" "integer_test_bit (Code_Numeral.Neg num.One) (Code_Numeral.Pos n') = True" "integer_test_bit (Code_Numeral.Neg (num.Bit0 n)) (Code_Numeral.Pos n') = integer_test_bit (Code_Numeral.Neg n) (Code_Numeral.sub n' num.One)" "integer_test_bit (Code_Numeral.Neg (num.Bit1 n)) (Code_Numeral.Pos n') = integer_test_bit (Code_Numeral.Neg (n + num.One)) (Code_Numeral.sub n' num.One)" apply (simp_all add: integer_test_bit_def bit_integer_def) using bin_nth_numeral_simps bit_numeral_int_simps(6) by presburger code_printing constant integer_test_bit \ (SML) "Bits'_Integer.test'_bit" and (OCaml) "Bits'_Integer.test'_bit" and (Haskell) "(Data'_Bits.testBitUnbounded :: Integer -> Integer -> Bool)" and (Haskell_Quickcheck) "(Data'_Bits.testBitUnbounded :: Prelude.Int -> Prelude.Int -> Bool)" and (Scala) "Bits'_Integer.testBit" context includes integer.lifting begin lemma lsb_integer_code [code]: fixes x :: integer shows "lsb x = bit x 0" by transfer(simp add: lsb_int_def) definition integer_set_bit :: "integer \ integer \ bool \ integer" where [code del]: "integer_set_bit x n b = (if n < 0 then undefined x n b else set_bit x (nat_of_integer n) b)" lemma set_bit_integer_code [code]: "set_bit x i b = integer_set_bit x (integer_of_nat i) b" by(simp add: integer_set_bit_def) lemma set_bit_integer_conv_masks: fixes x :: integer shows "set_bit x i b = (if b then x OR (1 << i) else x AND NOT (1 << i))" by transfer (simp add: int_set_bit_False_conv_NAND int_set_bit_True_conv_OR shiftl_eq_push_bit) end code_printing constant integer_set_bit \ (SML) "Bits'_Integer.set'_bit" and (Haskell) "(Data'_Bits.setBitUnbounded :: Integer -> Integer -> Bool -> Integer)" and (Haskell_Quickcheck) "(Data'_Bits.setBitUnbounded :: Prelude.Int -> Prelude.Int -> Bool -> Prelude.Int)" and (Scala) "Bits'_Integer.setBit" text \ OCaml.Big\_int does not have a method for changing an individual bit, so we emulate that with masks. We prefer an Isabelle implementation, because this then takes care of the signs for AND and OR. \ lemma integer_set_bit_code [code]: "integer_set_bit x n b = (if n < 0 then undefined x n b else if b then x OR (push_bit (nat_of_integer n) 1) else x AND NOT (push_bit (nat_of_integer n) 1))" by (auto simp add: integer_set_bit_def not_less set_bit_eq set_bit_def unset_bit_def) definition integer_shiftl :: "integer \ integer \ integer" where [code del]: "integer_shiftl x n = (if n < 0 then undefined x n else push_bit (nat_of_integer n) x)" declare [[code drop: \push_bit :: nat \ integer \ integer\]] lemma shiftl_integer_code [code]: fixes x :: integer shows "push_bit n x = integer_shiftl x (integer_of_nat n)" by(auto simp add: integer_shiftl_def) context includes integer.lifting begin lemma shiftl_integer_conv_mult_pow2: fixes x :: integer shows "x << n = x * 2 ^ n" by (simp add: push_bit_eq_mult shiftl_eq_push_bit) lemma integer_shiftl_code [code]: "integer_shiftl x (Code_Numeral.Neg n) = undefined x (Code_Numeral.Neg n)" "integer_shiftl x 0 = x" "integer_shiftl x (Code_Numeral.Pos n) = integer_shiftl (Code_Numeral.dup x) (Code_Numeral.sub n num.One)" "integer_shiftl 0 (Code_Numeral.Pos n) = 0" apply (simp_all add: integer_shiftl_def numeral_eq_Suc) apply transfer apply (simp add: ac_simps) done end code_printing constant integer_shiftl \ (SML) "Bits'_Integer.shiftl" and (OCaml) "Bits'_Integer.shiftl" and (Haskell) "(Data'_Bits.shiftlUnbounded :: Integer -> Integer -> Integer)" and (Haskell_Quickcheck) "(Data'_Bits.shiftlUnbounded :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and (Scala) "Bits'_Integer.shiftl" definition integer_shiftr :: "integer \ integer \ integer" where [code del]: "integer_shiftr x n = (if n < 0 then undefined x n else drop_bit (nat_of_integer n) x)" declare [[code drop: \drop_bit :: nat \ integer \ integer\]] lemma shiftr_integer_conv_div_pow2: includes integer.lifting fixes x :: integer shows "x >> n = x div 2 ^ n" by (simp add: drop_bit_eq_div shiftr_eq_drop_bit) lemma shiftr_integer_code [code]: fixes x :: integer shows "drop_bit n x = integer_shiftr x (integer_of_nat n)" by(auto simp add: integer_shiftr_def) code_printing constant integer_shiftr \ (SML) "Bits'_Integer.shiftr" and (OCaml) "Bits'_Integer.shiftr" and (Haskell) "(Data'_Bits.shiftrUnbounded :: Integer -> Integer -> Integer)" and (Haskell_Quickcheck) "(Data'_Bits.shiftrUnbounded :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and (Scala) "Bits'_Integer.shiftr" lemma integer_shiftr_code [code]: includes integer.lifting shows "integer_shiftr x (Code_Numeral.Neg n) = undefined x (Code_Numeral.Neg n)" "integer_shiftr x 0 = x" "integer_shiftr 0 (Code_Numeral.Pos n) = 0" "integer_shiftr (Code_Numeral.Pos num.One) (Code_Numeral.Pos n) = 0" "integer_shiftr (Code_Numeral.Pos (num.Bit0 n')) (Code_Numeral.Pos n) = integer_shiftr (Code_Numeral.Pos n') (Code_Numeral.sub n num.One)" "integer_shiftr (Code_Numeral.Pos (num.Bit1 n')) (Code_Numeral.Pos n) = integer_shiftr (Code_Numeral.Pos n') (Code_Numeral.sub n num.One)" "integer_shiftr (Code_Numeral.Neg num.One) (Code_Numeral.Pos n) = -1" "integer_shiftr (Code_Numeral.Neg (num.Bit0 n')) (Code_Numeral.Pos n) = integer_shiftr (Code_Numeral.Neg n') (Code_Numeral.sub n num.One)" "integer_shiftr (Code_Numeral.Neg (num.Bit1 n')) (Code_Numeral.Pos n) = integer_shiftr (Code_Numeral.Neg (Num.inc n')) (Code_Numeral.sub n num.One)" apply (simp_all add: integer_shiftr_def numeral_eq_Suc drop_bit_Suc) apply transfer apply simp apply transfer apply simp apply transfer apply (simp add: add_One) done context includes integer.lifting begin lemma Bit_integer_code [code]: "Bit_integer i False = push_bit 1 i" "Bit_integer i True = (push_bit 1 i) + 1" by (transfer; simp add: shiftl_int_def)+ lemma msb_integer_code [code]: "msb (x :: integer) \ x < 0" by transfer(simp add: msb_int_def) end context includes integer.lifting natural.lifting begin lemma bitAND_integer_unfold [code]: "x AND y = (if x = 0 then 0 else if x = - 1 then y else Bit_integer (bin_rest_integer x AND bin_rest_integer y) (bin_last_integer x \ bin_last_integer y))" by transfer (auto simp add: algebra_simps and_int_rec [of _ \_ * 2\] and_int_rec [of \_ * 2\] and_int_rec [of \1 + _ * 2\] elim!: evenE oddE) lemma bitOR_integer_unfold [code]: "x OR y = (if x = 0 then y else if x = - 1 then - 1 else Bit_integer (bin_rest_integer x OR bin_rest_integer y) (bin_last_integer x \ bin_last_integer y))" by transfer (auto simp add: algebra_simps or_int_rec [of _ \_ * 2\] or_int_rec [of _ \1 + _ * 2\] or_int_rec [of \1 + _ * 2\] elim!: evenE oddE) lemma bitXOR_integer_unfold [code]: "x XOR y = (if x = 0 then y else if x = - 1 then NOT y else Bit_integer (bin_rest_integer x XOR bin_rest_integer y) (\ bin_last_integer x \ bin_last_integer y))" by transfer (auto simp add: algebra_simps xor_int_rec [of _ \_ * 2\] xor_int_rec [of \_ * 2\] xor_int_rec [of \1 + _ * 2\] elim!: evenE oddE) end section \Test code generator setup\ definition bit_integer_test :: "bool" where "bit_integer_test = (([ -1 AND 3, 1 AND -3, 3 AND 5, -3 AND (- 5) , -3 OR 1, 1 OR -3, 3 OR 5, -3 OR (- 5) , NOT 1, NOT (- 3) , -1 XOR 3, 1 XOR (- 3), 3 XOR 5, -5 XOR (- 3) , set_bit 5 4 True, set_bit (- 5) 2 True, set_bit 5 0 False, set_bit (- 5) 1 False , 1 << 2, -1 << 3 , 100 >> 3, -100 >> 3] :: integer list) = [ 3, 1, 1, -7 , -3, -3, 7, -1 , -2, 2 , -4, -4, 6, 6 , 21, -1, 4, -7 , 4, -8 , 12, -13] \ - [ (5 :: integer) !! 4, (5 :: integer) !! 2, (-5 :: integer) !! 4, (-5 :: integer) !! 2 + [ bit (5 :: integer) 4, bit (5 :: integer) 2, bit (-5 :: integer) 4, bit (-5 :: integer) 2 , lsb (5 :: integer), lsb (4 :: integer), lsb (-1 :: integer), lsb (-2 :: integer), msb (5 :: integer), msb (0 :: integer), msb (-1 :: integer), msb (-2 :: integer)] = [ False, True, True, False, True, False, True, False, False, False, True, True])" export_code bit_integer_test checking SML Haskell? Haskell_Quickcheck? OCaml? Scala notepad begin have bit_integer_test by eval have bit_integer_test by normalization have bit_integer_test by code_simp end ML_val \val true = @{code bit_integer_test}\ lemma "x AND y = x OR (y :: integer)" quickcheck[random, expect=counterexample] quickcheck[exhaustive, expect=counterexample] oops lemma "(x :: integer) AND x = x OR x" quickcheck[narrowing, expect=no_counterexample] oops lemma "(f :: integer \ unit) = g" quickcheck[narrowing, size=3, expect=no_counterexample] by(simp add: fun_eq_iff) hide_const bit_integer_test hide_fact bit_integer_test_def end diff --git a/thys/Native_Word/Code_Target_Word_Base.thy b/thys/Native_Word/Code_Target_Word_Base.thy --- a/thys/Native_Word/Code_Target_Word_Base.thy +++ b/thys/Native_Word/Code_Target_Word_Base.thy @@ -1,391 +1,394 @@ (* Title: Code_Target_Word_Base.thy Author: Andreas Lochbihler, ETH Zurich *) chapter \Common base for target language implementations of word types\ theory Code_Target_Word_Base imports "HOL-Library.Word" "Word_Lib.Signed_Division_Word" Bits_Integer begin text \More lemmas\ lemma div_half_nat: fixes x y :: nat assumes "y \ 0" shows "(x div y, x mod y) = (let q = 2 * (x div 2 div y); r = x - q * y in if y \ r then (q + 1, r - y) else (q, r))" proof - let ?q = "2 * (x div 2 div y)" have q: "?q = x div y - x div y mod 2" by(metis div_mult2_eq mult.commute minus_mod_eq_mult_div [symmetric]) let ?r = "x - ?q * y" have r: "?r = x mod y + x div y mod 2 * y" by(simp add: q diff_mult_distrib minus_mod_eq_div_mult [symmetric])(metis diff_diff_cancel mod_less_eq_dividend mod_mult2_eq add.commute mult.commute) show ?thesis proof(cases "y \ x - ?q * y") case True with assms q have "x div y mod 2 \ 0" unfolding r by (metis Nat.add_0_right diff_0_eq_0 diff_Suc_1 le_div_geq mod2_gr_0 mod_div_trivial mult_0 neq0_conv numeral_1_eq_Suc_0 numerals(1)) hence "x div y = ?q + 1" unfolding q by simp moreover hence "x mod y = ?r - y" by simp(metis minus_div_mult_eq_mod [symmetric] diff_commute diff_diff_left mult_Suc) ultimately show ?thesis using True by(simp add: Let_def) next case False hence "x div y mod 2 = 0" unfolding r by(simp add: not_le)(metis Nat.add_0_right assms div_less div_mult_self2 mod_div_trivial mult.commute) hence "x div y = ?q" unfolding q by simp moreover hence "x mod y = ?r" by (metis minus_div_mult_eq_mod [symmetric]) ultimately show ?thesis using False by(simp add: Let_def) qed qed lemma div_half_word: fixes x y :: "'a :: len word" assumes "y \ 0" shows "(x div y, x mod y) = (let q = (x >> 1) div y << 1; r = x - q * y in if y \ r then (q + 1, r - y) else (q, r))" proof - obtain n where n: "x = of_nat n" "n < 2 ^ LENGTH('a)" by (rule that [of \unat x\]) simp_all moreover obtain m where m: "y = of_nat m" "m < 2 ^ LENGTH('a)" by (rule that [of \unat y\]) simp_all ultimately have [simp]: \unat (of_nat n :: 'a word) = n\ \unat (of_nat m :: 'a word) = m\ by (transfer, simp add: take_bit_of_nat take_bit_nat_eq_self_iff)+ let ?q = "(x >> 1) div y << 1" let ?q' = "2 * (n div 2 div m)" have "n div 2 div m < 2 ^ LENGTH('a)" using n by (metis of_nat_inverse unat_lt2p uno_simps(2)) hence q: "?q = of_nat ?q'" using n m by (auto simp add: shiftr_word_eq drop_bit_eq_div shiftl_t2n word_arith_nat_div uno_simps take_bit_nat_eq_self) from assms have "m \ 0" using m by -(rule notI, simp) from n have "2 * (n div 2 div m) < 2 ^ LENGTH('a)" by(metis mult.commute div_mult2_eq minus_mod_eq_mult_div [symmetric] less_imp_diff_less of_nat_inverse unat_lt2p uno_simps(2)) moreover have "2 * (n div 2 div m) * m < 2 ^ LENGTH('a)" using n unfolding div_mult2_eq[symmetric] by(subst (2) mult.commute)(simp add: minus_mod_eq_div_mult [symmetric] diff_mult_distrib minus_mod_eq_mult_div [symmetric] div_mult2_eq) moreover have "2 * (n div 2 div m) * m \ n" by (simp flip: div_mult2_eq ac_simps) ultimately have r: "x - ?q * y = of_nat (n - ?q' * m)" and "y \ x - ?q * y \ of_nat (n - ?q' * m) - y = of_nat (n - ?q' * m - m)" using n m unfolding q apply (simp_all add: of_nat_diff) apply (subst of_nat_diff) apply (simp_all add: word_le_nat_alt take_bit_nat_eq_self unat_sub_if' unat_word_ariths) done then show ?thesis using n m div_half_nat [OF \m \ 0\, of n] unfolding q by (simp add: word_le_nat_alt word_div_def word_mod_def Let_def take_bit_nat_eq_self flip: zdiv_int zmod_int split del: if_split split: if_split_asm) qed -lemma word_test_bit_set_bits: "(BITS n. f n :: 'a :: len word) !! n \ n < LENGTH('a) \ f n" - by (simp add: test_bit_eq_bit bit_set_bits_word_iff) +lemma word_test_bit_set_bits: "bit (BITS n. f n :: 'a :: len word) n \ n < LENGTH('a) \ f n" + by (fact bit_set_bits_word_iff) -lemma word_of_int_conv_set_bits: "word_of_int i = (BITS n. i !! n)" - by (rule word_eqI) (auto simp add: word_test_bit_set_bits) +lemma word_of_int_conv_set_bits: "word_of_int i = (BITS n. bit i n)" + by (rule word_eqI) (auto simp add: word_test_bit_set_bits bit_simps) lemma word_and_mask_or_conv_and_mask: - "n !! index \ (n AND mask index) OR (1 << index) = n AND mask (index + 1)" + "bit n index \ (n AND mask index) OR (1 << index) = n AND mask (index + 1)" for n :: \'a::len word\ -by(rule word_eqI)(auto simp add: word_ao_nth word_size nth_shiftl simp del: shiftl_1) +by(rule word_eqI)(auto simp add: bit_simps) lemma uint_and_mask_or_full: fixes n :: "'a :: len word" - assumes "n !! (LENGTH('a) - 1)" + assumes "bit n (LENGTH('a) - 1)" and "mask1 = mask (LENGTH('a) - 1)" and "mask2 = 1 << LENGTH('a) - 1" shows "uint (n AND mask1) OR mask2 = uint n" proof - have "mask2 = uint (1 << LENGTH('a) - 1 :: 'a word)" using assms by (simp add: uint_shiftl word_size bintrunc_shiftl del: shiftl_1) hence "uint (n AND mask1) OR mask2 = uint (n AND mask1 OR (1 << LENGTH('a) - 1 :: 'a word))" by(simp add: uint_or) also have "\ = uint (n AND mask (LENGTH('a) - 1 + 1))" using assms by(simp only: word_and_mask_or_conv_and_mask) also have "\ = uint n" by simp finally show ?thesis . qed text \Division on @{typ "'a word"} is unsigned, but Scala and OCaml only have signed division and modulus.\ lemmas word_sdiv_def = sdiv_word_def lemmas word_smod_def = smod_word_def lemma [code]: "x sdiv y = (let x' = sint x; y' = sint y; negative = (x' < 0) \ (y' < 0); result = abs x' div abs y' in word_of_int (if negative then -result else result))" for x y :: \'a::len word\ by (simp add: sdiv_word_def signed_divide_int_def sgn_if Let_def not_less not_le) lemma [code]: "x smod y = (let x' = sint x; y' = sint y; negative = (x' < 0); result = abs x' mod abs y' in word_of_int (if negative then -result else result))" for x y :: \'a::len word\ proof - have *: \k mod l = k - k div l * l\ for k l :: int by (simp add: minus_div_mult_eq_mod) show ?thesis by (simp add: smod_word_def signed_modulo_int_def signed_divide_int_def * sgn_if Let_def) qed text \ This algorithm implements unsigned division in terms of signed division. Taken from Hacker's Delight. \ lemma divmod_via_sdivmod: fixes x y :: "'a :: len word" assumes "y \ 0" shows "(x div y, x mod y) = (if 1 << (LENGTH('a) - 1) \ y then if x < y then (0, x) else (1, x - y) else let q = ((x >> 1) sdiv y) << 1; r = x - q * y in if r \ y then (q + 1, r - y) else (q, r))" proof(cases "1 << (LENGTH('a) - 1) \ y") case True note y = this show ?thesis proof(cases "x < y") case True then have "x mod y = x" by transfer simp thus ?thesis using True y by(simp add: word_div_lt_eq_0) next case False obtain n where n: "y = of_nat n" "n < 2 ^ LENGTH('a)" by (rule that [of \unat y\]) simp_all have "unat x < 2 ^ LENGTH('a)" by(rule unat_lt2p) also have "\ = 2 * 2 ^ (LENGTH('a) - 1)" by(metis Suc_pred len_gt_0 power_Suc One_nat_def) also have "\ \ 2 * n" using y n by transfer (simp add: push_bit_of_1 take_bit_eq_mod) finally have div: "x div of_nat n = 1" using False n by (simp add: word_div_eq_1_iff take_bit_nat_eq_self) moreover have "x mod y = x - x div y * y" by (simp add: minus_div_mult_eq_mod) with div n have "x mod y = x - y" by simp ultimately show ?thesis using False y n by simp qed next case False note y = this obtain n where n: "x = of_nat n" "n < 2 ^ LENGTH('a)" by (rule that [of \unat x\]) simp_all hence "int n div 2 + 2 ^ (LENGTH('a) - Suc 0) < 2 ^ LENGTH('a)" by (cases \LENGTH('a)\) (auto dest: less_imp_of_nat_less [where ?'a = int]) with y n have "sint (x >> 1) = uint (x >> 1)" by (simp add: sint_uint sbintrunc_mod2p shiftr_div_2n take_bit_nat_eq_self) moreover have "uint y + 2 ^ (LENGTH('a) - Suc 0) < 2 ^ LENGTH('a)" using y by (cases "LENGTH('a)") (simp_all add: not_le word_2p_lem word_size) then have "sint y = uint y" by (simp add: sint_uint sbintrunc_mod2p) ultimately show ?thesis using y apply (subst div_half_word [OF assms]) apply (simp add: sdiv_word_def signed_divide_int_def flip: uint_div) done qed text \More implementations tailored towards target-language implementations\ context includes integer.lifting begin lift_definition word_of_integer :: "integer \ 'a :: len word" is word_of_int . lemma word_of_integer_code [code]: "word_of_integer n = word_of_int (int_of_integer n)" by(simp add: word_of_integer.rep_eq) end lemma word_of_int_code: "uint (word_of_int x :: 'a word) = x AND mask (LENGTH('a :: len))" by (simp add: take_bit_eq_mask) context fixes f :: "nat \ bool" begin definition set_bits_aux :: \'a word \ nat \ 'a :: len word\ where \set_bits_aux w n = push_bit n w OR take_bit n (set_bits f)\ +lemma bit_set_bit_aux [bit_simps]: + \bit (set_bits_aux w n) m \ m < LENGTH('a) \ + (if m < n then f m else bit w (m - n))\ for w :: \'a::len word\ + by (auto simp add: bit_simps set_bits_aux_def) + lemma set_bits_aux_conv: \set_bits_aux w n = (w << n) OR (set_bits f AND mask n)\ for w :: \'a::len word\ - by (rule bit_word_eqI) - (auto simp add: set_bits_aux_def shiftl_word_eq bit_and_iff bit_or_iff bit_push_bit_iff bit_take_bit_iff bit_mask_iff bit_set_bits_word_iff) + by (rule bit_word_eqI) (simp add: bit_simps) corollary set_bits_conv_set_bits_aux: \set_bits f = (set_bits_aux 0 (LENGTH('a)) :: 'a :: len word)\ by (simp add: set_bits_aux_conv) lemma set_bits_aux_0 [simp]: \set_bits_aux w 0 = w\ - by (simp add: set_bits_aux_conv) + by (simp add: set_bits_aux_conv) lemma set_bits_aux_Suc [simp]: \set_bits_aux w (Suc n) = set_bits_aux ((w << 1) OR (if f n then 1 else 0)) n\ - by (simp add: set_bits_aux_def shiftl_word_eq bit_eq_iff bit_or_iff bit_push_bit_iff bit_take_bit_iff bit_set_bits_word_iff) - (auto simp add: bit_exp_iff not_less bit_1_iff less_Suc_eq_le) + by (rule bit_word_eqI) (auto simp add: bit_simps not_less le_less_Suc_eq) lemma set_bits_aux_simps [code]: \set_bits_aux w 0 = w\ \set_bits_aux w (Suc n) = set_bits_aux ((w << 1) OR (if f n then 1 else 0)) n\ by simp_all end lemma word_of_int_via_signed: fixes mask assumes mask_def: "mask = Bit_Operations.mask (LENGTH('a))" and shift_def: "shift = 1 << LENGTH('a)" and index_def: "index = LENGTH('a) - 1" and overflow_def:"overflow = 1 << (LENGTH('a) - 1)" and least_def: "least = - overflow" shows "(word_of_int i :: 'a :: len word) = (let i' = i AND mask - in if i' !! index then + in if bit i' index then if i' - shift < least \ overflow \ i' - shift then arbitrary1 i' else word_of_int (i' - shift) else if i' < least \ overflow \ i' then arbitrary2 i' else word_of_int i')" proof - define i' where "i' = i AND mask" have "shift = mask + 1" unfolding assms by(simp add: bin_mask_p1_conv_shift) hence "i' < shift" by(simp add: mask_def i'_def int_and_le) show ?thesis - proof(cases "i' !! index") + proof(cases "bit i' index") case True then have unf: "i' = overflow OR i'" apply (simp add: assms i'_def shiftl_eq_push_bit push_bit_of_1 flip: take_bit_eq_mask) apply (rule bit_eqI) apply (auto simp add: bit_take_bit_iff bit_or_iff bit_exp_iff) done have "overflow \ i'" by(subst unf)(rule le_int_or, simp add: bin_sign_and assms i'_def) hence "i' - shift < least \ False" unfolding assms by(cases "LENGTH('a)")(simp_all add: not_less) moreover have "overflow \ i' - shift \ False" using \i' < shift\ unfolding assms by(cases "LENGTH('a)")(auto simp add: not_le elim: less_le_trans) moreover have "word_of_int (i' - shift) = (word_of_int i :: 'a word)" using \i' < shift\ by (simp add: i'_def shift_def mask_def shiftl_eq_push_bit push_bit_of_1 word_of_int_eq_iff flip: take_bit_eq_mask) ultimately show ?thesis using True by(simp add: Let_def i'_def) next case False hence "i' = i AND Bit_Operations.mask (LENGTH('a) - 1)" unfolding assms i'_def by(clarsimp simp add: i'_def bin_nth_ops intro!: bin_eqI)(cases "LENGTH('a)", auto simp add: less_Suc_eq) also have "\ \ Bit_Operations.mask (LENGTH('a) - 1)" by(rule int_and_le) simp also have "\ < overflow" unfolding overflow_def by(simp add: bin_mask_p1_conv_shift[symmetric]) also have "least \ 0" unfolding least_def overflow_def by simp have "0 \ i'" by (simp add: i'_def mask_def) hence "least \ i'" using \least \ 0\ by simp moreover have "word_of_int i' = (word_of_int i :: 'a word)" - by(rule word_eqI)(auto simp add: i'_def bin_nth_ops mask_def) + by (simp add: i'_def mask_def of_int_and_eq of_int_mask_eq) ultimately show ?thesis using False by(simp add: Let_def i'_def) qed qed text \Quickcheck conversion functions\ context includes state_combinator_syntax begin definition qc_random_cnv :: "(natural \ 'a::term_of) \ natural \ Random.seed \ ('a \ (unit \ Code_Evaluation.term)) \ Random.seed" where "qc_random_cnv a_of_natural i = Random.range (i + 1) \\ (\k. Pair ( let n = a_of_natural k in (n, \_. Code_Evaluation.term_of n)))" end definition qc_exhaustive_cnv :: "(natural \ 'a) \ ('a \ (bool \ term list) option) \ natural \ (bool \ term list) option" where "qc_exhaustive_cnv a_of_natural f d = Quickcheck_Exhaustive.exhaustive (%x. f (a_of_natural x)) d" definition qc_full_exhaustive_cnv :: "(natural \ ('a::term_of)) \ ('a \ (unit \ term) \ (bool \ term list) option) \ natural \ (bool \ term list) option" where "qc_full_exhaustive_cnv a_of_natural f d = Quickcheck_Exhaustive.full_exhaustive (%(x, xt). f (a_of_natural x, %_. Code_Evaluation.term_of (a_of_natural x))) d" declare [[quickcheck_narrowing_ghc_options = "-XTypeSynonymInstances"]] definition qc_narrowing_drawn_from :: "'a list \ integer \ _" where "qc_narrowing_drawn_from xs = foldr Quickcheck_Narrowing.sum (map Quickcheck_Narrowing.cons (butlast xs)) (Quickcheck_Narrowing.cons (last xs))" locale quickcheck_narrowing_samples = fixes a_of_integer :: "integer \ 'a \ 'a :: {partial_term_of, term_of}" and zero :: "'a" and tr :: "typerep" begin function narrowing_samples :: "integer \ 'a list" where "narrowing_samples i = (if i > 0 then let (a, a') = a_of_integer i in narrowing_samples (i - 1) @ [a, a'] else [zero])" by pat_completeness auto termination including integer.lifting proof(relation "measure nat_of_integer") fix i :: integer assume "0 < i" thus "(i - 1, i) \ measure nat_of_integer" by simp(transfer, simp) qed simp definition partial_term_of_sample :: "integer \ 'a" where "partial_term_of_sample i = (if i < 0 then undefined else if i = 0 then zero else if i mod 2 = 0 then snd (a_of_integer (i div 2)) else fst (a_of_integer (i div 2 + 1)))" lemma partial_term_of_code: "partial_term_of (ty :: 'a itself) (Quickcheck_Narrowing.Narrowing_variable p t) \ Code_Evaluation.Free (STR ''_'') tr" "partial_term_of (ty :: 'a itself) (Quickcheck_Narrowing.Narrowing_constructor i []) \ Code_Evaluation.term_of (partial_term_of_sample i)" by (rule partial_term_of_anything)+ end lemmas [code] = quickcheck_narrowing_samples.narrowing_samples.simps quickcheck_narrowing_samples.partial_term_of_sample_def text \ The separate code target \SML_word\ collects setups for the code generator that PolyML does not provide. \ setup \Code_Target.add_derived_target ("SML_word", [(Code_ML.target_SML, I)])\ code_identifier code_module Code_Target_Word_Base \ (SML) Word and (Haskell) Word and (OCaml) Word and (Scala) Word end diff --git a/thys/Native_Word/Native_Word_Test.thy b/thys/Native_Word/Native_Word_Test.thy --- a/thys/Native_Word/Native_Word_Test.thy +++ b/thys/Native_Word/Native_Word_Test.thy @@ -1,485 +1,485 @@ (* Title: Native_Word_Test.thy Author: Andreas Lochbihler, ETH Zurich *) chapter \Test cases\ theory Native_Word_Test imports Uint64 Uint32 Uint16 Uint8 Uint Native_Cast_Uint "HOL-Library.Code_Test" begin section \Tests for @{typ uint32}\ notation sshiftr_uint32 (infixl ">>>" 55) definition test_uint32 where "test_uint32 \ (([ 0x100000001, -1, -4294967291, 0xFFFFFFFF, 0x12345678 , 0x5A AND 0x36 , 0x5A OR 0x36 , 0x5A XOR 0x36 , NOT 0x5A , 5 + 6, -5 + 6, -6 + 5, -5 + (- 6), 0xFFFFFFFFF + 1 , 5 - 3, 3 - 5 , 5 * 3, -5 * 3, -5 * -4, 0x12345678 * 0x87654321 , 5 div 3, -5 div 3, -5 div -3, 5 div -3 , 5 mod 3, -5 mod 3, -5 mod -3, 5 mod -3 , set_bit 5 4 True, set_bit (- 5) 2 True, set_bit 5 0 False, set_bit (- 5) 1 False , set_bit 5 32 True, set_bit 5 32 False, set_bit (- 5) 32 True, set_bit (- 5) 32 False , 1 << 2, -1 << 3, 1 << 32, 1 << 0 , 100 >> 3, -100 >> 3, 100 >> 32, -100 >> 32 , 100 >>> 3, -100 >>> 3, 100 >>> 32, -100 >>> 32] :: uint32 list) = [ 1, 4294967295, 5, 4294967295, 305419896 , 18 , 126 , 108 , 4294967205 , 11, 1, 4294967295, 4294967285, 0 , 2, 4294967294 , 15, 4294967281, 20, 1891143032 , 1, 1431655763, 0, 0 , 2, 2, 4294967291, 5 , 21, 4294967295, 4, 4294967289 , 5, 5, 4294967291, 4294967291 , 4, 4294967288, 0, 1 , 12, 536870899, 0, 0 , 12, 4294967283, 0, 4294967295]) \ ([ (0x5 :: uint32) = 0x5, (0x5 :: uint32) = 0x6 , (0x5 :: uint32) < 0x5, (0x5 :: uint32) < 0x6, (-5 :: uint32) < 6, (6 :: uint32) < -5 , (0x5 :: uint32) \ 0x5, (0x5 :: uint32) \ 0x4, (-5 :: uint32) \ 6, (6 :: uint32) \ -5 , (0x7FFFFFFF :: uint32) < 0x80000000, (0xFFFFFFFF :: uint32) < 0, (0x80000000 :: uint32) < 0x7FFFFFFF - , (0x7FFFFFFF :: uint32) !! 0, (0x7FFFFFFF :: uint32) !! 31, (0x80000000 :: uint32) !! 31, (0x80000000 :: uint32) !! 32 + , bit (0x7FFFFFFF :: uint32) 0, bit (0x7FFFFFFF :: uint32) 31, bit (0x80000000 :: uint32) 31, bit (0x80000000 :: uint32) 32 ] = [ True, False , False, True, False, True , True, False, False, True , True, False, False , True, False, True, False ]) \ ([integer_of_uint32 0, integer_of_uint32 0x7FFFFFFF, integer_of_uint32 0x80000000, integer_of_uint32 0xAAAAAAAA] = [0, 0x7FFFFFFF, 0x80000000, 0xAAAAAAAA])" no_notation sshiftr_uint32 (infixl ">>>" 55) export_code test_uint32 checking SML Haskell? OCaml? Scala notepad begin have test_uint32 by eval have test_uint32 by code_simp have test_uint32 by normalization end definition test_uint32' :: uint32 where "test_uint32' = 0 + 10 - 14 * 3 div 6 mod 3 << 3 >> 2" ML \val 0wx12 = @{code test_uint32'}\ lemma "x AND y = x OR (y :: uint32)" quickcheck[random, expect=counterexample] quickcheck[exhaustive, expect=counterexample] oops lemma "(x :: uint32) AND x = x OR x" quickcheck[narrowing, expect=no_counterexample] by transfer simp lemma "(f :: uint32 \ unit) = g" quickcheck[narrowing, size=3, expect=no_counterexample] by(simp add: fun_eq_iff) section \Tests for @{typ uint16}\ notation sshiftr_uint16 (infixl ">>>" 55) definition test_uint16 where "test_uint16 \ (([ 0x10001, -1, -65535, 0xFFFF, 0x1234 , 0x5A AND 0x36 , 0x5A OR 0x36 , 0x5A XOR 0x36 , NOT 0x5A , 5 + 6, -5 + 6, -6 + 5, -5 + -6, 0xFFFF + 1 , 5 - 3, 3 - 5 , 5 * 3, -5 * 3, -5 * -4, 0x1234 * 0x8765 , 5 div 3, -5 div 3, -5 div -3, 5 div -3 , 5 mod 3, -5 mod 3, -5 mod -3, 5 mod -3 , set_bit 5 4 True, set_bit (- 5) 2 True, set_bit 5 0 False, set_bit (- 5) 1 False , set_bit 5 32 True, set_bit 5 32 False, set_bit (- 5) 32 True, set_bit (- 5) 32 False , 1 << 2, -1 << 3, 1 << 16, 1 << 0 , 100 >> 3, -100 >> 3, 100 >> 16, -100 >> 16 , 100 >>> 3, -100 >>> 3, 100 >>> 16, -100 >>> 16] :: uint16 list) = [ 1, 65535, 1, 65535, 4660 , 18 , 126 , 108 , 65445 , 11, 1, 65535, 65525, 0 , 2, 65534 , 15, 65521, 20, 39556 , 1, 21843, 0, 0 , 2, 2, 65531, 5 , 21, 65535, 4, 65529 , 5, 5, 65531, 65531 , 4, 65528, 0, 1 , 12, 8179, 0, 0 , 12, 65523, 0, 65535]) \ ([ (0x5 :: uint16) = 0x5, (0x5 :: uint16) = 0x6 , (0x5 :: uint16) < 0x5, (0x5 :: uint16) < 0x6, (-5 :: uint16) < 6, (6 :: uint16) < -5 , (0x5 :: uint16) \ 0x5, (0x5 :: uint16) \ 0x4, (-5 :: uint16) \ 6, (6 :: uint16) \ -5 , (0x7FFF :: uint16) < 0x8000, (0xFFFF :: uint16) < 0, (0x8000 :: uint16) < 0x7FFF - , (0x7FFF :: uint16) !! 0, (0x7FFF :: uint16) !! 15, (0x8000 :: uint16) !! 15, (0x8000 :: uint16) !! 16 + , bit (0x7FFF :: uint16) 0, bit (0x7FFF :: uint16) 15, bit (0x8000 :: uint16) 15, bit (0x8000 :: uint16) 16 ] = [ True, False , False, True, False, True , True, False, False, True , True, False, False , True, False, True, False ]) \ ([integer_of_uint16 0, integer_of_uint16 0x7FFF, integer_of_uint16 0x8000, integer_of_uint16 0xAAAA] = [0, 0x7FFF, 0x8000, 0xAAAA])" no_notation sshiftr_uint16 (infixl ">>>" 55) export_code test_uint16 checking Haskell? Scala export_code test_uint16 in SML_word notepad begin have test_uint16 by code_simp have test_uint16 by normalization end lemma "(x :: uint16) AND x = x OR x" quickcheck[narrowing, expect=no_counterexample] by transfer simp lemma "(f :: uint16 \ unit) = g" quickcheck[narrowing, size=3, expect=no_counterexample] by(simp add: fun_eq_iff) section \Tests for @{typ uint8}\ notation sshiftr_uint8 (infixl ">>>" 55) definition test_uint8 where "test_uint8 \ (([ 0x101, -1, -255, 0xFF, 0x12 , 0x5A AND 0x36 , 0x5A OR 0x36 , 0x5A XOR 0x36 , NOT 0x5A , 5 + 6, -5 + 6, -6 + 5, -5 + -6, 0xFF + 1 , 5 - 3, 3 - 5 , 5 * 3, -5 * 3, -5 * -4, 0x12 * 0x87 , 5 div 3, -5 div 3, -5 div -3, 5 div -3 , 5 mod 3, -5 mod 3, -5 mod -3, 5 mod -3 , set_bit 5 4 True, set_bit (- 5) 2 True, set_bit 5 0 False, set_bit (- 5) 1 False , set_bit 5 32 True, set_bit 5 32 False, set_bit (- 5) 32 True, set_bit (- 5) 32 False , 1 << 2, -1 << 3, 1 << 8, 1 << 0 , 100 >> 3, -100 >> 3, 100 >> 8, -100 >> 8 , 100 >>> 3, -100 >>> 3, 100 >>> 8, -100 >>> 8] :: uint8 list) = [ 1, 255, 1, 255, 18 , 18 , 126 , 108 , 165 , 11, 1, 255, 245, 0 , 2, 254 , 15, 241, 20, 126 , 1, 83, 0, 0 , 2, 2, 251, 5 , 21, 255, 4, 249 , 5, 5, 251, 251 , 4, 248, 0, 1 , 12, 19, 0, 0 , 12, 243, 0, 255]) \ ([ (0x5 :: uint8) = 0x5, (0x5 :: uint8) = 0x6 , (0x5 :: uint8) < 0x5, (0x5 :: uint8) < 0x6, (-5 :: uint8) < 6, (6 :: uint8) < -5 , (0x5 :: uint8) \ 0x5, (0x5 :: uint8) \ 0x4, (-5 :: uint8) \ 6, (6 :: uint8) \ -5 , (0x7F :: uint8) < 0x80, (0xFF :: uint8) < 0, (0x80 :: uint8) < 0x7F - , (0x7F :: uint8) !! 0, (0x7F :: uint8) !! 7, (0x80 :: uint8) !! 7, (0x80 :: uint8) !! 8 + , bit (0x7F :: uint8) 0, bit (0x7F :: uint8) 7, bit (0x80 :: uint8) 7, bit (0x80 :: uint8) 8 ] = [ True, False , False, True, False, True , True, False, False, True , True, False, False , True, False, True, False ]) \ ([integer_of_uint8 0, integer_of_uint8 0x7F, integer_of_uint8 0x80, integer_of_uint8 0xAA] = [0, 0x7F, 0x80, 0xAA])" no_notation sshiftr_uint8 (infixl ">>>" 55) export_code test_uint8 checking SML Haskell? Scala export_code test_uint8 in SML notepad begin have test_uint8 by eval have test_uint8 by code_simp have test_uint8 by normalization end ML_val \val true = @{code test_uint8}\ definition test_uint8' :: uint8 where "test_uint8' = 0 + 10 - 14 * 3 div 6 mod 3 << 3 >> 2" ML \val 0wx12 = @{code test_uint8'}\ lemma "x AND y = x OR (y :: uint8)" quickcheck[random, expect=counterexample] quickcheck[exhaustive, expect=counterexample] oops lemma "(x :: uint8) AND x = x OR x" quickcheck[narrowing, expect=no_counterexample] by transfer simp lemma "(f :: uint8 \ unit) = g" quickcheck[narrowing, size=3, expect=no_counterexample] by(simp add: fun_eq_iff) section \Tests for @{typ "uint"}\ notation sshiftr_uint (infixl ">>>" 55) definition "test_uint \ let test_list1 = (let HS = uint_of_int (2 ^ (dflt_size - 1)) in ([ HS + HS + 1, -1, -HS - HS + 5, HS + (HS - 1), 0x12 , 0x5A AND 0x36 , 0x5A OR 0x36 , 0x5A XOR 0x36 , NOT 0x5A , 5 + 6, -5 + 6, -6 + 5, -5 + -6, HS + (HS - 1) + 1 , 5 - 3, 3 - 5 , 5 * 3, -5 * 3, -5 * -4, 0x12345678 * 0x87654321] @ (if dflt_size > 4 then [ 5 div 3, -5 div 3, -5 div -3, 5 div -3 , 5 mod 3, -5 mod 3, -5 mod -3, 5 mod -3 , set_bit 5 4 True, set_bit (- 5) 2 True, set_bit 5 0 False, set_bit (- 5) 1 False , set_bit 5 dflt_size True, set_bit 5 dflt_size False, set_bit (- 5) dflt_size True, set_bit (- 5) dflt_size False , 1 << 2, -1 << 3, 1 << dflt_size, 1 << 0 , 31 >> 3, -1 >> 3, 31 >> dflt_size, -1 >> dflt_size , 15 >>> 2, -1 >>> 3, 15 >>> dflt_size, -1 >>> dflt_size] else []) :: uint list)); test_list2 = (let S = wivs_shift in ([ 1, -1, -S + 5, S - 1, 0x12 , 0x5A AND 0x36 , 0x5A OR 0x36 , 0x5A XOR 0x36 , NOT 0x5A , 5 + 6, -5 + 6, -6 + 5, -5 + -6, 0 , 5 - 3, 3 - 5 , 5 * 3, -5 * 3, -5 * -4, 0x12345678 * 0x87654321] @ (if dflt_size > 4 then [ 5 div 3, (S - 5) div 3, (S - 5) div (S - 3), 5 div (S - 3) , 5 mod 3, (S - 5) mod 3, (S - 5) mod (S - 3), 5 mod (S - 3) , set_bit 5 4 True, -1, set_bit 5 0 False, -7 , 5, 5, -5, -5 , 4, -8, 0, 1 , 3, (S >> 3) - 1, 0, 0 , 3, (S >> 1) + (S >> 1) - 1, 0, -1] else []) :: int list)); test_list_c1 = (let HS = uint_of_int ((2^(dflt_size - 1))) in [ (0x5 :: uint) = 0x5, (0x5 :: uint) = 0x6 , (0x5 :: uint) < 0x5, (0x5 :: uint) < 0x6, (-5 :: uint) < 6, (6 :: uint) < -5 , (0x5 :: uint) \ 0x5, (0x5 :: uint) \ 0x4, (-5 :: uint) \ 6, (6 :: uint) \ -5 , (HS - 1) < HS, (HS + HS - 1) < 0, HS < HS - 1 - , (HS - 1) !! 0, (HS - 1 :: uint) !! (dflt_size - 1), (HS :: uint) !! (dflt_size - 1), (HS :: uint) !! dflt_size + , bit (HS - 1) 0, bit (HS - 1 :: uint) (dflt_size - 1), bit (HS :: uint) (dflt_size - 1), bit (HS :: uint) dflt_size ]); test_list_c2 = [ True, False , False, dflt_size\2, dflt_size=3, dflt_size\3 , True, False, dflt_size=3, dflt_size\3 , True, False, False , dflt_size\1, False, True, False ] in test_list1 = map uint_of_int test_list2 \ test_list_c1 = test_list_c2" no_notation sshiftr_uint (infixl ">>>" 55) export_code test_uint checking SML Haskell? OCaml? Scala lemma "test_uint" quickcheck[exhaustive, expect=no_counterexample] oops \ \FIXME: prove correctness of test by reflective means (not yet supported)\ lemma "x AND y = x OR (y :: uint)" quickcheck[random, expect=counterexample] quickcheck[exhaustive, expect=counterexample] oops lemma "(x :: uint) AND x = x OR x" quickcheck[narrowing, expect=no_counterexample] by transfer simp lemma "(f :: uint \ unit) = g" quickcheck[narrowing, size=3, expect=no_counterexample] by(simp add: fun_eq_iff) section \ Tests for @{typ uint64} \ notation sshiftr_uint64 (infixl ">>>" 55) definition test_uint64 where "test_uint64 \ (([ 0x10000000000000001, -1, -9223372036854775808, 0xFFFFFFFFFFFFFFFF, 0x1234567890ABCDEF , 0x5A AND 0x36 , 0x5A OR 0x36 , 0x5A XOR 0x36 , NOT 0x5A , 5 + 6, -5 + 6, -6 + 5, -5 + (- 6), 0xFFFFFFFFFFFFFFFFFF + 1 , 5 - 3, 3 - 5 , 5 * 3, -5 * 3, -5 * -4, 0x1234567890ABCDEF * 0xFEDCBA0987654321 , 5 div 3, -5 div 3, -5 div -3, 5 div -3 , 5 mod 3, -5 mod 3, -5 mod -3, 5 mod -3 , set_bit 5 4 True, set_bit (- 5) 2 True, set_bit 5 0 False, set_bit (- 5) 1 False , set_bit 5 64 True, set_bit 5 64 False, set_bit (- 5) 64 True, set_bit (- 5) 64 False , 1 << 2, -1 << 3, 1 << 64, 1 << 0 , 100 >> 3, -100 >> 3, 100 >> 64, -100 >> 64 , 100 >>> 3, -100 >>> 3, 100 >>> 64, -100 >>> 64] :: uint64 list) = [ 1, 18446744073709551615, 9223372036854775808, 18446744073709551615, 1311768467294899695 , 18 , 126 , 108 , 18446744073709551525 , 11, 1, 18446744073709551615, 18446744073709551605, 0 , 2, 18446744073709551614 , 15, 18446744073709551601, 20, 14000077364136384719 , 1, 6148914691236517203, 0, 0 , 2, 2, 18446744073709551611, 5 , 21, 18446744073709551615, 4, 18446744073709551609 , 5, 5, 18446744073709551611, 18446744073709551611 , 4, 18446744073709551608, 0, 1 , 12, 2305843009213693939, 0, 0 , 12, 18446744073709551603, 0, 18446744073709551615]) \ ([ (0x5 :: uint64) = 0x5, (0x5 :: uint64) = 0x6 , (0x5 :: uint64) < 0x5, (0x5 :: uint64) < 0x6, (-5 :: uint64) < 6, (6 :: uint64) < -5 , (0x5 :: uint64) \ 0x5, (0x5 :: uint64) \ 0x4, (-5 :: uint64) \ 6, (6 :: uint64) \ -5 , (0x7FFFFFFFFFFFFFFF :: uint64) < 0x8000000000000000, (0xFFFFFFFFFFFFFFFF :: uint64) < 0, (0x8000000000000000 :: uint64) < 0x7FFFFFFFFFFFFFFF - , (0x7FFFFFFFFFFFFFFF :: uint64) !! 0, (0x7FFFFFFFFFFFFFFF :: uint64) !! 63, (0x8000000000000000 :: uint64) !! 63, (0x8000000000000000 :: uint64) !! 64 + , bit (0x7FFFFFFFFFFFFFFF :: uint64) 0, bit (0x7FFFFFFFFFFFFFFF :: uint64) 63, bit (0x8000000000000000 :: uint64) 63, bit (0x8000000000000000 :: uint64) 64 ] = [ True, False , False, True, False, True , True, False, False, True , True, False, False , True, False, True, False ]) \ ([integer_of_uint64 0, integer_of_uint64 0x7FFFFFFFFFFFFFFF, integer_of_uint64 0x8000000000000000, integer_of_uint64 0xAAAAAAAAAAAAAAAA] = [0, 0x7FFFFFFFFFFFFFFF, 0x8000000000000000, 0xAAAAAAAAAAAAAAAA])" value [nbe] "[0x10000000000000001, -1, -9223372036854775808, 0xFFFFFFFFFFFFFFFF, 0x1234567890ABCDEF , 0x5A AND 0x36 , 0x5A OR 0x36 , 0x5A XOR 0x36 , NOT 0x5A , 5 + 6, -5 + 6, -6 + 5, -5 + (- 6), 0xFFFFFFFFFFFFFFFFFF + 1 , 5 - 3, 3 - 5 , 5 * 3, -5 * 3, -5 * -4, 0x1234567890ABCDEF * 0xFEDCBA0987654321 , 5 div 3, -5 div 3, -5 div -3, 5 div -3 , 5 mod 3, -5 mod 3, -5 mod -3, 5 mod -3 , set_bit 5 4 True, set_bit (- 5) 2 True, set_bit 5 0 False, set_bit (- 5) 1 False , set_bit 5 64 True, set_bit 5 64 False, set_bit (- 5) 64 True, set_bit (- 5) 64 False , 1 << 2, -1 << 3, 1 << 64, 1 << 0 , 100 >> 3, -100 >> 3, 100 >> 64, -100 >> 64 , 100 >>> 3, -100 >>> 3, 100 >>> 64, -100 >>> 64] :: uint64 list" no_notation sshiftr_uint64 (infixl ">>>" 55) export_code test_uint64 checking SML Haskell? OCaml? Scala notepad begin have test_uint64 by eval have test_uint64 by code_simp have test_uint64 by normalization end ML_val \val true = @{code test_uint64}\ definition test_uint64' :: uint64 where "test_uint64' = 0 + 10 - 14 * 3 div 6 mod 3 << 3 >> 2" section \Tests for casts\ definition test_casts :: bool where "test_casts \ map uint8_of_uint32 [10, 0, 0xFE, 0xFFFFFFFF] = [10, 0, 0xFE, 0xFF] \ map uint8_of_uint64 [10, 0, 0xFE, 0xFFFFFFFFFFFFFFFF] = [10, 0, 0xFE, 0xFF] \ map uint32_of_uint8 [10, 0, 0xFF] = [10, 0, 0xFF] \ map uint64_of_uint8 [10, 0, 0xFF] = [10, 0, 0xFF]" definition test_casts' :: bool where "test_casts' \ map uint8_of_uint16 [10, 0, 0xFE, 0xFFFF] = [10, 0, 0xFE, 0xFF] \ map uint16_of_uint8 [10, 0, 0xFF] = [10, 0, 0xFF] \ map uint16_of_uint32 [10, 0, 0xFFFE, 0xFFFFFFFF] = [10, 0, 0xFFFE, 0xFFFF] \ map uint16_of_uint64 [10, 0, 0xFFFE, 0xFFFFFFFFFFFFFFFF] = [10, 0, 0xFFFE, 0xFFFF] \ map uint32_of_uint16 [10, 0, 0xFFFF] = [10, 0, 0xFFFF] \ map uint64_of_uint16 [10, 0, 0xFFFF] = [10, 0, 0xFFFF]" definition test_casts'' :: bool where "test_casts'' \ map uint32_of_uint64 [10, 0, 0xFFFFFFFE, 0xFFFFFFFFFFFFFFFF] = [10, 0, 0xFFFFFFFE, 0xFFFFFFFF] \ map uint64_of_uint32 [10, 0, 0xFFFFFFFF] = [10, 0, 0xFFFFFFFF]" export_code test_casts test_casts'' checking SML Haskell? Scala export_code test_casts'' checking OCaml? export_code test_casts' checking Haskell? Scala notepad begin have test_casts by eval have test_casts by normalization have test_casts by code_simp have test_casts' by normalization have test_casts' by code_simp have test_casts'' by eval have test_casts'' by normalization have test_casts'' by code_simp end ML \ val true = @{code test_casts} val true = @{code test_casts''} \ definition test_casts_uint :: bool where "test_casts_uint \ map uint_of_uint32 ([0, 10] @ (if dflt_size < 32 then [1 << (dflt_size - 1), 0xFFFFFFFF] else [0xFFFFFFFF])) = [0, 10] @ (if dflt_size < 32 then [1 << (dflt_size - 1), (1 << dflt_size) - 1] else [0xFFFFFFFF]) \ map uint32_of_uint [0, 10, if dflt_size < 32 then 1 << (dflt_size - 1) else 0xFFFFFFFF] = [0, 10, if dflt_size < 32 then 1 << (dflt_size - 1) else 0xFFFFFFFF] \ map uint_of_uint64 [0, 10, 1 << (dflt_size - 1), 0xFFFFFFFFFFFFFFFF] = [0, 10, 1 << (dflt_size - 1), (1 << dflt_size) - 1] \ map uint64_of_uint [0, 10, 1 << (dflt_size - 1)] = [0, 10, 1 << (dflt_size - 1)]" definition test_casts_uint' :: bool where "test_casts_uint' \ map uint_of_uint16 [0, 10, 0xFFFF] = [0, 10, 0xFFFF] \ map uint16_of_uint [0, 10, 0xFFFF] = [0, 10, 0xFFFF]" definition test_casts_uint'' :: bool where "test_casts_uint'' \ map uint_of_uint8 [0, 10, 0xFF] = [0, 10, 0xFF] \ map uint8_of_uint [0, 10, 0xFF] = [0, 10, 0xFF]" end diff --git a/thys/Native_Word/Uint.thy b/thys/Native_Word/Uint.thy --- a/thys/Native_Word/Uint.thy +++ b/thys/Native_Word/Uint.thy @@ -1,916 +1,912 @@ (* Title: Uint.thy Author: Peter Lammich, TU Munich Author: Andreas Lochbihler, ETH Zurich *) chapter \Unsigned words of default size\ theory Uint imports Code_Target_Word_Base begin text \ This theory provides access to words in the target languages of the code generator whose bit width is the default of the target language. To that end, the type \uint\ models words of width \dflt_size\, but \dflt_size\ is known only to be positive. Usage restrictions: Default-size words (type \uint\) cannot be used for evaluation, because the results depend on the particular choice of word size in the target language and implementation. Symbolic evaluation has not yet been set up for \uint\. \ text \The default size type\ typedecl dflt_size instantiation dflt_size :: typerep begin definition "typerep_class.typerep \ \_ :: dflt_size itself. Typerep.Typerep (STR ''Uint.dflt_size'') []" instance .. end consts dflt_size_aux :: "nat" specification (dflt_size_aux) dflt_size_aux_g0: "dflt_size_aux > 0" by auto hide_fact dflt_size_aux_def instantiation dflt_size :: len begin definition "len_of_dflt_size (_ :: dflt_size itself) \ dflt_size_aux" instance by(intro_classes)(simp add: len_of_dflt_size_def dflt_size_aux_g0) end abbreviation "dflt_size \ len_of (TYPE (dflt_size))" context includes integer.lifting begin lift_definition dflt_size_integer :: integer is "int dflt_size" . declare dflt_size_integer_def[code del] \ \The code generator will substitute a machine-dependent value for this constant\ lemma dflt_size_by_int[code]: "dflt_size = nat_of_integer dflt_size_integer" by transfer simp lemma dflt_size[simp]: "dflt_size > 0" "dflt_size \ Suc 0" "\ dflt_size < Suc 0" using len_gt_0[where 'a=dflt_size] by (simp_all del: len_gt_0) end declare prod.Quotient[transfer_rule] section \Type definition and primitive operations\ typedef uint = "UNIV :: dflt_size word set" .. setup_lifting type_definition_uint text \Use an abstract type for code generation to disable pattern matching on @{term Abs_uint}.\ declare Rep_uint_inverse[code abstype] declare Quotient_uint[transfer_rule] instantiation uint :: comm_ring_1 begin lift_definition zero_uint :: uint is "0 :: dflt_size word" . lift_definition one_uint :: uint is "1" . lift_definition plus_uint :: "uint \ uint \ uint" is "(+) :: dflt_size word \ _" . lift_definition minus_uint :: "uint \ uint \ uint" is "(-)" . lift_definition uminus_uint :: "uint \ uint" is uminus . lift_definition times_uint :: "uint \ uint \ uint" is "(*)" . instance by (standard; transfer) (simp_all add: algebra_simps) end instantiation uint :: semiring_modulo begin lift_definition divide_uint :: "uint \ uint \ uint" is "(div)" . lift_definition modulo_uint :: "uint \ uint \ uint" is "(mod)" . instance by (standard; transfer) (fact word_mod_div_equality) end instantiation uint :: linorder begin lift_definition less_uint :: "uint \ uint \ bool" is "(<)" . lift_definition less_eq_uint :: "uint \ uint \ bool" is "(\)" . instance by (standard; transfer) (simp_all add: less_le_not_le linear) end lemmas [code] = less_uint.rep_eq less_eq_uint.rep_eq context includes lifting_syntax notes transfer_rule_of_bool [transfer_rule] transfer_rule_numeral [transfer_rule] begin lemma [transfer_rule]: "((=) ===> cr_uint) of_bool of_bool" by transfer_prover lemma transfer_rule_numeral_uint [transfer_rule]: "((=) ===> cr_uint) numeral numeral" by transfer_prover lemma [transfer_rule]: \(cr_uint ===> (\)) even ((dvd) 2 :: uint \ bool)\ by (unfold dvd_def) transfer_prover end instantiation uint :: semiring_bits begin lift_definition bit_uint :: \uint \ nat \ bool\ is bit . instance by (standard; transfer) (fact bit_iff_odd even_iff_mod_2_eq_zero odd_iff_mod_2_eq_one odd_one bits_induct bits_div_0 bits_div_by_1 bits_mod_div_trivial even_succ_div_2 even_mask_div_iff exp_div_exp_eq div_exp_eq mod_exp_eq mult_exp_mod_exp_eq div_exp_mod_exp_eq even_mult_exp_div_exp_iff)+ end instantiation uint :: semiring_bit_shifts begin lift_definition push_bit_uint :: \nat \ uint \ uint\ is push_bit . lift_definition drop_bit_uint :: \nat \ uint \ uint\ is drop_bit . lift_definition take_bit_uint :: \nat \ uint \ uint\ is take_bit . instance by (standard; transfer) (fact push_bit_eq_mult drop_bit_eq_div take_bit_eq_mod)+ end instantiation uint :: ring_bit_operations begin lift_definition not_uint :: \uint \ uint\ is NOT . lift_definition and_uint :: \uint \ uint \ uint\ is \(AND)\ . lift_definition or_uint :: \uint \ uint \ uint\ is \(OR)\ . lift_definition xor_uint :: \uint \ uint \ uint\ is \(XOR)\ . lift_definition mask_uint :: \nat \ uint\ is mask . lift_definition set_bit_uint :: \nat \ uint \ uint\ is \Bit_Operations.set_bit\ . lift_definition unset_bit_uint :: \nat \ uint \ uint\ is \unset_bit\ . lift_definition flip_bit_uint :: \nat \ uint \ uint\ is \flip_bit\ . instance by (standard; transfer) (simp_all add: bit_simps mask_eq_decr_exp minus_eq_not_minus_1 set_bit_def flip_bit_def) end lemma [code]: \take_bit n a = a AND mask n\ for a :: uint by (fact take_bit_eq_mask) lemma [code]: \mask (Suc n) = push_bit n (1 :: uint) OR mask n\ \mask 0 = (0 :: uint)\ by (simp_all add: mask_Suc_exp push_bit_of_1) lemma [code]: \Bit_Operations.set_bit n w = w OR push_bit n 1\ for w :: uint by (fact set_bit_eq_or) lemma [code]: \unset_bit n w = w AND NOT (push_bit n 1)\ for w :: uint by (fact unset_bit_eq_and_not) lemma [code]: \flip_bit n w = w XOR push_bit n 1\ for w :: uint by (fact flip_bit_eq_xor) instance uint :: semiring_bit_syntax .. context includes lifting_syntax begin -lemma test_bit_uint_transfer [transfer_rule]: - \(cr_uint ===> (=)) bit (!!)\ - unfolding test_bit_eq_bit by transfer_prover - lemma shiftl_uint_transfer [transfer_rule]: \(cr_uint ===> (=) ===> cr_uint) (\k n. push_bit n k) (<<)\ unfolding shiftl_eq_push_bit by transfer_prover lemma shiftr_uint_transfer [transfer_rule]: \(cr_uint ===> (=) ===> cr_uint) (\k n. drop_bit n k) (>>)\ unfolding shiftr_eq_drop_bit by transfer_prover end instantiation uint :: lsb begin lift_definition lsb_uint :: \uint \ bool\ is lsb . instance by (standard; transfer) (fact lsb_odd) end instantiation uint :: msb begin lift_definition msb_uint :: \uint \ bool\ is msb . instance .. end setup \Context.theory_map (Name_Space.map_naming (Name_Space.qualified_path true \<^binding>\Generic\))\ instantiation uint :: set_bit begin lift_definition set_bit_uint :: \uint \ nat \ bool \ uint\ is set_bit . instance apply standard apply transfer apply (simp add: bit_simps) done end setup \Context.theory_map (Name_Space.map_naming (Name_Space.parent_path))\ instantiation uint :: bit_comprehension begin lift_definition set_bits_uint :: "(nat \ bool) \ uint" is "set_bits" . instance by (standard; transfer) (fact set_bits_bit_eq) end lemmas [code] = bit_uint.rep_eq lsb_uint.rep_eq msb_uint.rep_eq instantiation uint :: equal begin lift_definition equal_uint :: "uint \ uint \ bool" is "equal_class.equal" . instance by standard (transfer, simp add: equal_eq) end lemmas [code] = equal_uint.rep_eq instantiation uint :: size begin lift_definition size_uint :: "uint \ nat" is "size" . instance .. end lemmas [code] = size_uint.rep_eq lift_definition sshiftr_uint :: "uint \ nat \ uint" (infixl ">>>" 55) is \\w n. signed_drop_bit n w\ . lift_definition uint_of_int :: "int \ uint" is "word_of_int" . text \Use pretty numerals from integer for pretty printing\ context includes integer.lifting begin lift_definition Uint :: "integer \ uint" is "word_of_int" . lemma Rep_uint_numeral [simp]: "Rep_uint (numeral n) = numeral n" by(induction n)(simp_all add: one_uint_def Abs_uint_inverse numeral.simps plus_uint_def) lemma numeral_uint_transfer [transfer_rule]: "(rel_fun (=) cr_uint) numeral numeral" by(auto simp add: cr_uint_def) lemma numeral_uint [code_unfold]: "numeral n = Uint (numeral n)" by transfer simp lemma Rep_uint_neg_numeral [simp]: "Rep_uint (- numeral n) = - numeral n" by(simp only: uminus_uint_def)(simp add: Abs_uint_inverse) lemma neg_numeral_uint [code_unfold]: "- numeral n = Uint (- numeral n)" by transfer(simp add: cr_uint_def) end lemma Abs_uint_numeral [code_post]: "Abs_uint (numeral n) = numeral n" by(induction n)(simp_all add: one_uint_def numeral.simps plus_uint_def Abs_uint_inverse) lemma Abs_uint_0 [code_post]: "Abs_uint 0 = 0" by(simp add: zero_uint_def) lemma Abs_uint_1 [code_post]: "Abs_uint 1 = 1" by(simp add: one_uint_def) section \Code setup\ code_printing code_module Uint \ (SML) \ structure Uint : sig val set_bit : Word.word -> IntInf.int -> bool -> Word.word val shiftl : Word.word -> IntInf.int -> Word.word val shiftr : Word.word -> IntInf.int -> Word.word val shiftr_signed : Word.word -> IntInf.int -> Word.word val test_bit : Word.word -> IntInf.int -> bool end = struct fun set_bit x n b = let val mask = Word.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n)) in if b then Word.orb (x, mask) else Word.andb (x, Word.notb mask) end fun shiftl x n = Word.<< (x, Word.fromLargeInt (IntInf.toLarge n)) fun shiftr x n = Word.>> (x, Word.fromLargeInt (IntInf.toLarge n)) fun shiftr_signed x n = Word.~>> (x, Word.fromLargeInt (IntInf.toLarge n)) fun test_bit x n = Word.andb (x, Word.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))) <> Word.fromInt 0 end; (* struct Uint *)\ code_reserved SML Uint code_printing code_module Uint \ (Haskell) \module Uint(Int, Word, dflt_size) where import qualified Prelude import Data.Int(Int) import Data.Word(Word) import qualified Data.Bits dflt_size :: Prelude.Integer dflt_size = Prelude.toInteger (bitSize_aux (0::Word)) where bitSize_aux :: (Data.Bits.Bits a, Prelude.Bounded a) => a -> Int bitSize_aux = Data.Bits.bitSize\ and (Haskell_Quickcheck) \module Uint(Int, Word, dflt_size) where import qualified Prelude import Data.Int(Int) import Data.Word(Word) import qualified Data.Bits dflt_size :: Prelude.Int dflt_size = bitSize_aux (0::Word) where bitSize_aux :: (Data.Bits.Bits a, Prelude.Bounded a) => a -> Int bitSize_aux = Data.Bits.bitSize \ code_reserved Haskell Uint dflt_size text \ OCaml and Scala provide only signed bit numbers, so we use these and implement sign-sensitive operations like comparisons manually. \ code_printing code_module "Uint" \ (OCaml) \module Uint : sig type t = int val dflt_size : Z.t val less : t -> t -> bool val less_eq : t -> t -> bool val set_bit : t -> Z.t -> bool -> t val shiftl : t -> Z.t -> t val shiftr : t -> Z.t -> t val shiftr_signed : t -> Z.t -> t val test_bit : t -> Z.t -> bool val int_mask : int val int32_mask : int32 val int64_mask : int64 end = struct type t = int let dflt_size = Z.of_int Sys.int_size;; (* negative numbers have their highest bit set, so they are greater than positive ones *) let less x y = if x<0 then y<0 && x 0;; let int_mask = if Sys.int_size < 32 then lnot 0 else 0xFFFFFFFF;; let int32_mask = if Sys.int_size < 32 then Int32.pred (Int32.shift_left Int32.one Sys.int_size) else Int32.of_string "0xFFFFFFFF";; let int64_mask = if Sys.int_size < 64 then Int64.pred (Int64.shift_left Int64.one Sys.int_size) else Int64.of_string "0xFFFFFFFFFFFFFFFF";; end;; (*struct Uint*)\ code_reserved OCaml Uint code_printing code_module Uint \ (Scala) \object Uint { def dflt_size : BigInt = BigInt(32) def less(x: Int, y: Int) : Boolean = if (x < 0) y < 0 && x < y else y < 0 || x < y def less_eq(x: Int, y: Int) : Boolean = if (x < 0) y < 0 && x <= y else y < 0 || x <= y def set_bit(x: Int, n: BigInt, b: Boolean) : Int = if (b) x | (1 << n.intValue) else x & (1 << n.intValue).unary_~ def shiftl(x: Int, n: BigInt) : Int = x << n.intValue def shiftr(x: Int, n: BigInt) : Int = x >>> n.intValue def shiftr_signed(x: Int, n: BigInt) : Int = x >> n.intValue def test_bit(x: Int, n: BigInt) : Boolean = (x & (1 << n.intValue)) != 0 } /* object Uint */\ code_reserved Scala Uint text \ OCaml's conversion from Big\_int to int demands that the value fits into a signed integer. The following justifies the implementation. \ context includes integer.lifting begin definition wivs_mask :: int where "wivs_mask = 2^ dflt_size - 1" lift_definition wivs_mask_integer :: integer is wivs_mask . lemma [code]: "wivs_mask_integer = 2 ^ dflt_size - 1" by transfer (simp add: wivs_mask_def) definition wivs_shift :: int where "wivs_shift = 2 ^ dflt_size" lift_definition wivs_shift_integer :: integer is wivs_shift . lemma [code]: "wivs_shift_integer = 2 ^ dflt_size" by transfer (simp add: wivs_shift_def) definition wivs_index :: nat where "wivs_index == dflt_size - 1" lift_definition wivs_index_integer :: integer is "int wivs_index". lemma wivs_index_integer_code[code]: "wivs_index_integer = dflt_size_integer - 1" by transfer (simp add: wivs_index_def of_nat_diff) definition wivs_overflow :: int where "wivs_overflow == 2^ (dflt_size - 1)" lift_definition wivs_overflow_integer :: integer is wivs_overflow . lemma [code]: "wivs_overflow_integer = 2 ^ (dflt_size - 1)" by transfer (simp add: wivs_overflow_def) definition wivs_least :: int where "wivs_least == - wivs_overflow" lift_definition wivs_least_integer :: integer is wivs_least . lemma [code]: "wivs_least_integer = - (2 ^ (dflt_size - 1))" by transfer (simp add: wivs_overflow_def wivs_least_def) definition Uint_signed :: "integer \ uint" where "Uint_signed i = (if i < wivs_least_integer \ wivs_overflow_integer \ i then undefined Uint i else Uint i)" lemma Uint_code [code]: "Uint i = (let i' = i AND wivs_mask_integer in if bit i' wivs_index then Uint_signed (i' - wivs_shift_integer) else Uint_signed i')" including undefined_transfer unfolding Uint_signed_def apply transfer apply (subst word_of_int_via_signed) apply (auto simp add: shiftl_eq_push_bit push_bit_of_1 mask_eq_exp_minus_1 word_of_int_via_signed wivs_mask_def wivs_index_def wivs_overflow_def wivs_least_def wivs_shift_def) done lemma Uint_signed_code [code abstract]: "Rep_uint (Uint_signed i) = (if i < wivs_least_integer \ i \ wivs_overflow_integer then Rep_uint (undefined Uint i) else word_of_int (int_of_integer_symbolic i))" unfolding Uint_signed_def Uint_def int_of_integer_symbolic_def word_of_integer_def by(simp add: Abs_uint_inverse) end text \ Avoid @{term Abs_uint} in generated code, use @{term Rep_uint'} instead. The symbolic implementations for code\_simp use @{term Rep_uint}. The new destructor @{term Rep_uint'} is executable. As the simplifier is given the [code abstract] equations literally, we cannot implement @{term Rep_uint} directly, because that makes code\_simp loop. If code generation raises Match, some equation probably contains @{term Rep_uint} ([code abstract] equations for @{typ uint} may use @{term Rep_uint} because these instances will be folded away.) \ definition Rep_uint' where [simp]: "Rep_uint' = Rep_uint" lemma Rep_uint'_code [code]: "Rep_uint' x = (BITS n. bit x n)" unfolding Rep_uint'_def by transfer (simp add: set_bits_bit_eq) lift_definition Abs_uint' :: "dflt_size word \ uint" is "\x :: dflt_size word. x" . lemma Abs_uint'_code [code]: "Abs_uint' x = Uint (integer_of_int (uint x))" including integer.lifting by transfer simp declare [[code drop: "term_of_class.term_of :: uint \ _"]] lemma term_of_uint_code [code]: defines "TR \ typerep.Typerep" and "bit0 \ STR ''Numeral_Type.bit0''" shows "term_of_class.term_of x = Code_Evaluation.App (Code_Evaluation.Const (STR ''Uint.uint.Abs_uint'') (TR (STR ''fun'') [TR (STR ''Word.word'') [TR (STR ''Uint.dflt_size'') []], TR (STR ''Uint.uint'') []])) (term_of_class.term_of (Rep_uint' x))" by(simp add: term_of_anything) text \Important: We must prevent the reflection oracle (eval-tac) to use our machine-dependent type. \ code_printing type_constructor uint \ (SML) "Word.word" and (Haskell) "Uint.Word" and (OCaml) "Uint.t" and (Scala) "Int" and (Eval) "*** \"Error: Machine dependent type\" ***" and (Quickcheck) "Word.word" | constant dflt_size_integer \ (SML) "(IntInf.fromLarge (Int.toLarge Word.wordSize))" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.wordSize" and (Haskell) "Uint.dflt'_size" and (OCaml) "Uint.dflt'_size" and (Scala) "Uint.dflt'_size" | constant Uint \ (SML) "Word.fromLargeInt (IntInf.toLarge _)" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.fromInt" and (Haskell) "(Prelude.fromInteger _ :: Uint.Word)" and (Haskell_Quickcheck) "(Prelude.fromInteger (Prelude.toInteger _) :: Uint.Word)" and (Scala) "_.intValue" | constant Uint_signed \ (OCaml) "Z.to'_int" | constant "0 :: uint" \ (SML) "(Word.fromInt 0)" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "(Word.fromInt 0)" and (Haskell) "(0 :: Uint.Word)" and (OCaml) "0" and (Scala) "0" | constant "1 :: uint" \ (SML) "(Word.fromInt 1)" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "(Word.fromInt 1)" and (Haskell) "(1 :: Uint.Word)" and (OCaml) "1" and (Scala) "1" | constant "plus :: uint \ _ " \ (SML) "Word.+ ((_), (_))" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.+ ((_), (_))" and (Haskell) infixl 6 "+" and (OCaml) "Pervasives.(+)" and (Scala) infixl 7 "+" | constant "uminus :: uint \ _" \ (SML) "Word.~" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.~" and (Haskell) "negate" and (OCaml) "Pervasives.(~-)" and (Scala) "!(- _)" | constant "minus :: uint \ _" \ (SML) "Word.- ((_), (_))" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.- ((_), (_))" and (Haskell) infixl 6 "-" and (OCaml) "Pervasives.(-)" and (Scala) infixl 7 "-" | constant "times :: uint \ _ \ _" \ (SML) "Word.* ((_), (_))" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.* ((_), (_))" and (Haskell) infixl 7 "*" and (OCaml) "Pervasives.( * )" and (Scala) infixl 8 "*" | constant "HOL.equal :: uint \ _ \ bool" \ (SML) "!((_ : Word.word) = _)" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "!((_ : Word.word) = _)" and (Haskell) infix 4 "==" and (OCaml) "(Pervasives.(=):Uint.t -> Uint.t -> bool)" and (Scala) infixl 5 "==" | class_instance uint :: equal \ (Haskell) - | constant "less_eq :: uint \ _ \ bool" \ (SML) "Word.<= ((_), (_))" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.<= ((_), (_))" and (Haskell) infix 4 "<=" and (OCaml) "Uint.less'_eq" and (Scala) "Uint.less'_eq" | constant "less :: uint \ _ \ bool" \ (SML) "Word.< ((_), (_))" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.< ((_), (_))" and (Haskell) infix 4 "<" and (OCaml) "Uint.less" and (Scala) "Uint.less" | constant "NOT :: uint \ _" \ (SML) "Word.notb" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.notb" and (Haskell) "Data'_Bits.complement" and (OCaml) "Pervasives.lnot" and (Scala) "_.unary'_~" | constant "(AND) :: uint \ _" \ (SML) "Word.andb ((_),/ (_))" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.andb ((_),/ (_))" and (Haskell) infixl 7 "Data_Bits..&." and (OCaml) "Pervasives.(land)" and (Scala) infixl 3 "&" | constant "(OR) :: uint \ _" \ (SML) "Word.orb ((_),/ (_))" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.orb ((_),/ (_))" and (Haskell) infixl 5 "Data_Bits..|." and (OCaml) "Pervasives.(lor)" and (Scala) infixl 1 "|" | constant "(XOR) :: uint \ _" \ (SML) "Word.xorb ((_),/ (_))" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.xorb ((_),/ (_))" and (Haskell) "Data'_Bits.xor" and (OCaml) "Pervasives.(lxor)" and (Scala) infixl 2 "^" definition uint_divmod :: "uint \ uint \ uint \ uint" where "uint_divmod x y = (if y = 0 then (undefined ((div) :: uint \ _) x (0 :: uint), undefined ((mod) :: uint \ _) x (0 :: uint)) else (x div y, x mod y))" definition uint_div :: "uint \ uint \ uint" where "uint_div x y = fst (uint_divmod x y)" definition uint_mod :: "uint \ uint \ uint" where "uint_mod x y = snd (uint_divmod x y)" lemma div_uint_code [code]: "x div y = (if y = 0 then 0 else uint_div x y)" including undefined_transfer unfolding uint_divmod_def uint_div_def by transfer(simp add: word_div_def) lemma mod_uint_code [code]: "x mod y = (if y = 0 then x else uint_mod x y)" including undefined_transfer unfolding uint_mod_def uint_divmod_def by transfer(simp add: word_mod_def) definition uint_sdiv :: "uint \ uint \ uint" where [code del]: "uint_sdiv x y = (if y = 0 then undefined ((div) :: uint \ _) x (0 :: uint) else Abs_uint (Rep_uint x sdiv Rep_uint y))" definition div0_uint :: "uint \ uint" where [code del]: "div0_uint x = undefined ((div) :: uint \ _) x (0 :: uint)" declare [[code abort: div0_uint]] definition mod0_uint :: "uint \ uint" where [code del]: "mod0_uint x = undefined ((mod) :: uint \ _) x (0 :: uint)" declare [[code abort: mod0_uint]] definition wivs_overflow_uint :: uint where "wivs_overflow_uint \ push_bit (dflt_size - 1) 1" lemma uint_divmod_code [code]: "uint_divmod x y = (if wivs_overflow_uint \ y then if x < y then (0, x) else (1, x - y) else if y = 0 then (div0_uint x, mod0_uint x) else let q = push_bit 1 (uint_sdiv (drop_bit 1 x) y); r = x - q * y in if r \ y then (q + 1, r - y) else (q, r))" proof (cases \y = 0\) case True moreover have \x \ 0\ by transfer simp moreover have \wivs_overflow_uint > 0\ apply (simp add: wivs_overflow_uint_def push_bit_of_1) apply transfer apply transfer apply simp done ultimately show ?thesis by (auto simp add: uint_divmod_def div0_uint_def mod0_uint_def not_less) next case False then show ?thesis including undefined_transfer unfolding uint_divmod_def uint_sdiv_def div0_uint_def mod0_uint_def wivs_overflow_uint_def apply transfer apply (simp add: divmod_via_sdivmod push_bit_of_1 shiftl_eq_push_bit shiftr_eq_drop_bit) done qed lemma uint_sdiv_code [code abstract]: "Rep_uint (uint_sdiv x y) = (if y = 0 then Rep_uint (undefined ((div) :: uint \ _) x (0 :: uint)) else Rep_uint x sdiv Rep_uint y)" unfolding uint_sdiv_def by(simp add: Abs_uint_inverse) text \ Note that we only need a translation for signed division, but not for the remainder because @{thm uint_divmod_code} computes both with division only. \ code_printing constant uint_div \ (SML) "Word.div ((_), (_))" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.div ((_), (_))" and (Haskell) "Prelude.div" | constant uint_mod \ (SML) "Word.mod ((_), (_))" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Word.mod ((_), (_))" and (Haskell) "Prelude.mod" | constant uint_divmod \ (Haskell) "divmod" | constant uint_sdiv \ (OCaml) "Pervasives.('/)" and (Scala) "_ '/ _" definition uint_test_bit :: "uint \ integer \ bool" where [code del]: "uint_test_bit x n = (if n < 0 \ dflt_size_integer \ n then undefined (bit :: uint \ _) x n else bit x (nat_of_integer n))" lemma test_bit_uint_code [code]: "bit x n \ n < dflt_size \ uint_test_bit x (integer_of_nat n)" including undefined_transfer integer.lifting unfolding uint_test_bit_def by (transfer, simp, transfer, simp) lemma uint_test_bit_code [code]: "uint_test_bit w n = (if n < 0 \ dflt_size_integer \ n then undefined (bit :: uint \ _) w n else bit (Rep_uint w) (nat_of_integer n))" unfolding uint_test_bit_def by(simp add: bit_uint.rep_eq) code_printing constant uint_test_bit \ (SML) "Uint.test'_bit" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Uint.test'_bit" and (Haskell) "Data'_Bits.testBitBounded" and (OCaml) "Uint.test'_bit" and (Scala) "Uint.test'_bit" definition uint_set_bit :: "uint \ integer \ bool \ uint" where [code del]: "uint_set_bit x n b = (if n < 0 \ dflt_size_integer \ n then undefined (set_bit :: uint \ _) x n b else set_bit x (nat_of_integer n) b)" lemma set_bit_uint_code [code]: "set_bit x n b = (if n < dflt_size then uint_set_bit x (integer_of_nat n) b else x)" including undefined_transfer integer.lifting unfolding uint_set_bit_def by (transfer) (auto cong: conj_cong simp add: not_less set_bit_beyond word_size) lemma uint_set_bit_code [code abstract]: "Rep_uint (uint_set_bit w n b) = (if n < 0 \ dflt_size_integer \ n then Rep_uint (undefined (set_bit :: uint \ _) w n b) else set_bit (Rep_uint w) (nat_of_integer n) b)" including undefined_transfer integer.lifting unfolding uint_set_bit_def by transfer simp code_printing constant uint_set_bit \ (SML) "Uint.set'_bit" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Uint.set'_bit" and (Haskell) "Data'_Bits.setBitBounded" and (OCaml) "Uint.set'_bit" and (Scala) "Uint.set'_bit" lift_definition uint_set_bits :: "(nat \ bool) \ uint \ nat \ uint" is set_bits_aux . lemma uint_set_bits_code [code]: "uint_set_bits f w n = (if n = 0 then w else let n' = n - 1 in uint_set_bits f (push_bit 1 w OR (if f n' then 1 else 0)) n')" apply (transfer fixing: n) apply (cases n) apply (simp_all add: shiftl_eq_push_bit) done lemma set_bits_uint [code]: "(BITS n. f n) = uint_set_bits f 0 dflt_size" by transfer (simp add: set_bits_conv_set_bits_aux) lemma lsb_code [code]: fixes x :: uint shows "lsb x = bit x 0" by transfer (simp add: lsb_word_eq) definition uint_shiftl :: "uint \ integer \ uint" where [code del]: "uint_shiftl x n = (if n < 0 \ dflt_size_integer \ n then undefined (push_bit :: nat \ uint \ _) x n else push_bit (nat_of_integer n) x)" lemma shiftl_uint_code [code]: "push_bit n x = (if n < dflt_size then uint_shiftl x (integer_of_nat n) else 0)" including undefined_transfer integer.lifting unfolding uint_shiftl_def by (transfer fixing: n) simp lemma uint_shiftl_code [code abstract]: "Rep_uint (uint_shiftl w n) = (if n < 0 \ dflt_size_integer \ n then Rep_uint (undefined (push_bit :: nat \ uint \ _) w n) else push_bit (nat_of_integer n) (Rep_uint w))" including undefined_transfer integer.lifting unfolding uint_shiftl_def by transfer simp code_printing constant uint_shiftl \ (SML) "Uint.shiftl" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Uint.shiftl" and (Haskell) "Data'_Bits.shiftlBounded" and (OCaml) "Uint.shiftl" and (Scala) "Uint.shiftl" definition uint_shiftr :: "uint \ integer \ uint" where [code del]: "uint_shiftr x n = (if n < 0 \ dflt_size_integer \ n then undefined (drop_bit :: nat \ uint \ _) x n else drop_bit (nat_of_integer n) x)" lemma shiftr_uint_code [code]: "drop_bit n x = (if n < dflt_size then uint_shiftr x (integer_of_nat n) else 0)" including undefined_transfer integer.lifting unfolding uint_shiftr_def by (transfer fixing: n) simp lemma uint_shiftr_code [code abstract]: "Rep_uint (uint_shiftr w n) = (if n < 0 \ dflt_size_integer \ n then Rep_uint (undefined (drop_bit :: nat \ uint \ _) w n) else drop_bit (nat_of_integer n) (Rep_uint w))" including undefined_transfer unfolding uint_shiftr_def by transfer simp code_printing constant uint_shiftr \ (SML) "Uint.shiftr" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Uint.shiftr" and (Haskell) "Data'_Bits.shiftrBounded" and (OCaml) "Uint.shiftr" and (Scala) "Uint.shiftr" definition uint_sshiftr :: "uint \ integer \ uint" where [code del]: "uint_sshiftr x n = (if n < 0 \ dflt_size_integer \ n then undefined sshiftr_uint x n else sshiftr_uint x (nat_of_integer n))" lemma sshiftr_uint_code [code]: "x >>> n = (if n < dflt_size then uint_sshiftr x (integer_of_nat n) else if bit x wivs_index then -1 else 0)" including undefined_transfer integer.lifting unfolding uint_sshiftr_def by transfer(simp add: not_less signed_drop_bit_beyond word_size wivs_index_def) lemma uint_sshiftr_code [code abstract]: "Rep_uint (uint_sshiftr w n) = (if n < 0 \ dflt_size_integer \ n then Rep_uint (undefined sshiftr_uint w n) else signed_drop_bit (nat_of_integer n) (Rep_uint w))" including undefined_transfer unfolding uint_sshiftr_def by transfer simp code_printing constant uint_sshiftr \ (SML) "Uint.shiftr'_signed" and (Eval) "(raise (Fail \"Machine dependent code\"))" and (Quickcheck) "Uint.shiftr'_signed" and (Haskell) "(Prelude.fromInteger (Prelude.toInteger (Data'_Bits.shiftrBounded (Prelude.fromInteger (Prelude.toInteger _) :: Uint.Int) _)) :: Uint.Word)" and (OCaml) "Uint.shiftr'_signed" and (Scala) "Uint.shiftr'_signed" lemma uint_msb_test_bit: "msb x \ bit (x :: uint) wivs_index" by transfer (simp add: msb_word_iff_bit wivs_index_def) lemma msb_uint_code [code]: "msb x \ uint_test_bit x wivs_index_integer" apply(simp add: uint_test_bit_def uint_msb_test_bit wivs_index_integer_code dflt_size_integer_def wivs_index_def) by (metis (full_types) One_nat_def dflt_size(2) less_iff_diff_less_0 nat_of_integer_of_nat of_nat_1 of_nat_diff of_nat_less_0_iff wivs_index_def) lemma uint_of_int_code [code]: "uint_of_int i = (BITS n. bit i n)" by transfer (simp add: word_of_int_conv_set_bits) section \Quickcheck setup\ definition uint_of_natural :: "natural \ uint" where "uint_of_natural x \ Uint (integer_of_natural x)" instantiation uint :: "{random, exhaustive, full_exhaustive}" begin definition "random_uint \ qc_random_cnv uint_of_natural" definition "exhaustive_uint \ qc_exhaustive_cnv uint_of_natural" definition "full_exhaustive_uint \ qc_full_exhaustive_cnv uint_of_natural" instance .. end instantiation uint :: narrowing begin interpretation quickcheck_narrowing_samples "\i. (Uint i, Uint (- i))" "0" "Typerep.Typerep (STR ''Uint.uint'') []" . definition "narrowing_uint d = qc_narrowing_drawn_from (narrowing_samples d) d" declare [[code drop: "partial_term_of :: uint itself \ _"]] lemmas partial_term_of_uint [code] = partial_term_of_code instance .. end no_notation sshiftr_uint (infixl ">>>" 55) end diff --git a/thys/Native_Word/Uint16.thy b/thys/Native_Word/Uint16.thy --- a/thys/Native_Word/Uint16.thy +++ b/thys/Native_Word/Uint16.thy @@ -1,642 +1,638 @@ (* Title: Uint16.thy Author: Andreas Lochbihler, ETH Zurich *) chapter \Unsigned words of 16 bits\ theory Uint16 imports Code_Target_Word_Base begin text \ Restriction for ML code generation: This theory assumes that the ML system provides a Word16 implementation (mlton does, but PolyML 5.5 does not). Therefore, the code setup lives in the target \SML_word\ rather than \SML\. This ensures that code generation still works as long as \uint16\ is not involved. For the target \SML\ itself, no special code generation for this type is set up. Nevertheless, it should work by emulation via @{typ "16 word"} if the theory \Code_Target_Bits_Int\ is imported. Restriction for OCaml code generation: OCaml does not provide an int16 type, so no special code generation for this type is set up. \ declare prod.Quotient[transfer_rule] section \Type definition and primitive operations\ typedef uint16 = "UNIV :: 16 word set" .. setup_lifting type_definition_uint16 text \Use an abstract type for code generation to disable pattern matching on @{term Abs_uint16}.\ declare Rep_uint16_inverse[code abstype] declare Quotient_uint16[transfer_rule] instantiation uint16 :: comm_ring_1 begin lift_definition zero_uint16 :: uint16 is "0 :: 16 word" . lift_definition one_uint16 :: uint16 is "1" . lift_definition plus_uint16 :: "uint16 \ uint16 \ uint16" is "(+) :: 16 word \ _" . lift_definition minus_uint16 :: "uint16 \ uint16 \ uint16" is "(-)" . lift_definition uminus_uint16 :: "uint16 \ uint16" is uminus . lift_definition times_uint16 :: "uint16 \ uint16 \ uint16" is "(*)" . instance by (standard; transfer) (simp_all add: algebra_simps) end instantiation uint16 :: semiring_modulo begin lift_definition divide_uint16 :: "uint16 \ uint16 \ uint16" is "(div)" . lift_definition modulo_uint16 :: "uint16 \ uint16 \ uint16" is "(mod)" . instance by (standard; transfer) (fact word_mod_div_equality) end instantiation uint16 :: linorder begin lift_definition less_uint16 :: "uint16 \ uint16 \ bool" is "(<)" . lift_definition less_eq_uint16 :: "uint16 \ uint16 \ bool" is "(\)" . instance by (standard; transfer) (simp_all add: less_le_not_le linear) end lemmas [code] = less_uint16.rep_eq less_eq_uint16.rep_eq context includes lifting_syntax notes transfer_rule_of_bool [transfer_rule] transfer_rule_numeral [transfer_rule] begin lemma [transfer_rule]: "((=) ===> cr_uint16) of_bool of_bool" by transfer_prover lemma transfer_rule_numeral_uint [transfer_rule]: "((=) ===> cr_uint16) numeral numeral" by transfer_prover lemma [transfer_rule]: \(cr_uint16 ===> (\)) even ((dvd) 2 :: uint16 \ bool)\ by (unfold dvd_def) transfer_prover end instantiation uint16 :: semiring_bits begin lift_definition bit_uint16 :: \uint16 \ nat \ bool\ is bit . instance by (standard; transfer) (fact bit_iff_odd even_iff_mod_2_eq_zero odd_iff_mod_2_eq_one odd_one bits_induct bits_div_0 bits_div_by_1 bits_mod_div_trivial even_succ_div_2 even_mask_div_iff exp_div_exp_eq div_exp_eq mod_exp_eq mult_exp_mod_exp_eq div_exp_mod_exp_eq even_mult_exp_div_exp_iff)+ end instantiation uint16 :: semiring_bit_shifts begin lift_definition push_bit_uint16 :: \nat \ uint16 \ uint16\ is push_bit . lift_definition drop_bit_uint16 :: \nat \ uint16 \ uint16\ is drop_bit . lift_definition take_bit_uint16 :: \nat \ uint16 \ uint16\ is take_bit . instance by (standard; transfer) (fact push_bit_eq_mult drop_bit_eq_div take_bit_eq_mod)+ end instantiation uint16 :: ring_bit_operations begin lift_definition not_uint16 :: \uint16 \ uint16\ is NOT . lift_definition and_uint16 :: \uint16 \ uint16 \ uint16\ is \(AND)\ . lift_definition or_uint16 :: \uint16 \ uint16 \ uint16\ is \(OR)\ . lift_definition xor_uint16 :: \uint16 \ uint16 \ uint16\ is \(XOR)\ . lift_definition mask_uint16 :: \nat \ uint16\ is mask . lift_definition set_bit_uint16 :: \nat \ uint16 \ uint16\ is \Bit_Operations.set_bit\ . lift_definition unset_bit_uint16 :: \nat \ uint16 \ uint16\ is \unset_bit\ . lift_definition flip_bit_uint16 :: \nat \ uint16 \ uint16\ is \flip_bit\ . instance by (standard; transfer) (simp_all add: bit_simps mask_eq_decr_exp minus_eq_not_minus_1 set_bit_def flip_bit_def) end lemma [code]: \take_bit n a = a AND mask n\ for a :: uint16 by (fact take_bit_eq_mask) lemma [code]: \mask (Suc n) = push_bit n (1 :: uint16) OR mask n\ \mask 0 = (0 :: uint16)\ by (simp_all add: mask_Suc_exp push_bit_of_1) lemma [code]: \Bit_Operations.set_bit n w = w OR push_bit n 1\ for w :: uint16 by (fact set_bit_eq_or) lemma [code]: \unset_bit n w = w AND NOT (push_bit n 1)\ for w :: uint16 by (fact unset_bit_eq_and_not) lemma [code]: \flip_bit n w = w XOR push_bit n 1\ for w :: uint16 by (fact flip_bit_eq_xor) instance uint16 :: semiring_bit_syntax .. context includes lifting_syntax begin -lemma test_bit_uint16_transfer [transfer_rule]: - \(cr_uint16 ===> (=)) bit (!!)\ - unfolding test_bit_eq_bit by transfer_prover - lemma shiftl_uint16_transfer [transfer_rule]: \(cr_uint16 ===> (=) ===> cr_uint16) (\k n. push_bit n k) (<<)\ unfolding shiftl_eq_push_bit by transfer_prover lemma shiftr_uint16_transfer [transfer_rule]: \(cr_uint16 ===> (=) ===> cr_uint16) (\k n. drop_bit n k) (>>)\ unfolding shiftr_eq_drop_bit by transfer_prover end instantiation uint16 :: lsb begin lift_definition lsb_uint16 :: \uint16 \ bool\ is lsb . instance by (standard; transfer) (fact lsb_odd) end instantiation uint16 :: msb begin lift_definition msb_uint16 :: \uint16 \ bool\ is msb . instance .. end setup \Context.theory_map (Name_Space.map_naming (Name_Space.qualified_path true \<^binding>\Generic\))\ instantiation uint16 :: set_bit begin lift_definition set_bit_uint16 :: \uint16 \ nat \ bool \ uint16\ is set_bit . instance apply standard apply transfer apply (simp add: bit_simps) done end setup \Context.theory_map (Name_Space.map_naming (Name_Space.parent_path))\ instantiation uint16 :: bit_comprehension begin lift_definition set_bits_uint16 :: "(nat \ bool) \ uint16" is "set_bits" . instance by (standard; transfer) (fact set_bits_bit_eq) end lemmas [code] = bit_uint16.rep_eq lsb_uint16.rep_eq msb_uint16.rep_eq instantiation uint16 :: equal begin lift_definition equal_uint16 :: "uint16 \ uint16 \ bool" is "equal_class.equal" . instance by standard (transfer, simp add: equal_eq) end lemmas [code] = equal_uint16.rep_eq instantiation uint16 :: size begin lift_definition size_uint16 :: "uint16 \ nat" is "size" . instance .. end lemmas [code] = size_uint16.rep_eq lift_definition sshiftr_uint16 :: "uint16 \ nat \ uint16" (infixl ">>>" 55) is \\w n. signed_drop_bit n w\ . lift_definition uint16_of_int :: "int \ uint16" is "word_of_int" . definition uint16_of_nat :: "nat \ uint16" where "uint16_of_nat = uint16_of_int \ int" lift_definition int_of_uint16 :: "uint16 \ int" is "uint" . lift_definition nat_of_uint16 :: "uint16 \ nat" is "unat" . definition integer_of_uint16 :: "uint16 \ integer" where "integer_of_uint16 = integer_of_int o int_of_uint16" text \Use pretty numerals from integer for pretty printing\ context includes integer.lifting begin lift_definition Uint16 :: "integer \ uint16" is "word_of_int" . lemma Rep_uint16_numeral [simp]: "Rep_uint16 (numeral n) = numeral n" by(induction n)(simp_all add: one_uint16_def Abs_uint16_inverse numeral.simps plus_uint16_def) lemma Rep_uint16_neg_numeral [simp]: "Rep_uint16 (- numeral n) = - numeral n" by(simp only: uminus_uint16_def)(simp add: Abs_uint16_inverse) lemma numeral_uint16_transfer [transfer_rule]: "(rel_fun (=) cr_uint16) numeral numeral" by(auto simp add: cr_uint16_def) lemma numeral_uint16 [code_unfold]: "numeral n = Uint16 (numeral n)" by transfer simp lemma neg_numeral_uint16 [code_unfold]: "- numeral n = Uint16 (- numeral n)" by transfer(simp add: cr_uint16_def) end lemma Abs_uint16_numeral [code_post]: "Abs_uint16 (numeral n) = numeral n" by(induction n)(simp_all add: one_uint16_def numeral.simps plus_uint16_def Abs_uint16_inverse) lemma Abs_uint16_0 [code_post]: "Abs_uint16 0 = 0" by(simp add: zero_uint16_def) lemma Abs_uint16_1 [code_post]: "Abs_uint16 1 = 1" by(simp add: one_uint16_def) section \Code setup\ code_printing code_module Uint16 \ (SML_word) \(* Test that words can handle numbers between 0 and 15 *) val _ = if 4 <= Word.wordSize then () else raise (Fail ("wordSize less than 4")); structure Uint16 : sig val set_bit : Word16.word -> IntInf.int -> bool -> Word16.word val shiftl : Word16.word -> IntInf.int -> Word16.word val shiftr : Word16.word -> IntInf.int -> Word16.word val shiftr_signed : Word16.word -> IntInf.int -> Word16.word val test_bit : Word16.word -> IntInf.int -> bool end = struct fun set_bit x n b = let val mask = Word16.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n)) in if b then Word16.orb (x, mask) else Word16.andb (x, Word16.notb mask) end fun shiftl x n = Word16.<< (x, Word.fromLargeInt (IntInf.toLarge n)) fun shiftr x n = Word16.>> (x, Word.fromLargeInt (IntInf.toLarge n)) fun shiftr_signed x n = Word16.~>> (x, Word.fromLargeInt (IntInf.toLarge n)) fun test_bit x n = Word16.andb (x, Word16.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))) <> Word16.fromInt 0 end; (* struct Uint16 *)\ code_reserved SML_word Uint16 code_printing code_module Uint16 \ (Haskell) \module Uint16(Int16, Word16) where import Data.Int(Int16) import Data.Word(Word16)\ code_reserved Haskell Uint16 text \Scala provides unsigned 16-bit numbers as Char.\ code_printing code_module Uint16 \ (Scala) \object Uint16 { def set_bit(x: scala.Char, n: BigInt, b: Boolean) : scala.Char = if (b) (x | (1.toChar << n.intValue)).toChar else (x & (1.toChar << n.intValue).unary_~).toChar def shiftl(x: scala.Char, n: BigInt) : scala.Char = (x << n.intValue).toChar def shiftr(x: scala.Char, n: BigInt) : scala.Char = (x >>> n.intValue).toChar def shiftr_signed(x: scala.Char, n: BigInt) : scala.Char = (x.toShort >> n.intValue).toChar def test_bit(x: scala.Char, n: BigInt) : Boolean = (x & (1.toChar << n.intValue)) != 0 } /* object Uint16 */\ code_reserved Scala Uint16 text \ Avoid @{term Abs_uint16} in generated code, use @{term Rep_uint16'} instead. The symbolic implementations for code\_simp use @{term Rep_uint16}. The new destructor @{term Rep_uint16'} is executable. As the simplifier is given the [code abstract] equations literally, we cannot implement @{term Rep_uint16} directly, because that makes code\_simp loop. If code generation raises Match, some equation probably contains @{term Rep_uint16} ([code abstract] equations for @{typ uint16} may use @{term Rep_uint16} because these instances will be folded away.) To convert @{typ "16 word"} values into @{typ uint16}, use @{term "Abs_uint16'"}. \ definition Rep_uint16' where [simp]: "Rep_uint16' = Rep_uint16" lemma Rep_uint16'_transfer [transfer_rule]: "rel_fun cr_uint16 (=) (\x. x) Rep_uint16'" unfolding Rep_uint16'_def by(rule uint16.rep_transfer) lemma Rep_uint16'_code [code]: "Rep_uint16' x = (BITS n. bit x n)" by transfer (simp add: set_bits_bit_eq) lift_definition Abs_uint16' :: "16 word \ uint16" is "\x :: 16 word. x" . lemma Abs_uint16'_code [code]: "Abs_uint16' x = Uint16 (integer_of_int (uint x))" including integer.lifting by transfer simp declare [[code drop: "term_of_class.term_of :: uint16 \ _"]] lemma term_of_uint16_code [code]: defines "TR \ typerep.Typerep" and "bit0 \ STR ''Numeral_Type.bit0''" shows "term_of_class.term_of x = Code_Evaluation.App (Code_Evaluation.Const (STR ''Uint16.uint16.Abs_uint16'') (TR (STR ''fun'') [TR (STR ''Word.word'') [TR bit0 [TR bit0 [TR bit0 [TR bit0 [TR (STR ''Numeral_Type.num1'') []]]]]], TR (STR ''Uint16.uint16'') []])) (term_of_class.term_of (Rep_uint16' x))" by(simp add: term_of_anything) lemma Uin16_code [code abstract]: "Rep_uint16 (Uint16 i) = word_of_int (int_of_integer_symbolic i)" unfolding Uint16_def int_of_integer_symbolic_def by(simp add: Abs_uint16_inverse) code_printing type_constructor uint16 \ (SML_word) "Word16.word" and (Haskell) "Uint16.Word16" and (Scala) "scala.Char" | constant Uint16 \ (SML_word) "Word16.fromLargeInt (IntInf.toLarge _)" and (Haskell) "(Prelude.fromInteger _ :: Uint16.Word16)" and (Haskell_Quickcheck) "(Prelude.fromInteger (Prelude.toInteger _) :: Uint16.Word16)" and (Scala) "_.charValue" | constant "0 :: uint16" \ (SML_word) "(Word16.fromInt 0)" and (Haskell) "(0 :: Uint16.Word16)" and (Scala) "0" | constant "1 :: uint16" \ (SML_word) "(Word16.fromInt 1)" and (Haskell) "(1 :: Uint16.Word16)" and (Scala) "1" | constant "plus :: uint16 \ _ \ _" \ (SML_word) "Word16.+ ((_), (_))" and (Haskell) infixl 6 "+" and (Scala) "(_ +/ _).toChar" | constant "uminus :: uint16 \ _" \ (SML_word) "Word16.~" and (Haskell) "negate" and (Scala) "(- _).toChar" | constant "minus :: uint16 \ _" \ (SML_word) "Word16.- ((_), (_))" and (Haskell) infixl 6 "-" and (Scala) "(_ -/ _).toChar" | constant "times :: uint16 \ _ \ _" \ (SML_word) "Word16.* ((_), (_))" and (Haskell) infixl 7 "*" and (Scala) "(_ */ _).toChar" | constant "HOL.equal :: uint16 \ _ \ bool" \ (SML_word) "!((_ : Word16.word) = _)" and (Haskell) infix 4 "==" and (Scala) infixl 5 "==" | class_instance uint16 :: equal \ (Haskell) - | constant "less_eq :: uint16 \ _ \ bool" \ (SML_word) "Word16.<= ((_), (_))" and (Haskell) infix 4 "<=" and (Scala) infixl 4 "<=" | constant "less :: uint16 \ _ \ bool" \ (SML_word) "Word16.< ((_), (_))" and (Haskell) infix 4 "<" and (Scala) infixl 4 "<" | constant "NOT :: uint16 \ _" \ (SML_word) "Word16.notb" and (Haskell) "Data'_Bits.complement" and (Scala) "_.unary'_~.toChar" | constant "(AND) :: uint16 \ _" \ (SML_word) "Word16.andb ((_),/ (_))" and (Haskell) infixl 7 "Data_Bits..&." and (Scala) "(_ & _).toChar" | constant "(OR) :: uint16 \ _" \ (SML_word) "Word16.orb ((_),/ (_))" and (Haskell) infixl 5 "Data_Bits..|." and (Scala) "(_ | _).toChar" | constant "(XOR) :: uint16 \ _" \ (SML_word) "Word16.xorb ((_),/ (_))" and (Haskell) "Data'_Bits.xor" and (Scala) "(_ ^ _).toChar" definition uint16_div :: "uint16 \ uint16 \ uint16" where "uint16_div x y = (if y = 0 then undefined ((div) :: uint16 \ _) x (0 :: uint16) else x div y)" definition uint16_mod :: "uint16 \ uint16 \ uint16" where "uint16_mod x y = (if y = 0 then undefined ((mod) :: uint16 \ _) x (0 :: uint16) else x mod y)" context includes undefined_transfer begin lemma div_uint16_code [code]: "x div y = (if y = 0 then 0 else uint16_div x y)" unfolding uint16_div_def by transfer (simp add: word_div_def) lemma mod_uint16_code [code]: "x mod y = (if y = 0 then x else uint16_mod x y)" unfolding uint16_mod_def by transfer (simp add: word_mod_def) lemma uint16_div_code [code abstract]: "Rep_uint16 (uint16_div x y) = (if y = 0 then Rep_uint16 (undefined ((div) :: uint16 \ _) x (0 :: uint16)) else Rep_uint16 x div Rep_uint16 y)" unfolding uint16_div_def by transfer simp lemma uint16_mod_code [code abstract]: "Rep_uint16 (uint16_mod x y) = (if y = 0 then Rep_uint16 (undefined ((mod) :: uint16 \ _) x (0 :: uint16)) else Rep_uint16 x mod Rep_uint16 y)" unfolding uint16_mod_def by transfer simp end code_printing constant uint16_div \ (SML_word) "Word16.div ((_), (_))" and (Haskell) "Prelude.div" and (Scala) "(_ '/ _).toChar" | constant uint16_mod \ (SML_word) "Word16.mod ((_), (_))" and (Haskell) "Prelude.mod" and (Scala) "(_ % _).toChar" definition uint16_test_bit :: "uint16 \ integer \ bool" where [code del]: "uint16_test_bit x n = (if n < 0 \ 15 < n then undefined (bit :: uint16 \ _) x n else bit x (nat_of_integer n))" lemma test_bit_uint16_code [code]: "bit x n \ n < 16 \ uint16_test_bit x (integer_of_nat n)" including undefined_transfer integer.lifting unfolding uint16_test_bit_def by (transfer, simp, transfer, simp) lemma uint16_test_bit_code [code]: "uint16_test_bit w n = (if n < 0 \ 15 < n then undefined (bit :: uint16 \ _) w n else bit (Rep_uint16 w) (nat_of_integer n))" unfolding uint16_test_bit_def by (simp add: bit_uint16.rep_eq) code_printing constant uint16_test_bit \ (SML_word) "Uint16.test'_bit" and (Haskell) "Data'_Bits.testBitBounded" and (Scala) "Uint16.test'_bit" definition uint16_set_bit :: "uint16 \ integer \ bool \ uint16" where [code del]: "uint16_set_bit x n b = (if n < 0 \ 15 < n then undefined (set_bit :: uint16 \ _) x n b else set_bit x (nat_of_integer n) b)" lemma set_bit_uint16_code [code]: "set_bit x n b = (if n < 16 then uint16_set_bit x (integer_of_nat n) b else x)" including undefined_transfer integer.lifting unfolding uint16_set_bit_def by(transfer)(auto cong: conj_cong simp add: not_less set_bit_beyond word_size) lemma uint16_set_bit_code [code abstract]: "Rep_uint16 (uint16_set_bit w n b) = (if n < 0 \ 15 < n then Rep_uint16 (undefined (set_bit :: uint16 \ _) w n b) else set_bit (Rep_uint16 w) (nat_of_integer n) b)" including undefined_transfer unfolding uint16_set_bit_def by transfer simp code_printing constant uint16_set_bit \ (SML_word) "Uint16.set'_bit" and (Haskell) "Data'_Bits.setBitBounded" and (Scala) "Uint16.set'_bit" lift_definition uint16_set_bits :: "(nat \ bool) \ uint16 \ nat \ uint16" is set_bits_aux . lemma uint16_set_bits_code [code]: "uint16_set_bits f w n = (if n = 0 then w else let n' = n - 1 in uint16_set_bits f ((push_bit 1 w) OR (if f n' then 1 else 0)) n')" apply (transfer fixing: n) apply (cases n) apply (simp_all add: shiftl_eq_push_bit) done lemma set_bits_uint16 [code]: "(BITS n. f n) = uint16_set_bits f 0 16" by transfer(simp add: set_bits_conv_set_bits_aux) lemma lsb_code [code]: fixes x :: uint16 shows "lsb x \ bit x 0" by transfer (simp add: lsb_odd) definition uint16_shiftl :: "uint16 \ integer \ uint16" where [code del]: "uint16_shiftl x n = (if n < 0 \ 16 \ n then undefined (push_bit :: nat \ uint16 \ _) x n else push_bit (nat_of_integer n) x)" lemma shiftl_uint16_code [code]: "push_bit n x = (if n < 16 then uint16_shiftl x (integer_of_nat n) else 0)" including undefined_transfer integer.lifting unfolding uint16_shiftl_def by transfer simp lemma uint16_shiftl_code [code abstract]: "Rep_uint16 (uint16_shiftl w n) = (if n < 0 \ 16 \ n then Rep_uint16 (undefined (push_bit :: nat \ uint16 \ _) w n) else push_bit (nat_of_integer n) (Rep_uint16 w))" including undefined_transfer unfolding uint16_shiftl_def by transfer simp code_printing constant uint16_shiftl \ (SML_word) "Uint16.shiftl" and (Haskell) "Data'_Bits.shiftlBounded" and (Scala) "Uint16.shiftl" definition uint16_shiftr :: "uint16 \ integer \ uint16" where [code del]: "uint16_shiftr x n = (if n < 0 \ 16 \ n then undefined (drop_bit :: nat \ uint16 \ _) x n else drop_bit (nat_of_integer n) x)" lemma shiftr_uint16_code [code]: "drop_bit n x = (if n < 16 then uint16_shiftr x (integer_of_nat n) else 0)" including undefined_transfer integer.lifting unfolding uint16_shiftr_def by transfer simp lemma uint16_shiftr_code [code abstract]: "Rep_uint16 (uint16_shiftr w n) = (if n < 0 \ 16 \ n then Rep_uint16 (undefined (drop_bit :: nat \ uint16 \ _) w n) else drop_bit (nat_of_integer n) (Rep_uint16 w))" including undefined_transfer unfolding uint16_shiftr_def by transfer simp code_printing constant uint16_shiftr \ (SML_word) "Uint16.shiftr" and (Haskell) "Data'_Bits.shiftrBounded" and (Scala) "Uint16.shiftr" definition uint16_sshiftr :: "uint16 \ integer \ uint16" where [code del]: "uint16_sshiftr x n = (if n < 0 \ 16 \ n then undefined sshiftr_uint16 x n else sshiftr_uint16 x (nat_of_integer n))" lemma sshiftr_uint16_code [code]: "x >>> n = (if n < 16 then uint16_sshiftr x (integer_of_nat n) else if bit x 15 then -1 else 0)" including undefined_transfer integer.lifting unfolding uint16_sshiftr_def by transfer (simp add: not_less signed_drop_bit_beyond word_size) lemma uint16_sshiftr_code [code abstract]: "Rep_uint16 (uint16_sshiftr w n) = (if n < 0 \ 16 \ n then Rep_uint16 (undefined sshiftr_uint16 w n) else signed_drop_bit (nat_of_integer n) (Rep_uint16 w))" including undefined_transfer unfolding uint16_sshiftr_def by transfer simp code_printing constant uint16_sshiftr \ (SML_word) "Uint16.shiftr'_signed" and (Haskell) "(Prelude.fromInteger (Prelude.toInteger (Data'_Bits.shiftrBounded (Prelude.fromInteger (Prelude.toInteger _) :: Uint16.Int16) _)) :: Uint16.Word16)" and (Scala) "Uint16.shiftr'_signed" lemma uint16_msb_test_bit: "msb x \ bit (x :: uint16) 15" by transfer (simp add: msb_word_iff_bit) lemma msb_uint16_code [code]: "msb x \ uint16_test_bit x 15" by (simp add: uint16_test_bit_def uint16_msb_test_bit) lemma uint16_of_int_code [code]: "uint16_of_int i = Uint16 (integer_of_int i)" including integer.lifting by transfer simp lemma int_of_uint16_code [code]: "int_of_uint16 x = int_of_integer (integer_of_uint16 x)" by(simp add: integer_of_uint16_def) lemma nat_of_uint16_code [code]: "nat_of_uint16 x = nat_of_integer (integer_of_uint16 x)" unfolding integer_of_uint16_def including integer.lifting by transfer simp lemma integer_of_uint16_code [code]: "integer_of_uint16 n = integer_of_int (uint (Rep_uint16' n))" unfolding integer_of_uint16_def by transfer auto code_printing constant "integer_of_uint16" \ (SML_word) "Word16.toInt _ : IntInf.int" and (Haskell) "Prelude.toInteger" and (Scala) "BigInt" section \Quickcheck setup\ definition uint16_of_natural :: "natural \ uint16" where "uint16_of_natural x \ Uint16 (integer_of_natural x)" instantiation uint16 :: "{random, exhaustive, full_exhaustive}" begin definition "random_uint16 \ qc_random_cnv uint16_of_natural" definition "exhaustive_uint16 \ qc_exhaustive_cnv uint16_of_natural" definition "full_exhaustive_uint16 \ qc_full_exhaustive_cnv uint16_of_natural" instance .. end instantiation uint16 :: narrowing begin interpretation quickcheck_narrowing_samples "\i. let x = Uint16 i in (x, 0xFFFF - x)" "0" "Typerep.Typerep (STR ''Uint16.uint16'') []" . definition "narrowing_uint16 d = qc_narrowing_drawn_from (narrowing_samples d) d" declare [[code drop: "partial_term_of :: uint16 itself \ _"]] lemmas partial_term_of_uint16 [code] = partial_term_of_code instance .. end no_notation sshiftr_uint16 (infixl ">>>" 55) end diff --git a/thys/Native_Word/Uint32.thy b/thys/Native_Word/Uint32.thy --- a/thys/Native_Word/Uint32.thy +++ b/thys/Native_Word/Uint32.thy @@ -1,789 +1,785 @@ (* Title: Uint32.thy Author: Andreas Lochbihler, ETH Zurich *) chapter \Unsigned words of 32 bits\ theory Uint32 imports Code_Target_Word_Base begin declare prod.Quotient[transfer_rule] section \Type definition and primitive operations\ typedef uint32 = "UNIV :: 32 word set" .. setup_lifting type_definition_uint32 text \Use an abstract type for code generation to disable pattern matching on @{term Abs_uint32}.\ declare Rep_uint32_inverse[code abstype] declare Quotient_uint32[transfer_rule] instantiation uint32 :: comm_ring_1 begin lift_definition zero_uint32 :: uint32 is "0 :: 32 word" . lift_definition one_uint32 :: uint32 is "1" . lift_definition plus_uint32 :: "uint32 \ uint32 \ uint32" is "(+) :: 32 word \ _" . lift_definition minus_uint32 :: "uint32 \ uint32 \ uint32" is "(-)" . lift_definition uminus_uint32 :: "uint32 \ uint32" is uminus . lift_definition times_uint32 :: "uint32 \ uint32 \ uint32" is "(*)" . instance by (standard; transfer) (simp_all add: algebra_simps) end instantiation uint32 :: semiring_modulo begin lift_definition divide_uint32 :: "uint32 \ uint32 \ uint32" is "(div)" . lift_definition modulo_uint32 :: "uint32 \ uint32 \ uint32" is "(mod)" . instance by (standard; transfer) (fact word_mod_div_equality) end instantiation uint32 :: linorder begin lift_definition less_uint32 :: "uint32 \ uint32 \ bool" is "(<)" . lift_definition less_eq_uint32 :: "uint32 \ uint32 \ bool" is "(\)" . instance by (standard; transfer) (simp_all add: less_le_not_le linear) end lemmas [code] = less_uint32.rep_eq less_eq_uint32.rep_eq context includes lifting_syntax notes transfer_rule_of_bool [transfer_rule] transfer_rule_numeral [transfer_rule] begin lemma [transfer_rule]: "((=) ===> cr_uint32) of_bool of_bool" by transfer_prover lemma transfer_rule_numeral_uint [transfer_rule]: "((=) ===> cr_uint32) numeral numeral" by transfer_prover lemma [transfer_rule]: \(cr_uint32 ===> (\)) even ((dvd) 2 :: uint32 \ bool)\ by (unfold dvd_def) transfer_prover end instantiation uint32:: semiring_bits begin lift_definition bit_uint32 :: \uint32 \ nat \ bool\ is bit . instance by (standard; transfer) (fact bit_iff_odd even_iff_mod_2_eq_zero odd_iff_mod_2_eq_one odd_one bits_induct bits_div_0 bits_div_by_1 bits_mod_div_trivial even_succ_div_2 even_mask_div_iff exp_div_exp_eq div_exp_eq mod_exp_eq mult_exp_mod_exp_eq div_exp_mod_exp_eq even_mult_exp_div_exp_iff)+ end instantiation uint32 :: semiring_bit_shifts begin lift_definition push_bit_uint32 :: \nat \ uint32 \ uint32\ is push_bit . lift_definition drop_bit_uint32 :: \nat \ uint32 \ uint32\ is drop_bit . lift_definition take_bit_uint32 :: \nat \ uint32 \ uint32\ is take_bit . instance by (standard; transfer) (fact push_bit_eq_mult drop_bit_eq_div take_bit_eq_mod)+ end instantiation uint32 :: ring_bit_operations begin lift_definition not_uint32 :: \uint32 \ uint32\ is NOT . lift_definition and_uint32 :: \uint32 \ uint32 \ uint32\ is \(AND)\ . lift_definition or_uint32 :: \uint32 \ uint32 \ uint32\ is \(OR)\ . lift_definition xor_uint32 :: \uint32 \ uint32 \ uint32\ is \(XOR)\ . lift_definition mask_uint32 :: \nat \ uint32\ is mask . lift_definition set_bit_uint32 :: \nat \ uint32 \ uint32\ is \Bit_Operations.set_bit\ . lift_definition unset_bit_uint32 :: \nat \ uint32 \ uint32\ is \unset_bit\ . lift_definition flip_bit_uint32 :: \nat \ uint32 \ uint32\ is \flip_bit\ . instance by (standard; transfer) (simp_all add: bit_simps mask_eq_decr_exp minus_eq_not_minus_1 set_bit_def flip_bit_def) end lemma [code]: \take_bit n a = a AND mask n\ for a :: uint32 by (fact take_bit_eq_mask) lemma [code]: \mask (Suc n) = push_bit n (1 :: uint32) OR mask n\ \mask 0 = (0 :: uint32)\ by (simp_all add: mask_Suc_exp push_bit_of_1) lemma [code]: \Bit_Operations.set_bit n w = w OR push_bit n 1\ for w :: uint32 by (fact set_bit_eq_or) lemma [code]: \unset_bit n w = w AND NOT (push_bit n 1)\ for w :: uint32 by (fact unset_bit_eq_and_not) lemma [code]: \flip_bit n w = w XOR push_bit n 1\ for w :: uint32 by (fact flip_bit_eq_xor) instance uint32 :: semiring_bit_syntax .. context includes lifting_syntax begin -lemma test_bit_uint32_transfer [transfer_rule]: - \(cr_uint32 ===> (=)) bit (!!)\ - unfolding test_bit_eq_bit by transfer_prover - lemma shiftl_uint32_transfer [transfer_rule]: \(cr_uint32 ===> (=) ===> cr_uint32) (\k n. push_bit n k) (<<)\ unfolding shiftl_eq_push_bit by transfer_prover lemma shiftr_uint32_transfer [transfer_rule]: \(cr_uint32 ===> (=) ===> cr_uint32) (\k n. drop_bit n k) (>>)\ unfolding shiftr_eq_drop_bit by transfer_prover end instantiation uint32 :: lsb begin lift_definition lsb_uint32 :: \uint32 \ bool\ is lsb . instance by (standard; transfer) (fact lsb_odd) end instantiation uint32 :: msb begin lift_definition msb_uint32 :: \uint32 \ bool\ is msb . instance .. end setup \Context.theory_map (Name_Space.map_naming (Name_Space.qualified_path true \<^binding>\Generic\))\ instantiation uint32 :: set_bit begin lift_definition set_bit_uint32 :: \uint32 \ nat \ bool \ uint32\ is set_bit . instance apply standard apply transfer apply (simp add: bit_simps) done end setup \Context.theory_map (Name_Space.map_naming (Name_Space.parent_path))\ instantiation uint32 :: bit_comprehension begin lift_definition set_bits_uint32 :: "(nat \ bool) \ uint32" is "set_bits" . instance by (standard; transfer) (fact set_bits_bit_eq) end lemmas [code] = bit_uint32.rep_eq lsb_uint32.rep_eq msb_uint32.rep_eq instantiation uint32 :: equal begin lift_definition equal_uint32 :: "uint32 \ uint32 \ bool" is "equal_class.equal" . instance by standard (transfer, simp add: equal_eq) end lemmas [code] = equal_uint32.rep_eq instantiation uint32 :: size begin lift_definition size_uint32 :: "uint32 \ nat" is "size" . instance .. end lemmas [code] = size_uint32.rep_eq lift_definition sshiftr_uint32 :: "uint32 \ nat \ uint32" (infixl ">>>" 55) is \\w n. signed_drop_bit n w\ . lift_definition uint32_of_int :: "int \ uint32" is "word_of_int" . definition uint32_of_nat :: "nat \ uint32" where "uint32_of_nat = uint32_of_int \ int" lift_definition int_of_uint32 :: "uint32 \ int" is "uint" . lift_definition nat_of_uint32 :: "uint32 \ nat" is "unat" . definition integer_of_uint32 :: "uint32 \ integer" where "integer_of_uint32 = integer_of_int o int_of_uint32" text \Use pretty numerals from integer for pretty printing\ context includes integer.lifting begin lift_definition Uint32 :: "integer \ uint32" is "word_of_int" . lemma Rep_uint32_numeral [simp]: "Rep_uint32 (numeral n) = numeral n" by(induction n)(simp_all add: one_uint32_def Abs_uint32_inverse numeral.simps plus_uint32_def) lemma numeral_uint32_transfer [transfer_rule]: "(rel_fun (=) cr_uint32) numeral numeral" by(auto simp add: cr_uint32_def) lemma numeral_uint32 [code_unfold]: "numeral n = Uint32 (numeral n)" by transfer simp lemma Rep_uint32_neg_numeral [simp]: "Rep_uint32 (- numeral n) = - numeral n" by(simp only: uminus_uint32_def)(simp add: Abs_uint32_inverse) lemma neg_numeral_uint32 [code_unfold]: "- numeral n = Uint32 (- numeral n)" by transfer(simp add: cr_uint32_def) end lemma Abs_uint32_numeral [code_post]: "Abs_uint32 (numeral n) = numeral n" by(induction n)(simp_all add: one_uint32_def numeral.simps plus_uint32_def Abs_uint32_inverse) lemma Abs_uint32_0 [code_post]: "Abs_uint32 0 = 0" by(simp add: zero_uint32_def) lemma Abs_uint32_1 [code_post]: "Abs_uint32 1 = 1" by(simp add: one_uint32_def) section \Code setup\ code_printing code_module Uint32 \ (SML) \(* Test that words can handle numbers between 0 and 31 *) val _ = if 5 <= Word.wordSize then () else raise (Fail ("wordSize less than 5")); structure Uint32 : sig val set_bit : Word32.word -> IntInf.int -> bool -> Word32.word val shiftl : Word32.word -> IntInf.int -> Word32.word val shiftr : Word32.word -> IntInf.int -> Word32.word val shiftr_signed : Word32.word -> IntInf.int -> Word32.word val test_bit : Word32.word -> IntInf.int -> bool end = struct fun set_bit x n b = let val mask = Word32.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n)) in if b then Word32.orb (x, mask) else Word32.andb (x, Word32.notb mask) end fun shiftl x n = Word32.<< (x, Word.fromLargeInt (IntInf.toLarge n)) fun shiftr x n = Word32.>> (x, Word.fromLargeInt (IntInf.toLarge n)) fun shiftr_signed x n = Word32.~>> (x, Word.fromLargeInt (IntInf.toLarge n)) fun test_bit x n = Word32.andb (x, Word32.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))) <> Word32.fromInt 0 end; (* struct Uint32 *)\ code_reserved SML Uint32 code_printing code_module Uint32 \ (Haskell) \module Uint32(Int32, Word32) where import Data.Int(Int32) import Data.Word(Word32)\ code_reserved Haskell Uint32 text \ OCaml and Scala provide only signed 32bit numbers, so we use these and implement sign-sensitive operations like comparisons manually. \ code_printing code_module "Uint32" \ (OCaml) \module Uint32 : sig val less : int32 -> int32 -> bool val less_eq : int32 -> int32 -> bool val set_bit : int32 -> Z.t -> bool -> int32 val shiftl : int32 -> Z.t -> int32 val shiftr : int32 -> Z.t -> int32 val shiftr_signed : int32 -> Z.t -> int32 val test_bit : int32 -> Z.t -> bool end = struct (* negative numbers have their highest bit set, so they are greater than positive ones *) let less x y = if Int32.compare x Int32.zero < 0 then Int32.compare y Int32.zero < 0 && Int32.compare x y < 0 else Int32.compare y Int32.zero < 0 || Int32.compare x y < 0;; let less_eq x y = if Int32.compare x Int32.zero < 0 then Int32.compare y Int32.zero < 0 && Int32.compare x y <= 0 else Int32.compare y Int32.zero < 0 || Int32.compare x y <= 0;; let set_bit x n b = let mask = Int32.shift_left Int32.one (Z.to_int n) in if b then Int32.logor x mask else Int32.logand x (Int32.lognot mask);; let shiftl x n = Int32.shift_left x (Z.to_int n);; let shiftr x n = Int32.shift_right_logical x (Z.to_int n);; let shiftr_signed x n = Int32.shift_right x (Z.to_int n);; let test_bit x n = Int32.compare (Int32.logand x (Int32.shift_left Int32.one (Z.to_int n))) Int32.zero <> 0;; end;; (*struct Uint32*)\ code_reserved OCaml Uint32 code_printing code_module Uint32 \ (Scala) \object Uint32 { def less(x: Int, y: Int) : Boolean = if (x < 0) y < 0 && x < y else y < 0 || x < y def less_eq(x: Int, y: Int) : Boolean = if (x < 0) y < 0 && x <= y else y < 0 || x <= y def set_bit(x: Int, n: BigInt, b: Boolean) : Int = if (b) x | (1 << n.intValue) else x & (1 << n.intValue).unary_~ def shiftl(x: Int, n: BigInt) : Int = x << n.intValue def shiftr(x: Int, n: BigInt) : Int = x >>> n.intValue def shiftr_signed(x: Int, n: BigInt) : Int = x >> n.intValue def test_bit(x: Int, n: BigInt) : Boolean = (x & (1 << n.intValue)) != 0 } /* object Uint32 */\ code_reserved Scala Uint32 text \ OCaml's conversion from Big\_int to int32 demands that the value fits int a signed 32-bit integer. The following justifies the implementation. \ definition Uint32_signed :: "integer \ uint32" where "Uint32_signed i = (if i < -(0x80000000) \ i \ 0x80000000 then undefined Uint32 i else Uint32 i)" lemma Uint32_code [code]: "Uint32 i = (let i' = i AND 0xFFFFFFFF in if bit i' 31 then Uint32_signed (i' - 0x100000000) else Uint32_signed i')" including undefined_transfer integer.lifting unfolding Uint32_signed_def apply transfer apply (subst word_of_int_via_signed) apply (auto simp add: shiftl_eq_push_bit push_bit_of_1 mask_eq_exp_minus_1 word_of_int_via_signed cong del: if_cong) done lemma Uint32_signed_code [code abstract]: "Rep_uint32 (Uint32_signed i) = (if i < -(0x80000000) \ i \ 0x80000000 then Rep_uint32 (undefined Uint32 i) else word_of_int (int_of_integer_symbolic i))" unfolding Uint32_signed_def Uint32_def int_of_integer_symbolic_def word_of_integer_def by(simp add: Abs_uint32_inverse) text \ Avoid @{term Abs_uint32} in generated code, use @{term Rep_uint32'} instead. The symbolic implementations for code\_simp use @{term Rep_uint32}. The new destructor @{term Rep_uint32'} is executable. As the simplifier is given the [code abstract] equations literally, we cannot implement @{term Rep_uint32} directly, because that makes code\_simp loop. If code generation raises Match, some equation probably contains @{term Rep_uint32} ([code abstract] equations for @{typ uint32} may use @{term Rep_uint32} because these instances will be folded away.) To convert @{typ "32 word"} values into @{typ uint32}, use @{term "Abs_uint32'"}. \ definition Rep_uint32' where [simp]: "Rep_uint32' = Rep_uint32" lemma Rep_uint32'_transfer [transfer_rule]: "rel_fun cr_uint32 (=) (\x. x) Rep_uint32'" unfolding Rep_uint32'_def by(rule uint32.rep_transfer) lemma Rep_uint32'_code [code]: "Rep_uint32' x = (BITS n. bit x n)" by transfer (simp add: set_bits_bit_eq) lift_definition Abs_uint32' :: "32 word \ uint32" is "\x :: 32 word. x" . lemma Abs_uint32'_code [code]: "Abs_uint32' x = Uint32 (integer_of_int (uint x))" including integer.lifting by transfer simp declare [[code drop: "term_of_class.term_of :: uint32 \ _"]] lemma term_of_uint32_code [code]: defines "TR \ typerep.Typerep" and "bit0 \ STR ''Numeral_Type.bit0''" shows "term_of_class.term_of x = Code_Evaluation.App (Code_Evaluation.Const (STR ''Uint32.uint32.Abs_uint32'') (TR (STR ''fun'') [TR (STR ''Word.word'') [TR bit0 [TR bit0 [TR bit0 [TR bit0 [TR bit0 [TR (STR ''Numeral_Type.num1'') []]]]]]], TR (STR ''Uint32.uint32'') []])) (term_of_class.term_of (Rep_uint32' x))" by(simp add: term_of_anything) code_printing type_constructor uint32 \ (SML) "Word32.word" and (Haskell) "Uint32.Word32" and (OCaml) "int32" and (Scala) "Int" and (Eval) "Word32.word" | constant Uint32 \ (SML) "Word32.fromLargeInt (IntInf.toLarge _)" and (Haskell) "(Prelude.fromInteger _ :: Uint32.Word32)" and (Haskell_Quickcheck) "(Prelude.fromInteger (Prelude.toInteger _) :: Uint32.Word32)" and (Scala) "_.intValue" | constant Uint32_signed \ (OCaml) "Z.to'_int32" | constant "0 :: uint32" \ (SML) "(Word32.fromInt 0)" and (Haskell) "(0 :: Uint32.Word32)" and (OCaml) "Int32.zero" and (Scala) "0" | constant "1 :: uint32" \ (SML) "(Word32.fromInt 1)" and (Haskell) "(1 :: Uint32.Word32)" and (OCaml) "Int32.one" and (Scala) "1" | constant "plus :: uint32 \ _ " \ (SML) "Word32.+ ((_), (_))" and (Haskell) infixl 6 "+" and (OCaml) "Int32.add" and (Scala) infixl 7 "+" | constant "uminus :: uint32 \ _" \ (SML) "Word32.~" and (Haskell) "negate" and (OCaml) "Int32.neg" and (Scala) "!(- _)" | constant "minus :: uint32 \ _" \ (SML) "Word32.- ((_), (_))" and (Haskell) infixl 6 "-" and (OCaml) "Int32.sub" and (Scala) infixl 7 "-" | constant "times :: uint32 \ _ \ _" \ (SML) "Word32.* ((_), (_))" and (Haskell) infixl 7 "*" and (OCaml) "Int32.mul" and (Scala) infixl 8 "*" | constant "HOL.equal :: uint32 \ _ \ bool" \ (SML) "!((_ : Word32.word) = _)" and (Haskell) infix 4 "==" and (OCaml) "(Int32.compare _ _ = 0)" and (Scala) infixl 5 "==" | class_instance uint32 :: equal \ (Haskell) - | constant "less_eq :: uint32 \ _ \ bool" \ (SML) "Word32.<= ((_), (_))" and (Haskell) infix 4 "<=" and (OCaml) "Uint32.less'_eq" and (Scala) "Uint32.less'_eq" | constant "less :: uint32 \ _ \ bool" \ (SML) "Word32.< ((_), (_))" and (Haskell) infix 4 "<" and (OCaml) "Uint32.less" and (Scala) "Uint32.less" | constant "NOT :: uint32 \ _" \ (SML) "Word32.notb" and (Haskell) "Data'_Bits.complement" and (OCaml) "Int32.lognot" and (Scala) "_.unary'_~" | constant "(AND) :: uint32 \ _" \ (SML) "Word32.andb ((_),/ (_))" and (Haskell) infixl 7 "Data_Bits..&." and (OCaml) "Int32.logand" and (Scala) infixl 3 "&" | constant "(OR) :: uint32 \ _" \ (SML) "Word32.orb ((_),/ (_))" and (Haskell) infixl 5 "Data_Bits..|." and (OCaml) "Int32.logor" and (Scala) infixl 1 "|" | constant "(XOR) :: uint32 \ _" \ (SML) "Word32.xorb ((_),/ (_))" and (Haskell) "Data'_Bits.xor" and (OCaml) "Int32.logxor" and (Scala) infixl 2 "^" definition uint32_divmod :: "uint32 \ uint32 \ uint32 \ uint32" where "uint32_divmod x y = (if y = 0 then (undefined ((div) :: uint32 \ _) x (0 :: uint32), undefined ((mod) :: uint32 \ _) x (0 :: uint32)) else (x div y, x mod y))" definition uint32_div :: "uint32 \ uint32 \ uint32" where "uint32_div x y = fst (uint32_divmod x y)" definition uint32_mod :: "uint32 \ uint32 \ uint32" where "uint32_mod x y = snd (uint32_divmod x y)" lemma div_uint32_code [code]: "x div y = (if y = 0 then 0 else uint32_div x y)" including undefined_transfer unfolding uint32_divmod_def uint32_div_def by transfer (simp add: word_div_def) lemma mod_uint32_code [code]: "x mod y = (if y = 0 then x else uint32_mod x y)" including undefined_transfer unfolding uint32_mod_def uint32_divmod_def by transfer (simp add: word_mod_def) definition uint32_sdiv :: "uint32 \ uint32 \ uint32" where [code del]: "uint32_sdiv x y = (if y = 0 then undefined ((div) :: uint32 \ _) x (0 :: uint32) else Abs_uint32 (Rep_uint32 x sdiv Rep_uint32 y))" definition div0_uint32 :: "uint32 \ uint32" where [code del]: "div0_uint32 x = undefined ((div) :: uint32 \ _) x (0 :: uint32)" declare [[code abort: div0_uint32]] definition mod0_uint32 :: "uint32 \ uint32" where [code del]: "mod0_uint32 x = undefined ((mod) :: uint32 \ _) x (0 :: uint32)" declare [[code abort: mod0_uint32]] lemma uint32_divmod_code [code]: "uint32_divmod x y = (if 0x80000000 \ y then if x < y then (0, x) else (1, x - y) else if y = 0 then (div0_uint32 x, mod0_uint32 x) else let q = (uint32_sdiv (drop_bit 1 x) y) << 1; r = x - q * y in if r \ y then (q + 1, r - y) else (q, r))" including undefined_transfer unfolding uint32_divmod_def uint32_sdiv_def div0_uint32_def mod0_uint32_def by transfer (simp add: divmod_via_sdivmod shiftr_eq_drop_bit shiftl_eq_push_bit ac_simps) lemma uint32_sdiv_code [code abstract]: "Rep_uint32 (uint32_sdiv x y) = (if y = 0 then Rep_uint32 (undefined ((div) :: uint32 \ _) x (0 :: uint32)) else Rep_uint32 x sdiv Rep_uint32 y)" unfolding uint32_sdiv_def by(simp add: Abs_uint32_inverse) text \ Note that we only need a translation for signed division, but not for the remainder because @{thm uint32_divmod_code} computes both with division only. \ code_printing constant uint32_div \ (SML) "Word32.div ((_), (_))" and (Haskell) "Prelude.div" | constant uint32_mod \ (SML) "Word32.mod ((_), (_))" and (Haskell) "Prelude.mod" | constant uint32_divmod \ (Haskell) "divmod" | constant uint32_sdiv \ (OCaml) "Int32.div" and (Scala) "_ '/ _" definition uint32_test_bit :: "uint32 \ integer \ bool" where [code del]: "uint32_test_bit x n = (if n < 0 \ 31 < n then undefined (bit :: uint32 \ _) x n else bit x (nat_of_integer n))" lemma test_bit_uint32_code [code]: "bit x n \ n < 32 \ uint32_test_bit x (integer_of_nat n)" including undefined_transfer integer.lifting unfolding uint32_test_bit_def by (transfer, simp, transfer, simp) lemma uint32_test_bit_code [code]: "uint32_test_bit w n = (if n < 0 \ 31 < n then undefined (bit :: uint32 \ _) w n else bit (Rep_uint32 w) (nat_of_integer n))" unfolding uint32_test_bit_def by(simp add: bit_uint32.rep_eq) code_printing constant uint32_test_bit \ (SML) "Uint32.test'_bit" and (Haskell) "Data'_Bits.testBitBounded" and (OCaml) "Uint32.test'_bit" and (Scala) "Uint32.test'_bit" and (Eval) "(fn w => fn n => if n < 0 orelse 32 <= n then raise (Fail \"argument to uint32'_test'_bit out of bounds\") else Uint32.test'_bit w n)" definition uint32_set_bit :: "uint32 \ integer \ bool \ uint32" where [code del]: "uint32_set_bit x n b = (if n < 0 \ 31 < n then undefined (set_bit :: uint32 \ _) x n b else set_bit x (nat_of_integer n) b)" lemma set_bit_uint32_code [code]: "set_bit x n b = (if n < 32 then uint32_set_bit x (integer_of_nat n) b else x)" including undefined_transfer integer.lifting unfolding uint32_set_bit_def by(transfer)(auto cong: conj_cong simp add: not_less set_bit_beyond word_size) lemma uint32_set_bit_code [code abstract]: "Rep_uint32 (uint32_set_bit w n b) = (if n < 0 \ 31 < n then Rep_uint32 (undefined (set_bit :: uint32 \ _) w n b) else set_bit (Rep_uint32 w) (nat_of_integer n) b)" including undefined_transfer unfolding uint32_set_bit_def by transfer simp code_printing constant uint32_set_bit \ (SML) "Uint32.set'_bit" and (Haskell) "Data'_Bits.setBitBounded" and (OCaml) "Uint32.set'_bit" and (Scala) "Uint32.set'_bit" and (Eval) "(fn w => fn n => fn b => if n < 0 orelse 32 <= n then raise (Fail \"argument to uint32'_set'_bit out of bounds\") else Uint32.set'_bit x n b)" lift_definition uint32_set_bits :: "(nat \ bool) \ uint32 \ nat \ uint32" is set_bits_aux . lemma uint32_set_bits_code [code]: "uint32_set_bits f w n = (if n = 0 then w else let n' = n - 1 in uint32_set_bits f (push_bit 1 w OR (if f n' then 1 else 0)) n')" apply (transfer fixing: n) apply (cases n) apply (simp_all add: shiftl_eq_push_bit) done lemma set_bits_uint32 [code]: "(BITS n. f n) = uint32_set_bits f 0 32" by transfer(simp add: set_bits_conv_set_bits_aux) lemma lsb_code [code]: fixes x :: uint32 shows "lsb x \ bit x 0" by transfer (simp add: lsb_word_eq) definition uint32_shiftl :: "uint32 \ integer \ uint32" where [code del]: "uint32_shiftl x n = (if n < 0 \ 32 \ n then undefined (push_bit :: nat \ uint32 \ _) x n else push_bit (nat_of_integer n) x)" lemma shiftl_uint32_code [code]: "push_bit n x = (if n < 32 then uint32_shiftl x (integer_of_nat n) else 0)" including undefined_transfer integer.lifting unfolding uint32_shiftl_def by transfer simp lemma uint32_shiftl_code [code abstract]: "Rep_uint32 (uint32_shiftl w n) = (if n < 0 \ 32 \ n then Rep_uint32 (undefined (push_bit :: nat \ uint32 \ _) w n) else push_bit (nat_of_integer n) (Rep_uint32 w))" including undefined_transfer unfolding uint32_shiftl_def by transfer (simp add: shiftl_eq_push_bit) code_printing constant uint32_shiftl \ (SML) "Uint32.shiftl" and (Haskell) "Data'_Bits.shiftlBounded" and (OCaml) "Uint32.shiftl" and (Scala) "Uint32.shiftl" and (Eval) "(fn x => fn i => if i < 0 orelse i >= 32 then raise Fail \"argument to uint32'_shiftl out of bounds\" else Uint32.shiftl x i)" definition uint32_shiftr :: "uint32 \ integer \ uint32" where [code del]: "uint32_shiftr x n = (if n < 0 \ 32 \ n then undefined (drop_bit :: nat \ uint32 \ _) x n else drop_bit (nat_of_integer n) x)" lemma shiftr_uint32_code [code]: "drop_bit n x = (if n < 32 then uint32_shiftr x (integer_of_nat n) else 0)" including undefined_transfer integer.lifting unfolding uint32_shiftr_def by transfer simp lemma uint32_shiftr_code [code abstract]: "Rep_uint32 (uint32_shiftr w n) = (if n < 0 \ 32 \ n then Rep_uint32 (undefined (drop_bit :: nat \ uint32 \ _) w n) else drop_bit (nat_of_integer n) (Rep_uint32 w))" including undefined_transfer unfolding uint32_shiftr_def by transfer simp code_printing constant uint32_shiftr \ (SML) "Uint32.shiftr" and (Haskell) "Data'_Bits.shiftrBounded" and (OCaml) "Uint32.shiftr" and (Scala) "Uint32.shiftr" and (Eval) "(fn x => fn i => if i < 0 orelse i >= 32 then raise Fail \"argument to uint32'_shiftr out of bounds\" else Uint32.shiftr x i)" definition uint32_sshiftr :: "uint32 \ integer \ uint32" where [code del]: "uint32_sshiftr x n = (if n < 0 \ 32 \ n then undefined sshiftr_uint32 x n else sshiftr_uint32 x (nat_of_integer n))" lemma sshiftr_uint32_code [code]: "x >>> n = (if n < 32 then uint32_sshiftr x (integer_of_nat n) else if bit x 31 then - 1 else 0)" including undefined_transfer integer.lifting unfolding uint32_sshiftr_def by transfer (simp add: not_less signed_drop_bit_beyond) lemma uint32_sshiftr_code [code abstract]: "Rep_uint32 (uint32_sshiftr w n) = (if n < 0 \ 32 \ n then Rep_uint32 (undefined sshiftr_uint32 w n) else signed_drop_bit (nat_of_integer n) (Rep_uint32 w))" including undefined_transfer unfolding uint32_sshiftr_def by transfer simp code_printing constant uint32_sshiftr \ (SML) "Uint32.shiftr'_signed" and (Haskell) "(Prelude.fromInteger (Prelude.toInteger (Data'_Bits.shiftrBounded (Prelude.fromInteger (Prelude.toInteger _) :: Uint32.Int32) _)) :: Uint32.Word32)" and (OCaml) "Uint32.shiftr'_signed" and (Scala) "Uint32.shiftr'_signed" and (Eval) "(fn x => fn i => if i < 0 orelse i >= 32 then raise Fail \"argument to uint32'_shiftr'_signed out of bounds\" else Uint32.shiftr'_signed x i)" lemma uint32_msb_test_bit: "msb x \ bit (x :: uint32) 31" by transfer (simp add: msb_word_iff_bit) lemma msb_uint32_code [code]: "msb x \ uint32_test_bit x 31" by (simp add: uint32_test_bit_def uint32_msb_test_bit) lemma uint32_of_int_code [code]: "uint32_of_int i = Uint32 (integer_of_int i)" including integer.lifting by transfer simp lemma int_of_uint32_code [code]: "int_of_uint32 x = int_of_integer (integer_of_uint32 x)" by(simp add: integer_of_uint32_def) lemma nat_of_uint32_code [code]: "nat_of_uint32 x = nat_of_integer (integer_of_uint32 x)" unfolding integer_of_uint32_def including integer.lifting by transfer simp definition integer_of_uint32_signed :: "uint32 \ integer" where "integer_of_uint32_signed n = (if bit n 31 then undefined integer_of_uint32 n else integer_of_uint32 n)" lemma integer_of_uint32_signed_code [code]: "integer_of_uint32_signed n = (if bit n 31 then undefined integer_of_uint32 n else integer_of_int (uint (Rep_uint32' n)))" unfolding integer_of_uint32_signed_def integer_of_uint32_def including undefined_transfer by transfer simp lemma integer_of_uint32_code [code]: "integer_of_uint32 n = (if bit n 31 then integer_of_uint32_signed (n AND 0x7FFFFFFF) OR 0x80000000 else integer_of_uint32_signed n)" proof - have \(0x7FFFFFFF :: uint32) = mask 31\ by (simp add: mask_eq_exp_minus_1) then have *: \n AND 0x7FFFFFFF = take_bit 31 n\ by (simp add: take_bit_eq_mask) have **: \(0x80000000 :: int) = 2 ^ 31\ by simp show ?thesis unfolding integer_of_uint32_def integer_of_uint32_signed_def o_def * including undefined_transfer integer.lifting apply transfer apply (rule bit_eqI) - apply (simp add: test_bit_eq_bit bit_or_iff bit_take_bit_iff bit_uint_iff) + apply (simp add: bit_or_iff bit_take_bit_iff bit_uint_iff) apply (simp only: bit_exp_iff bit_or_iff **) apply auto done qed code_printing constant "integer_of_uint32" \ (SML) "IntInf.fromLarge (Word32.toLargeInt _) : IntInf.int" and (Haskell) "Prelude.toInteger" | constant "integer_of_uint32_signed" \ (OCaml) "Z.of'_int32" and (Scala) "BigInt" section \Quickcheck setup\ definition uint32_of_natural :: "natural \ uint32" where "uint32_of_natural x \ Uint32 (integer_of_natural x)" instantiation uint32 :: "{random, exhaustive, full_exhaustive}" begin definition "random_uint32 \ qc_random_cnv uint32_of_natural" definition "exhaustive_uint32 \ qc_exhaustive_cnv uint32_of_natural" definition "full_exhaustive_uint32 \ qc_full_exhaustive_cnv uint32_of_natural" instance .. end instantiation uint32 :: narrowing begin interpretation quickcheck_narrowing_samples "\i. let x = Uint32 i in (x, 0xFFFFFFFF - x)" "0" "Typerep.Typerep (STR ''Uint32.uint32'') []" . definition "narrowing_uint32 d = qc_narrowing_drawn_from (narrowing_samples d) d" declare [[code drop: "partial_term_of :: uint32 itself \ _"]] lemmas partial_term_of_uint32 [code] = partial_term_of_code instance .. end no_notation sshiftr_uint32 (infixl ">>>" 55) end diff --git a/thys/Native_Word/Uint64.thy b/thys/Native_Word/Uint64.thy --- a/thys/Native_Word/Uint64.thy +++ b/thys/Native_Word/Uint64.thy @@ -1,988 +1,984 @@ (* Title: Uint64.thy Author: Andreas Lochbihler, ETH Zurich *) chapter \Unsigned words of 64 bits\ theory Uint64 imports Code_Target_Word_Base begin text \ PolyML (in version 5.7) provides a Word64 structure only when run in 64-bit mode. Therefore, we by default provide an implementation of 64-bit words using \verb$IntInf.int$ and masking. The code target \texttt{SML\_word} replaces this implementation and maps the operations directly to the \verb$Word64$ structure provided by the Standard ML implementations. The \verb$Eval$ target used by @{command value} and @{method eval} dynamically tests at runtime for the version of PolyML and uses PolyML's Word64 structure if it detects a 64-bit version which does not suffer from a division bug found in PolyML 5.6. \ declare prod.Quotient[transfer_rule] section \Type definition and primitive operations\ typedef uint64 = "UNIV :: 64 word set" .. setup_lifting type_definition_uint64 text \Use an abstract type for code generation to disable pattern matching on @{term Abs_uint64}.\ declare Rep_uint64_inverse[code abstype] declare Quotient_uint64[transfer_rule] instantiation uint64 :: comm_ring_1 begin lift_definition zero_uint64 :: uint64 is "0 :: 64 word" . lift_definition one_uint64 :: uint64 is "1" . lift_definition plus_uint64 :: "uint64 \ uint64 \ uint64" is "(+) :: 64 word \ _" . lift_definition minus_uint64 :: "uint64 \ uint64 \ uint64" is "(-)" . lift_definition uminus_uint64 :: "uint64 \ uint64" is uminus . lift_definition times_uint64 :: "uint64 \ uint64 \ uint64" is "(*)" . instance by (standard; transfer) (simp_all add: algebra_simps) end instantiation uint64 :: semiring_modulo begin lift_definition divide_uint64 :: "uint64 \ uint64 \ uint64" is "(div)" . lift_definition modulo_uint64 :: "uint64 \ uint64 \ uint64" is "(mod)" . instance by (standard; transfer) (fact word_mod_div_equality) end instantiation uint64 :: linorder begin lift_definition less_uint64 :: "uint64 \ uint64 \ bool" is "(<)" . lift_definition less_eq_uint64 :: "uint64 \ uint64 \ bool" is "(\)" . instance by (standard; transfer) (simp_all add: less_le_not_le linear) end lemmas [code] = less_uint64.rep_eq less_eq_uint64.rep_eq context includes lifting_syntax notes transfer_rule_of_bool [transfer_rule] transfer_rule_numeral [transfer_rule] begin lemma [transfer_rule]: "((=) ===> cr_uint64) of_bool of_bool" by transfer_prover lemma transfer_rule_numeral_uint [transfer_rule]: "((=) ===> cr_uint64) numeral numeral" by transfer_prover lemma [transfer_rule]: \(cr_uint64 ===> (\)) even ((dvd) 2 :: uint64 \ bool)\ by (unfold dvd_def) transfer_prover end instantiation uint64 :: semiring_bits begin lift_definition bit_uint64 :: \uint64 \ nat \ bool\ is bit . instance by (standard; transfer) (fact bit_iff_odd even_iff_mod_2_eq_zero odd_iff_mod_2_eq_one odd_one bits_induct bits_div_0 bits_div_by_1 bits_mod_div_trivial even_succ_div_2 even_mask_div_iff exp_div_exp_eq div_exp_eq mod_exp_eq mult_exp_mod_exp_eq div_exp_mod_exp_eq even_mult_exp_div_exp_iff)+ end instantiation uint64 :: semiring_bit_shifts begin lift_definition push_bit_uint64 :: \nat \ uint64 \ uint64\ is push_bit . lift_definition drop_bit_uint64 :: \nat \ uint64 \ uint64\ is drop_bit . lift_definition take_bit_uint64 :: \nat \ uint64 \ uint64\ is take_bit . instance by (standard; transfer) (fact push_bit_eq_mult drop_bit_eq_div take_bit_eq_mod)+ end instantiation uint64 :: ring_bit_operations begin lift_definition not_uint64 :: \uint64 \ uint64\ is NOT . lift_definition and_uint64 :: \uint64 \ uint64 \ uint64\ is \(AND)\ . lift_definition or_uint64 :: \uint64 \ uint64 \ uint64\ is \(OR)\ . lift_definition xor_uint64 :: \uint64 \ uint64 \ uint64\ is \(XOR)\ . lift_definition mask_uint64 :: \nat \ uint64\ is mask . lift_definition set_bit_uint64 :: \nat \ uint64 \ uint64\ is \Bit_Operations.set_bit\ . lift_definition unset_bit_uint64 :: \nat \ uint64 \ uint64\ is \unset_bit\ . lift_definition flip_bit_uint64 :: \nat \ uint64 \ uint64\ is \flip_bit\ . instance by (standard; transfer) (simp_all add: bit_simps mask_eq_decr_exp minus_eq_not_minus_1 set_bit_def flip_bit_def) end lemma [code]: \take_bit n a = a AND mask n\ for a :: uint64 by (fact take_bit_eq_mask) lemma [code]: \mask (Suc n) = push_bit n (1 :: uint64) OR mask n\ \mask 0 = (0 :: uint64)\ by (simp_all add: mask_Suc_exp push_bit_of_1) lemma [code]: \Bit_Operations.set_bit n w = w OR push_bit n 1\ for w :: uint64 by (fact set_bit_eq_or) lemma [code]: \unset_bit n w = w AND NOT (push_bit n 1)\ for w :: uint64 by (fact unset_bit_eq_and_not) lemma [code]: \flip_bit n w = w XOR push_bit n 1\ for w :: uint64 by (fact flip_bit_eq_xor) instance uint64 :: semiring_bit_syntax .. context includes lifting_syntax begin -lemma test_bit_uint64_transfer [transfer_rule]: - \(cr_uint64 ===> (=)) bit (!!)\ - unfolding test_bit_eq_bit by transfer_prover - lemma shiftl_uint64_transfer [transfer_rule]: \(cr_uint64 ===> (=) ===> cr_uint64) (\k n. push_bit n k) (<<)\ unfolding shiftl_eq_push_bit by transfer_prover lemma shiftr_uint64_transfer [transfer_rule]: \(cr_uint64 ===> (=) ===> cr_uint64) (\k n. drop_bit n k) (>>)\ unfolding shiftr_eq_drop_bit by transfer_prover end instantiation uint64 :: lsb begin lift_definition lsb_uint64 :: \uint64 \ bool\ is lsb . instance by (standard; transfer) (fact lsb_odd) end instantiation uint64 :: msb begin lift_definition msb_uint64 :: \uint64 \ bool\ is msb . instance .. end setup \Context.theory_map (Name_Space.map_naming (Name_Space.qualified_path true \<^binding>\Generic\))\ instantiation uint64 :: set_bit begin lift_definition set_bit_uint64 :: \uint64 \ nat \ bool \ uint64\ is set_bit . instance apply standard apply transfer apply (simp add: bit_simps) done end setup \Context.theory_map (Name_Space.map_naming (Name_Space.parent_path))\ instantiation uint64 :: bit_comprehension begin lift_definition set_bits_uint64 :: "(nat \ bool) \ uint64" is "set_bits" . instance by (standard; transfer) (fact set_bits_bit_eq) end lemmas [code] = bit_uint64.rep_eq lsb_uint64.rep_eq msb_uint64.rep_eq instantiation uint64 :: equal begin lift_definition equal_uint64 :: "uint64 \ uint64 \ bool" is "equal_class.equal" . instance by standard (transfer, simp add: equal_eq) end lemmas [code] = equal_uint64.rep_eq instantiation uint64 :: size begin lift_definition size_uint64 :: "uint64 \ nat" is "size" . instance .. end lemmas [code] = size_uint64.rep_eq lift_definition sshiftr_uint64 :: "uint64 \ nat \ uint64" (infixl ">>>" 55) is \\w n. signed_drop_bit n w\ . lift_definition uint64_of_int :: "int \ uint64" is "word_of_int" . definition uint64_of_nat :: "nat \ uint64" where "uint64_of_nat = uint64_of_int \ int" lift_definition int_of_uint64 :: "uint64 \ int" is "uint" . lift_definition nat_of_uint64 :: "uint64 \ nat" is "unat" . definition integer_of_uint64 :: "uint64 \ integer" where "integer_of_uint64 = integer_of_int o int_of_uint64" text \Use pretty numerals from integer for pretty printing\ context includes integer.lifting begin lift_definition Uint64 :: "integer \ uint64" is "word_of_int" . lemma Rep_uint64_numeral [simp]: "Rep_uint64 (numeral n) = numeral n" by(induction n)(simp_all add: one_uint64_def Abs_uint64_inverse numeral.simps plus_uint64_def) lemma numeral_uint64_transfer [transfer_rule]: "(rel_fun (=) cr_uint64) numeral numeral" by(auto simp add: cr_uint64_def) lemma numeral_uint64 [code_unfold]: "numeral n = Uint64 (numeral n)" by transfer simp lemma Rep_uint64_neg_numeral [simp]: "Rep_uint64 (- numeral n) = - numeral n" by(simp only: uminus_uint64_def)(simp add: Abs_uint64_inverse) lemma neg_numeral_uint64 [code_unfold]: "- numeral n = Uint64 (- numeral n)" by transfer(simp add: cr_uint64_def) end lemma Abs_uint64_numeral [code_post]: "Abs_uint64 (numeral n) = numeral n" by(induction n)(simp_all add: one_uint64_def numeral.simps plus_uint64_def Abs_uint64_inverse) lemma Abs_uint64_0 [code_post]: "Abs_uint64 0 = 0" by(simp add: zero_uint64_def) lemma Abs_uint64_1 [code_post]: "Abs_uint64 1 = 1" by(simp add: one_uint64_def) section \Code setup\ text \ For SML, we generate an implementation of unsigned 64-bit words using \verb$IntInf.int$. If @{ML "LargeWord.wordSize > 63"} of the Isabelle/ML runtime environment holds, then we assume that there is also a \Word64\ structure available and accordingly replace the implementation for the target \verb$Eval$. \ code_printing code_module "Uint64" \ (SML) \(* Test that words can handle numbers between 0 and 63 *) val _ = if 6 <= Word.wordSize then () else raise (Fail ("wordSize less than 6")); structure Uint64 : sig eqtype uint64; val zero : uint64; val one : uint64; val fromInt : IntInf.int -> uint64; val toInt : uint64 -> IntInf.int; val toLarge : uint64 -> LargeWord.word; val fromLarge : LargeWord.word -> uint64 val plus : uint64 -> uint64 -> uint64; val minus : uint64 -> uint64 -> uint64; val times : uint64 -> uint64 -> uint64; val divide : uint64 -> uint64 -> uint64; val modulus : uint64 -> uint64 -> uint64; val negate : uint64 -> uint64; val less_eq : uint64 -> uint64 -> bool; val less : uint64 -> uint64 -> bool; val notb : uint64 -> uint64; val andb : uint64 -> uint64 -> uint64; val orb : uint64 -> uint64 -> uint64; val xorb : uint64 -> uint64 -> uint64; val shiftl : uint64 -> IntInf.int -> uint64; val shiftr : uint64 -> IntInf.int -> uint64; val shiftr_signed : uint64 -> IntInf.int -> uint64; val set_bit : uint64 -> IntInf.int -> bool -> uint64; val test_bit : uint64 -> IntInf.int -> bool; end = struct type uint64 = IntInf.int; val mask = 0xFFFFFFFFFFFFFFFF : IntInf.int; val zero = 0 : IntInf.int; val one = 1 : IntInf.int; fun fromInt x = IntInf.andb(x, mask); fun toInt x = x fun toLarge x = LargeWord.fromLargeInt (IntInf.toLarge x); fun fromLarge x = IntInf.fromLarge (LargeWord.toLargeInt x); fun plus x y = IntInf.andb(IntInf.+(x, y), mask); fun minus x y = IntInf.andb(IntInf.-(x, y), mask); fun negate x = IntInf.andb(IntInf.~(x), mask); fun times x y = IntInf.andb(IntInf.*(x, y), mask); fun divide x y = IntInf.div(x, y); fun modulus x y = IntInf.mod(x, y); fun less_eq x y = IntInf.<=(x, y); fun less x y = IntInf.<(x, y); fun notb x = IntInf.andb(IntInf.notb(x), mask); fun orb x y = IntInf.orb(x, y); fun andb x y = IntInf.andb(x, y); fun xorb x y = IntInf.xorb(x, y); val maxWord = IntInf.pow (2, Word.wordSize); fun shiftl x n = if n < maxWord then IntInf.andb(IntInf.<< (x, Word.fromLargeInt (IntInf.toLarge n)), mask) else 0; fun shiftr x n = if n < maxWord then IntInf.~>> (x, Word.fromLargeInt (IntInf.toLarge n)) else 0; val msb_mask = 0x8000000000000000 : IntInf.int; fun shiftr_signed x i = if IntInf.andb(x, msb_mask) = 0 then shiftr x i else if i >= 64 then 0xFFFFFFFFFFFFFFFF else let val x' = shiftr x i val m' = IntInf.andb(IntInf.<<(mask, Word.max(0w64 - Word.fromLargeInt (IntInf.toLarge i), 0w0)), mask) in IntInf.orb(x', m') end; fun test_bit x n = if n < maxWord then IntInf.andb (x, IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n))) <> 0 else false; fun set_bit x n b = if n < 64 then if b then IntInf.orb (x, IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n))) else IntInf.andb (x, IntInf.notb (IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n)))) else x; end \ code_reserved SML Uint64 setup \ let val polyml64 = LargeWord.wordSize > 63; (* PolyML 5.6 has bugs in its Word64 implementation. We test for one such bug and refrain from using Word64 in that case. Testing is done with dynamic code evaluation such that the compiler does not choke on the Word64 structure, which need not be present in a 32bit environment. *) val error_msg = "Buggy Word64 structure"; val test_code = "val _ = if Word64.div (0w18446744073709551611 : Word64.word, 0w3) = 0w6148914691236517203 then ()\n" ^ "else raise (Fail \"" ^ error_msg ^ "\");"; val f = Exn.interruptible_capture (fn () => ML_Compiler.eval ML_Compiler.flags Position.none (ML_Lex.tokenize test_code)) val use_Word64 = polyml64 andalso (case f () of Exn.Res _ => true | Exn.Exn (e as ERROR m) => if String.isSuffix error_msg m then false else Exn.reraise e | Exn.Exn e => Exn.reraise e) ; val newline = "\n"; val content = "structure Uint64 : sig" ^ newline ^ " eqtype uint64;" ^ newline ^ " val zero : uint64;" ^ newline ^ " val one : uint64;" ^ newline ^ " val fromInt : IntInf.int -> uint64;" ^ newline ^ " val toInt : uint64 -> IntInf.int;" ^ newline ^ " val toLarge : uint64 -> LargeWord.word;" ^ newline ^ " val fromLarge : LargeWord.word -> uint64" ^ newline ^ " val plus : uint64 -> uint64 -> uint64;" ^ newline ^ " val minus : uint64 -> uint64 -> uint64;" ^ newline ^ " val times : uint64 -> uint64 -> uint64;" ^ newline ^ " val divide : uint64 -> uint64 -> uint64;" ^ newline ^ " val modulus : uint64 -> uint64 -> uint64;" ^ newline ^ " val negate : uint64 -> uint64;" ^ newline ^ " val less_eq : uint64 -> uint64 -> bool;" ^ newline ^ " val less : uint64 -> uint64 -> bool;" ^ newline ^ " val notb : uint64 -> uint64;" ^ newline ^ " val andb : uint64 -> uint64 -> uint64;" ^ newline ^ " val orb : uint64 -> uint64 -> uint64;" ^ newline ^ " val xorb : uint64 -> uint64 -> uint64;" ^ newline ^ " val shiftl : uint64 -> IntInf.int -> uint64;" ^ newline ^ " val shiftr : uint64 -> IntInf.int -> uint64;" ^ newline ^ " val shiftr_signed : uint64 -> IntInf.int -> uint64;" ^ newline ^ " val set_bit : uint64 -> IntInf.int -> bool -> uint64;" ^ newline ^ " val test_bit : uint64 -> IntInf.int -> bool;" ^ newline ^ "end = struct" ^ newline ^ "" ^ newline ^ "type uint64 = Word64.word;" ^ newline ^ "" ^ newline ^ "val zero = (0wx0 : uint64);" ^ newline ^ "" ^ newline ^ "val one = (0wx1 : uint64);" ^ newline ^ "" ^ newline ^ "fun fromInt x = Word64.fromLargeInt (IntInf.toLarge x);" ^ newline ^ "" ^ newline ^ "fun toInt x = IntInf.fromLarge (Word64.toLargeInt x);" ^ newline ^ "" ^ newline ^ "fun fromLarge x = Word64.fromLarge x;" ^ newline ^ "" ^ newline ^ "fun toLarge x = Word64.toLarge x;" ^ newline ^ "" ^ newline ^ "fun plus x y = Word64.+(x, y);" ^ newline ^ "" ^ newline ^ "fun minus x y = Word64.-(x, y);" ^ newline ^ "" ^ newline ^ "fun negate x = Word64.~(x);" ^ newline ^ "" ^ newline ^ "fun times x y = Word64.*(x, y);" ^ newline ^ "" ^ newline ^ "fun divide x y = Word64.div(x, y);" ^ newline ^ "" ^ newline ^ "fun modulus x y = Word64.mod(x, y);" ^ newline ^ "" ^ newline ^ "fun less_eq x y = Word64.<=(x, y);" ^ newline ^ "" ^ newline ^ "fun less x y = Word64.<(x, y);" ^ newline ^ "" ^ newline ^ "fun set_bit x n b =" ^ newline ^ " let val mask = Word64.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))" ^ newline ^ " in if b then Word64.orb (x, mask)" ^ newline ^ " else Word64.andb (x, Word64.notb mask)" ^ newline ^ " end" ^ newline ^ "" ^ newline ^ "fun shiftl x n =" ^ newline ^ " Word64.<< (x, Word.fromLargeInt (IntInf.toLarge n))" ^ newline ^ "" ^ newline ^ "fun shiftr x n =" ^ newline ^ " Word64.>> (x, Word.fromLargeInt (IntInf.toLarge n))" ^ newline ^ "" ^ newline ^ "fun shiftr_signed x n =" ^ newline ^ " Word64.~>> (x, Word.fromLargeInt (IntInf.toLarge n))" ^ newline ^ "" ^ newline ^ "fun test_bit x n =" ^ newline ^ " Word64.andb (x, Word64.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))) <> Word64.fromInt 0" ^ newline ^ "" ^ newline ^ "val notb = Word64.notb" ^ newline ^ "" ^ newline ^ "fun andb x y = Word64.andb(x, y);" ^ newline ^ "" ^ newline ^ "fun orb x y = Word64.orb(x, y);" ^ newline ^ "" ^ newline ^ "fun xorb x y = Word64.xorb(x, y);" ^ newline ^ "" ^ newline ^ "end (*struct Uint64*)" val target_SML64 = "SML_word"; in (if use_Word64 then Code_Target.set_printings (Code_Symbol.Module ("Uint64", [(Code_Runtime.target, SOME (content, []))])) else I) #> Code_Target.set_printings (Code_Symbol.Module ("Uint64", [(target_SML64, SOME (content, []))])) end \ code_printing code_module Uint64 \ (Haskell) \module Uint64(Int64, Word64) where import Data.Int(Int64) import Data.Word(Word64)\ code_reserved Haskell Uint64 text \ OCaml and Scala provide only signed 64bit numbers, so we use these and implement sign-sensitive operations like comparisons manually. \ code_printing code_module "Uint64" \ (OCaml) \module Uint64 : sig val less : int64 -> int64 -> bool val less_eq : int64 -> int64 -> bool val set_bit : int64 -> Z.t -> bool -> int64 val shiftl : int64 -> Z.t -> int64 val shiftr : int64 -> Z.t -> int64 val shiftr_signed : int64 -> Z.t -> int64 val test_bit : int64 -> Z.t -> bool end = struct (* negative numbers have their highest bit set, so they are greater than positive ones *) let less x y = if Int64.compare x Int64.zero < 0 then Int64.compare y Int64.zero < 0 && Int64.compare x y < 0 else Int64.compare y Int64.zero < 0 || Int64.compare x y < 0;; let less_eq x y = if Int64.compare x Int64.zero < 0 then Int64.compare y Int64.zero < 0 && Int64.compare x y <= 0 else Int64.compare y Int64.zero < 0 || Int64.compare x y <= 0;; let set_bit x n b = let mask = Int64.shift_left Int64.one (Z.to_int n) in if b then Int64.logor x mask else Int64.logand x (Int64.lognot mask);; let shiftl x n = Int64.shift_left x (Z.to_int n);; let shiftr x n = Int64.shift_right_logical x (Z.to_int n);; let shiftr_signed x n = Int64.shift_right x (Z.to_int n);; let test_bit x n = Int64.compare (Int64.logand x (Int64.shift_left Int64.one (Z.to_int n))) Int64.zero <> 0;; end;; (*struct Uint64*)\ code_reserved OCaml Uint64 code_printing code_module Uint64 \ (Scala) \object Uint64 { def less(x: Long, y: Long) : Boolean = if (x < 0) y < 0 && x < y else y < 0 || x < y def less_eq(x: Long, y: Long) : Boolean = if (x < 0) y < 0 && x <= y else y < 0 || x <= y def set_bit(x: Long, n: BigInt, b: Boolean) : Long = if (b) x | (1L << n.intValue) else x & (1L << n.intValue).unary_~ def shiftl(x: Long, n: BigInt) : Long = x << n.intValue def shiftr(x: Long, n: BigInt) : Long = x >>> n.intValue def shiftr_signed(x: Long, n: BigInt) : Long = x >> n.intValue def test_bit(x: Long, n: BigInt) : Boolean = (x & (1L << n.intValue)) != 0 } /* object Uint64 */\ code_reserved Scala Uint64 text \ OCaml's conversion from Big\_int to int64 demands that the value fits int a signed 64-bit integer. The following justifies the implementation. \ definition Uint64_signed :: "integer \ uint64" where "Uint64_signed i = (if i < -(0x8000000000000000) \ i \ 0x8000000000000000 then undefined Uint64 i else Uint64 i)" lemma Uint64_code [code]: "Uint64 i = (let i' = i AND 0xFFFFFFFFFFFFFFFF in if bit i' 63 then Uint64_signed (i' - 0x10000000000000000) else Uint64_signed i')" including undefined_transfer integer.lifting unfolding Uint64_signed_def apply transfer apply (subst word_of_int_via_signed) apply (auto simp add: shiftl_eq_push_bit push_bit_of_1 mask_eq_exp_minus_1 word_of_int_via_signed cong del: if_cong) done lemma Uint64_signed_code [code abstract]: "Rep_uint64 (Uint64_signed i) = (if i < -(0x8000000000000000) \ i \ 0x8000000000000000 then Rep_uint64 (undefined Uint64 i) else word_of_int (int_of_integer_symbolic i))" unfolding Uint64_signed_def Uint64_def int_of_integer_symbolic_def word_of_integer_def by(simp add: Abs_uint64_inverse) text \ Avoid @{term Abs_uint64} in generated code, use @{term Rep_uint64'} instead. The symbolic implementations for code\_simp use @{term Rep_uint64}. The new destructor @{term Rep_uint64'} is executable. As the simplifier is given the [code abstract] equations literally, we cannot implement @{term Rep_uint64} directly, because that makes code\_simp loop. If code generation raises Match, some equation probably contains @{term Rep_uint64} ([code abstract] equations for @{typ uint64} may use @{term Rep_uint64} because these instances will be folded away.) To convert @{typ "64 word"} values into @{typ uint64}, use @{term "Abs_uint64'"}. \ definition Rep_uint64' where [simp]: "Rep_uint64' = Rep_uint64" lemma Rep_uint64'_transfer [transfer_rule]: "rel_fun cr_uint64 (=) (\x. x) Rep_uint64'" unfolding Rep_uint64'_def by(rule uint64.rep_transfer) lemma Rep_uint64'_code [code]: "Rep_uint64' x = (BITS n. bit x n)" by transfer (simp add: set_bits_bit_eq) lift_definition Abs_uint64' :: "64 word \ uint64" is "\x :: 64 word. x" . lemma Abs_uint64'_code [code]: "Abs_uint64' x = Uint64 (integer_of_int (uint x))" including integer.lifting by transfer simp declare [[code drop: "term_of_class.term_of :: uint64 \ _"]] lemma term_of_uint64_code [code]: defines "TR \ typerep.Typerep" and "bit0 \ STR ''Numeral_Type.bit0''" shows "term_of_class.term_of x = Code_Evaluation.App (Code_Evaluation.Const (STR ''Uint64.uint64.Abs_uint64'') (TR (STR ''fun'') [TR (STR ''Word.word'') [TR bit0 [TR bit0 [TR bit0 [TR bit0 [TR bit0 [TR bit0 [TR (STR ''Numeral_Type.num1'') []]]]]]]], TR (STR ''Uint64.uint64'') []])) (term_of_class.term_of (Rep_uint64' x))" by(simp add: term_of_anything) code_printing type_constructor uint64 \ (SML) "Uint64.uint64" and (Haskell) "Uint64.Word64" and (OCaml) "int64" and (Scala) "Long" | constant Uint64 \ (SML) "Uint64.fromInt" and (Haskell) "(Prelude.fromInteger _ :: Uint64.Word64)" and (Haskell_Quickcheck) "(Prelude.fromInteger (Prelude.toInteger _) :: Uint64.Word64)" and (Scala) "_.longValue" | constant Uint64_signed \ (OCaml) "Z.to'_int64" | constant "0 :: uint64" \ (SML) "Uint64.zero" and (Haskell) "(0 :: Uint64.Word64)" and (OCaml) "Int64.zero" and (Scala) "0" | constant "1 :: uint64" \ (SML) "Uint64.one" and (Haskell) "(1 :: Uint64.Word64)" and (OCaml) "Int64.one" and (Scala) "1" | constant "plus :: uint64 \ _ " \ (SML) "Uint64.plus" and (Haskell) infixl 6 "+" and (OCaml) "Int64.add" and (Scala) infixl 7 "+" | constant "uminus :: uint64 \ _" \ (SML) "Uint64.negate" and (Haskell) "negate" and (OCaml) "Int64.neg" and (Scala) "!(- _)" | constant "minus :: uint64 \ _" \ (SML) "Uint64.minus" and (Haskell) infixl 6 "-" and (OCaml) "Int64.sub" and (Scala) infixl 7 "-" | constant "times :: uint64 \ _ \ _" \ (SML) "Uint64.times" and (Haskell) infixl 7 "*" and (OCaml) "Int64.mul" and (Scala) infixl 8 "*" | constant "HOL.equal :: uint64 \ _ \ bool" \ (SML) "!((_ : Uint64.uint64) = _)" and (Haskell) infix 4 "==" and (OCaml) "(Int64.compare _ _ = 0)" and (Scala) infixl 5 "==" | class_instance uint64 :: equal \ (Haskell) - | constant "less_eq :: uint64 \ _ \ bool" \ (SML) "Uint64.less'_eq" and (Haskell) infix 4 "<=" and (OCaml) "Uint64.less'_eq" and (Scala) "Uint64.less'_eq" | constant "less :: uint64 \ _ \ bool" \ (SML) "Uint64.less" and (Haskell) infix 4 "<" and (OCaml) "Uint64.less" and (Scala) "Uint64.less" | constant "NOT :: uint64 \ _" \ (SML) "Uint64.notb" and (Haskell) "Data'_Bits.complement" and (OCaml) "Int64.lognot" and (Scala) "_.unary'_~" | constant "(AND) :: uint64 \ _" \ (SML) "Uint64.andb" and (Haskell) infixl 7 "Data_Bits..&." and (OCaml) "Int64.logand" and (Scala) infixl 3 "&" | constant "(OR) :: uint64 \ _" \ (SML) "Uint64.orb" and (Haskell) infixl 5 "Data_Bits..|." and (OCaml) "Int64.logor" and (Scala) infixl 1 "|" | constant "(XOR) :: uint64 \ _" \ (SML) "Uint64.xorb" and (Haskell) "Data'_Bits.xor" and (OCaml) "Int64.logxor" and (Scala) infixl 2 "^" definition uint64_divmod :: "uint64 \ uint64 \ uint64 \ uint64" where "uint64_divmod x y = (if y = 0 then (undefined ((div) :: uint64 \ _) x (0 :: uint64), undefined ((mod) :: uint64 \ _) x (0 :: uint64)) else (x div y, x mod y))" definition uint64_div :: "uint64 \ uint64 \ uint64" where "uint64_div x y = fst (uint64_divmod x y)" definition uint64_mod :: "uint64 \ uint64 \ uint64" where "uint64_mod x y = snd (uint64_divmod x y)" lemma div_uint64_code [code]: "x div y = (if y = 0 then 0 else uint64_div x y)" including undefined_transfer unfolding uint64_divmod_def uint64_div_def by transfer (simp add: word_div_def) lemma mod_uint64_code [code]: "x mod y = (if y = 0 then x else uint64_mod x y)" including undefined_transfer unfolding uint64_mod_def uint64_divmod_def by transfer (simp add: word_mod_def) definition uint64_sdiv :: "uint64 \ uint64 \ uint64" where [code del]: "uint64_sdiv x y = (if y = 0 then undefined ((div) :: uint64 \ _) x (0 :: uint64) else Abs_uint64 (Rep_uint64 x sdiv Rep_uint64 y))" definition div0_uint64 :: "uint64 \ uint64" where [code del]: "div0_uint64 x = undefined ((div) :: uint64 \ _) x (0 :: uint64)" declare [[code abort: div0_uint64]] definition mod0_uint64 :: "uint64 \ uint64" where [code del]: "mod0_uint64 x = undefined ((mod) :: uint64 \ _) x (0 :: uint64)" declare [[code abort: mod0_uint64]] lemma uint64_divmod_code [code]: "uint64_divmod x y = (if 0x8000000000000000 \ y then if x < y then (0, x) else (1, x - y) else if y = 0 then (div0_uint64 x, mod0_uint64 x) else let q = push_bit 1 (uint64_sdiv (drop_bit 1 x) y); r = x - q * y in if r \ y then (q + 1, r - y) else (q, r))" including undefined_transfer unfolding uint64_divmod_def uint64_sdiv_def div0_uint64_def mod0_uint64_def by transfer (simp add: divmod_via_sdivmod shiftr_eq_drop_bit shiftl_eq_push_bit ac_simps) lemma uint64_sdiv_code [code abstract]: "Rep_uint64 (uint64_sdiv x y) = (if y = 0 then Rep_uint64 (undefined ((div) :: uint64 \ _) x (0 :: uint64)) else Rep_uint64 x sdiv Rep_uint64 y)" unfolding uint64_sdiv_def by(simp add: Abs_uint64_inverse) text \ Note that we only need a translation for signed division, but not for the remainder because @{thm uint64_divmod_code} computes both with division only. \ code_printing constant uint64_div \ (SML) "Uint64.divide" and (Haskell) "Prelude.div" | constant uint64_mod \ (SML) "Uint64.modulus" and (Haskell) "Prelude.mod" | constant uint64_divmod \ (Haskell) "divmod" | constant uint64_sdiv \ (OCaml) "Int64.div" and (Scala) "_ '/ _" definition uint64_test_bit :: "uint64 \ integer \ bool" where [code del]: "uint64_test_bit x n = (if n < 0 \ 63 < n then undefined (bit :: uint64 \ _) x n else bit x (nat_of_integer n))" lemma bit_uint64_code [code]: "bit x n \ n < 64 \ uint64_test_bit x (integer_of_nat n)" including undefined_transfer integer.lifting unfolding uint64_test_bit_def by (transfer, simp, transfer, simp) lemma uint64_test_bit_code [code]: "uint64_test_bit w n = (if n < 0 \ 63 < n then undefined (bit :: uint64 \ _) w n else bit (Rep_uint64 w) (nat_of_integer n))" unfolding uint64_test_bit_def by(simp add: bit_uint64.rep_eq) code_printing constant uint64_test_bit \ (SML) "Uint64.test'_bit" and (Haskell) "Data'_Bits.testBitBounded" and (OCaml) "Uint64.test'_bit" and (Scala) "Uint64.test'_bit" and (Eval) "(fn x => fn i => if i < 0 orelse i >= 64 then raise (Fail \"argument to uint64'_test'_bit out of bounds\") else Uint64.test'_bit x i)" definition uint64_set_bit :: "uint64 \ integer \ bool \ uint64" where [code del]: "uint64_set_bit x n b = (if n < 0 \ 63 < n then undefined (set_bit :: uint64 \ _) x n b else set_bit x (nat_of_integer n) b)" lemma set_bit_uint64_code [code]: "set_bit x n b = (if n < 64 then uint64_set_bit x (integer_of_nat n) b else x)" including undefined_transfer integer.lifting unfolding uint64_set_bit_def by(transfer)(auto cong: conj_cong simp add: not_less set_bit_beyond word_size) lemma uint64_set_bit_code [code abstract]: "Rep_uint64 (uint64_set_bit w n b) = (if n < 0 \ 63 < n then Rep_uint64 (undefined (set_bit :: uint64 \ _) w n b) else set_bit (Rep_uint64 w) (nat_of_integer n) b)" including undefined_transfer unfolding uint64_set_bit_def by transfer simp code_printing constant uint64_set_bit \ (SML) "Uint64.set'_bit" and (Haskell) "Data'_Bits.setBitBounded" and (OCaml) "Uint64.set'_bit" and (Scala) "Uint64.set'_bit" and (Eval) "(fn x => fn i => fn b => if i < 0 orelse i >= 64 then raise (Fail \"argument to uint64'_set'_bit out of bounds\") else Uint64.set'_bit x i b)" lift_definition uint64_set_bits :: "(nat \ bool) \ uint64 \ nat \ uint64" is set_bits_aux . lemma uint64_set_bits_code [code]: "uint64_set_bits f w n = (if n = 0 then w else let n' = n - 1 in uint64_set_bits f (push_bit 1 w OR (if f n' then 1 else 0)) n')" apply (transfer fixing: n) apply (cases n) apply (simp_all add: shiftl_eq_push_bit) done lemma set_bits_uint64 [code]: "(BITS n. f n) = uint64_set_bits f 0 64" by transfer(simp add: set_bits_conv_set_bits_aux) lemma lsb_code [code]: fixes x :: uint64 shows "lsb x = bit x 0" by transfer (simp add: lsb_word_eq) definition uint64_shiftl :: "uint64 \ integer \ uint64" where [code del]: "uint64_shiftl x n = (if n < 0 \ 64 \ n then undefined (push_bit :: nat \ uint64 \ _) x n else push_bit (nat_of_integer n) x)" lemma shiftl_uint64_code [code]: "push_bit n x = (if n < 64 then uint64_shiftl x (integer_of_nat n) else 0)" including undefined_transfer integer.lifting unfolding uint64_shiftl_def by transfer simp lemma uint64_shiftl_code [code abstract]: "Rep_uint64 (uint64_shiftl w n) = (if n < 0 \ 64 \ n then Rep_uint64 (undefined (push_bit :: nat \ uint64 \ _) w n) else push_bit (nat_of_integer n) (Rep_uint64 w))" including undefined_transfer unfolding uint64_shiftl_def by transfer simp code_printing constant uint64_shiftl \ (SML) "Uint64.shiftl" and (Haskell) "Data'_Bits.shiftlBounded" and (OCaml) "Uint64.shiftl" and (Scala) "Uint64.shiftl" and (Eval) "(fn x => fn i => if i < 0 orelse i >= 64 then raise (Fail \"argument to uint64'_shiftl out of bounds\") else Uint64.shiftl x i)" definition uint64_shiftr :: "uint64 \ integer \ uint64" where [code del]: "uint64_shiftr x n = (if n < 0 \ 64 \ n then undefined (drop_bit :: nat \ uint64 \ _) x n else drop_bit (nat_of_integer n) x)" lemma shiftr_uint64_code [code]: "drop_bit n x = (if n < 64 then uint64_shiftr x (integer_of_nat n) else 0)" including undefined_transfer integer.lifting unfolding uint64_shiftr_def by transfer simp lemma uint64_shiftr_code [code abstract]: "Rep_uint64 (uint64_shiftr w n) = (if n < 0 \ 64 \ n then Rep_uint64 (undefined (drop_bit :: nat \ uint64 \ _) w n) else drop_bit (nat_of_integer n) (Rep_uint64 w))" including undefined_transfer unfolding uint64_shiftr_def by transfer simp code_printing constant uint64_shiftr \ (SML) "Uint64.shiftr" and (Haskell) "Data'_Bits.shiftrBounded" and (OCaml) "Uint64.shiftr" and (Scala) "Uint64.shiftr" and (Eval) "(fn x => fn i => if i < 0 orelse i >= 64 then raise (Fail \"argument to uint64'_shiftr out of bounds\") else Uint64.shiftr x i)" definition uint64_sshiftr :: "uint64 \ integer \ uint64" where [code del]: "uint64_sshiftr x n = (if n < 0 \ 64 \ n then undefined sshiftr_uint64 x n else sshiftr_uint64 x (nat_of_integer n))" lemma sshiftr_uint64_code [code]: "x >>> n = (if n < 64 then uint64_sshiftr x (integer_of_nat n) else if bit x 63 then - 1 else 0)" including undefined_transfer integer.lifting unfolding uint64_sshiftr_def by transfer (simp add: not_less signed_drop_bit_beyond) lemma uint64_sshiftr_code [code abstract]: "Rep_uint64 (uint64_sshiftr w n) = (if n < 0 \ 64 \ n then Rep_uint64 (undefined sshiftr_uint64 w n) else signed_drop_bit (nat_of_integer n) (Rep_uint64 w))" including undefined_transfer unfolding uint64_sshiftr_def by transfer simp code_printing constant uint64_sshiftr \ (SML) "Uint64.shiftr'_signed" and (Haskell) "(Prelude.fromInteger (Prelude.toInteger (Data'_Bits.shiftrBounded (Prelude.fromInteger (Prelude.toInteger _) :: Uint64.Int64) _)) :: Uint64.Word64)" and (OCaml) "Uint64.shiftr'_signed" and (Scala) "Uint64.shiftr'_signed" and (Eval) "(fn x => fn i => if i < 0 orelse i >= 64 then raise (Fail \"argument to uint64'_shiftr'_signed out of bounds\") else Uint64.shiftr'_signed x i)" lemma uint64_msb_test_bit: "msb x \ bit (x :: uint64) 63" by transfer (simp add: msb_word_iff_bit) lemma msb_uint64_code [code]: "msb x \ uint64_test_bit x 63" by (simp add: uint64_test_bit_def uint64_msb_test_bit) lemma uint64_of_int_code [code]: "uint64_of_int i = Uint64 (integer_of_int i)" including integer.lifting by transfer simp lemma int_of_uint64_code [code]: "int_of_uint64 x = int_of_integer (integer_of_uint64 x)" by(simp add: integer_of_uint64_def) lemma nat_of_uint64_code [code]: "nat_of_uint64 x = nat_of_integer (integer_of_uint64 x)" unfolding integer_of_uint64_def including integer.lifting by transfer simp definition integer_of_uint64_signed :: "uint64 \ integer" where "integer_of_uint64_signed n = (if bit n 63 then undefined integer_of_uint64 n else integer_of_uint64 n)" lemma integer_of_uint64_signed_code [code]: "integer_of_uint64_signed n = (if bit n 63 then undefined integer_of_uint64 n else integer_of_int (uint (Rep_uint64' n)))" unfolding integer_of_uint64_signed_def integer_of_uint64_def including undefined_transfer by transfer simp lemma integer_of_uint64_code [code]: "integer_of_uint64 n = (if bit n 63 then integer_of_uint64_signed (n AND 0x7FFFFFFFFFFFFFFF) OR 0x8000000000000000 else integer_of_uint64_signed n)" proof - have \(0x7FFFFFFFFFFFFFFF :: uint64) = mask 63\ by (simp add: mask_eq_exp_minus_1) then have *: \n AND 0x7FFFFFFFFFFFFFFF = take_bit 63 n\ by (simp add: take_bit_eq_mask) have **: \(0x8000000000000000 :: int) = 2 ^ 63\ by simp show ?thesis unfolding integer_of_uint64_def integer_of_uint64_signed_def o_def * including undefined_transfer integer.lifting apply transfer apply (rule bit_eqI) - apply (simp add: test_bit_eq_bit bit_or_iff bit_take_bit_iff bit_uint_iff) + apply (simp add: bit_or_iff bit_take_bit_iff bit_uint_iff) apply (simp only: bit_exp_iff bit_or_iff **) apply auto done qed code_printing constant "integer_of_uint64" \ (SML) "Uint64.toInt" and (Haskell) "Prelude.toInteger" | constant "integer_of_uint64_signed" \ (OCaml) "Z.of'_int64" and (Scala) "BigInt" section \Quickcheck setup\ definition uint64_of_natural :: "natural \ uint64" where "uint64_of_natural x \ Uint64 (integer_of_natural x)" instantiation uint64 :: "{random, exhaustive, full_exhaustive}" begin definition "random_uint64 \ qc_random_cnv uint64_of_natural" definition "exhaustive_uint64 \ qc_exhaustive_cnv uint64_of_natural" definition "full_exhaustive_uint64 \ qc_full_exhaustive_cnv uint64_of_natural" instance .. end instantiation uint64 :: narrowing begin interpretation quickcheck_narrowing_samples "\i. let x = Uint64 i in (x, 0xFFFFFFFFFFFFFFFF - x)" "0" "Typerep.Typerep (STR ''Uint64.uint64'') []" . definition "narrowing_uint64 d = qc_narrowing_drawn_from (narrowing_samples d) d" declare [[code drop: "partial_term_of :: uint64 itself \ _"]] lemmas partial_term_of_uint64 [code] = partial_term_of_code instance .. end no_notation sshiftr_uint64 (infixl ">>>" 55) end diff --git a/thys/Native_Word/Uint8.thy b/thys/Native_Word/Uint8.thy --- a/thys/Native_Word/Uint8.thy +++ b/thys/Native_Word/Uint8.thy @@ -1,718 +1,714 @@ (* Title: Uint8.thy Author: Andreas Lochbihler, ETH Zurich *) chapter \Unsigned words of 8 bits\ theory Uint8 imports Code_Target_Word_Base begin text \ Restriction for OCaml code generation: OCaml does not provide an int8 type, so no special code generation for this type is set up. If the theory \Code_Target_Bits_Int\ is imported, the type \uint8\ is emulated via @{typ "8 word"}. \ declare prod.Quotient[transfer_rule] section \Type definition and primitive operations\ typedef uint8 = "UNIV :: 8 word set" .. setup_lifting type_definition_uint8 text \Use an abstract type for code generation to disable pattern matching on @{term Abs_uint8}.\ declare Rep_uint8_inverse[code abstype] declare Quotient_uint8[transfer_rule] instantiation uint8 :: comm_ring_1 begin lift_definition zero_uint8 :: uint8 is "0 :: 8 word" . lift_definition one_uint8 :: uint8 is "1" . lift_definition plus_uint8 :: "uint8 \ uint8 \ uint8" is "(+) :: 8 word \ _" . lift_definition minus_uint8 :: "uint8 \ uint8 \ uint8" is "(-)" . lift_definition uminus_uint8 :: "uint8 \ uint8" is uminus . lift_definition times_uint8 :: "uint8 \ uint8 \ uint8" is "(*)" . instance by (standard; transfer) (simp_all add: algebra_simps) end instantiation uint8 :: semiring_modulo begin lift_definition divide_uint8 :: "uint8 \ uint8 \ uint8" is "(div)" . lift_definition modulo_uint8 :: "uint8 \ uint8 \ uint8" is "(mod)" . instance by (standard; transfer) (fact word_mod_div_equality) end instantiation uint8 :: linorder begin lift_definition less_uint8 :: "uint8 \ uint8 \ bool" is "(<)" . lift_definition less_eq_uint8 :: "uint8 \ uint8 \ bool" is "(\)" . instance by (standard; transfer) (simp_all add: less_le_not_le linear) end lemmas [code] = less_uint8.rep_eq less_eq_uint8.rep_eq context includes lifting_syntax notes transfer_rule_of_bool [transfer_rule] transfer_rule_numeral [transfer_rule] begin lemma [transfer_rule]: "((=) ===> cr_uint8) of_bool of_bool" by transfer_prover lemma transfer_rule_numeral_uint [transfer_rule]: "((=) ===> cr_uint8) numeral numeral" by transfer_prover lemma [transfer_rule]: \(cr_uint8 ===> (\)) even ((dvd) 2 :: uint8 \ bool)\ by (unfold dvd_def) transfer_prover end instantiation uint8 :: semiring_bits begin lift_definition bit_uint8 :: \uint8 \ nat \ bool\ is bit . instance by (standard; transfer) (fact bit_iff_odd even_iff_mod_2_eq_zero odd_iff_mod_2_eq_one odd_one bits_induct bits_div_0 bits_div_by_1 bits_mod_div_trivial even_succ_div_2 even_mask_div_iff exp_div_exp_eq div_exp_eq mod_exp_eq mult_exp_mod_exp_eq div_exp_mod_exp_eq even_mult_exp_div_exp_iff)+ end instantiation uint8 :: semiring_bit_shifts begin lift_definition push_bit_uint8 :: \nat \ uint8 \ uint8\ is push_bit . lift_definition drop_bit_uint8 :: \nat \ uint8 \ uint8\ is drop_bit . lift_definition take_bit_uint8 :: \nat \ uint8 \ uint8\ is take_bit . instance by (standard; transfer) (fact push_bit_eq_mult drop_bit_eq_div take_bit_eq_mod)+ end instantiation uint8 :: ring_bit_operations begin lift_definition not_uint8 :: \uint8 \ uint8\ is NOT . lift_definition and_uint8 :: \uint8 \ uint8 \ uint8\ is \(AND)\ . lift_definition or_uint8 :: \uint8 \ uint8 \ uint8\ is \(OR)\ . lift_definition xor_uint8 :: \uint8 \ uint8 \ uint8\ is \(XOR)\ . lift_definition mask_uint8 :: \nat \ uint8\ is mask . lift_definition set_bit_uint8 :: \nat \ uint8 \ uint8\ is \Bit_Operations.set_bit\ . lift_definition unset_bit_uint8 :: \nat \ uint8 \ uint8\ is \unset_bit\ . lift_definition flip_bit_uint8 :: \nat \ uint8 \ uint8\ is \flip_bit\ . instance by (standard; transfer) (simp_all add: bit_simps mask_eq_decr_exp minus_eq_not_minus_1 set_bit_def flip_bit_def) end lemma [code]: \take_bit n a = a AND mask n\ for a :: uint8 by (fact take_bit_eq_mask) lemma [code]: \mask (Suc n) = push_bit n (1 :: uint8) OR mask n\ \mask 0 = (0 :: uint8)\ by (simp_all add: mask_Suc_exp push_bit_of_1) lemma [code]: \Bit_Operations.set_bit n w = w OR push_bit n 1\ for w :: uint8 by (fact set_bit_eq_or) lemma [code]: \unset_bit n w = w AND NOT (push_bit n 1)\ for w :: uint8 by (fact unset_bit_eq_and_not) lemma [code]: \flip_bit n w = w XOR push_bit n 1\ for w :: uint8 by (fact flip_bit_eq_xor) instance uint8 :: semiring_bit_syntax .. context includes lifting_syntax begin -lemma test_bit_uint8_transfer [transfer_rule]: - \(cr_uint8 ===> (=)) bit (!!)\ - unfolding test_bit_eq_bit by transfer_prover - lemma shiftl_uint8_transfer [transfer_rule]: \(cr_uint8 ===> (=) ===> cr_uint8) (\k n. push_bit n k) (<<)\ unfolding shiftl_eq_push_bit by transfer_prover lemma shiftr_uint8_transfer [transfer_rule]: \(cr_uint8 ===> (=) ===> cr_uint8) (\k n. drop_bit n k) (>>)\ unfolding shiftr_eq_drop_bit by transfer_prover end instantiation uint8 :: lsb begin lift_definition lsb_uint8 :: \uint8 \ bool\ is lsb . instance by (standard; transfer) (fact lsb_odd) end instantiation uint8 :: msb begin lift_definition msb_uint8 :: \uint8 \ bool\ is msb . instance .. end setup \Context.theory_map (Name_Space.map_naming (Name_Space.qualified_path true \<^binding>\Generic\))\ instantiation uint8 :: set_bit begin lift_definition set_bit_uint8 :: \uint8 \ nat \ bool \ uint8\ is set_bit . instance apply standard apply transfer apply (simp add: bit_simps) done end setup \Context.theory_map (Name_Space.map_naming (Name_Space.parent_path))\ instantiation uint8 :: bit_comprehension begin lift_definition set_bits_uint8 :: "(nat \ bool) \ uint8" is "set_bits" . instance by (standard; transfer) (fact set_bits_bit_eq) end lemmas [code] = bit_uint8.rep_eq lsb_uint8.rep_eq msb_uint8.rep_eq instantiation uint8 :: equal begin lift_definition equal_uint8 :: "uint8 \ uint8 \ bool" is "equal_class.equal" . instance by standard (transfer, simp add: equal_eq) end lemmas [code] = equal_uint8.rep_eq instantiation uint8 :: size begin lift_definition size_uint8 :: "uint8 \ nat" is "size" . instance .. end lemmas [code] = size_uint8.rep_eq lift_definition sshiftr_uint8 :: "uint8 \ nat \ uint8" (infixl ">>>" 55) is \\w n. signed_drop_bit n w\ . lift_definition uint8_of_int :: "int \ uint8" is "word_of_int" . definition uint8_of_nat :: "nat \ uint8" where "uint8_of_nat = uint8_of_int \ int" lift_definition int_of_uint8 :: "uint8 \ int" is "uint" . lift_definition nat_of_uint8 :: "uint8 \ nat" is "unat" . definition integer_of_uint8 :: "uint8 \ integer" where "integer_of_uint8 = integer_of_int o int_of_uint8" text \Use pretty numerals from integer for pretty printing\ context includes integer.lifting begin lift_definition Uint8 :: "integer \ uint8" is "word_of_int" . lemma Rep_uint8_numeral [simp]: "Rep_uint8 (numeral n) = numeral n" by(induction n)(simp_all add: one_uint8_def Abs_uint8_inverse numeral.simps plus_uint8_def) lemma numeral_uint8_transfer [transfer_rule]: "(rel_fun (=) cr_uint8) numeral numeral" by(auto simp add: cr_uint8_def) lemma numeral_uint8 [code_unfold]: "numeral n = Uint8 (numeral n)" by transfer simp lemma Rep_uint8_neg_numeral [simp]: "Rep_uint8 (- numeral n) = - numeral n" by(simp only: uminus_uint8_def)(simp add: Abs_uint8_inverse) lemma neg_numeral_uint8 [code_unfold]: "- numeral n = Uint8 (- numeral n)" by transfer(simp add: cr_uint8_def) end lemma Abs_uint8_numeral [code_post]: "Abs_uint8 (numeral n) = numeral n" by(induction n)(simp_all add: one_uint8_def numeral.simps plus_uint8_def Abs_uint8_inverse) lemma Abs_uint8_0 [code_post]: "Abs_uint8 0 = 0" by(simp add: zero_uint8_def) lemma Abs_uint8_1 [code_post]: "Abs_uint8 1 = 1" by(simp add: one_uint8_def) section \Code setup\ code_printing code_module Uint8 \ (SML) \(* Test that words can handle numbers between 0 and 3 *) val _ = if 3 <= Word.wordSize then () else raise (Fail ("wordSize less than 3")); structure Uint8 : sig val set_bit : Word8.word -> IntInf.int -> bool -> Word8.word val shiftl : Word8.word -> IntInf.int -> Word8.word val shiftr : Word8.word -> IntInf.int -> Word8.word val shiftr_signed : Word8.word -> IntInf.int -> Word8.word val test_bit : Word8.word -> IntInf.int -> bool end = struct fun set_bit x n b = let val mask = Word8.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n)) in if b then Word8.orb (x, mask) else Word8.andb (x, Word8.notb mask) end fun shiftl x n = Word8.<< (x, Word.fromLargeInt (IntInf.toLarge n)) fun shiftr x n = Word8.>> (x, Word.fromLargeInt (IntInf.toLarge n)) fun shiftr_signed x n = Word8.~>> (x, Word.fromLargeInt (IntInf.toLarge n)) fun test_bit x n = Word8.andb (x, Word8.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))) <> Word8.fromInt 0 end; (* struct Uint8 *)\ code_reserved SML Uint8 code_printing code_module Uint8 \ (Haskell) \module Uint8(Int8, Word8) where import Data.Int(Int8) import Data.Word(Word8)\ code_reserved Haskell Uint8 text \ Scala provides only signed 8bit numbers, so we use these and implement sign-sensitive operations like comparisons manually. \ code_printing code_module Uint8 \ (Scala) \object Uint8 { def less(x: Byte, y: Byte) : Boolean = if (x < 0) y < 0 && x < y else y < 0 || x < y def less_eq(x: Byte, y: Byte) : Boolean = if (x < 0) y < 0 && x <= y else y < 0 || x <= y def set_bit(x: Byte, n: BigInt, b: Boolean) : Byte = if (b) (x | (1 << n.intValue)).toByte else (x & (1 << n.intValue).unary_~).toByte def shiftl(x: Byte, n: BigInt) : Byte = (x << n.intValue).toByte def shiftr(x: Byte, n: BigInt) : Byte = ((x & 255) >>> n.intValue).toByte def shiftr_signed(x: Byte, n: BigInt) : Byte = (x >> n.intValue).toByte def test_bit(x: Byte, n: BigInt) : Boolean = (x & (1 << n.intValue)) != 0 } /* object Uint8 */\ code_reserved Scala Uint8 text \ Avoid @{term Abs_uint8} in generated code, use @{term Rep_uint8'} instead. The symbolic implementations for code\_simp use @{term Rep_uint8}. The new destructor @{term Rep_uint8'} is executable. As the simplifier is given the [code abstract] equations literally, we cannot implement @{term Rep_uint8} directly, because that makes code\_simp loop. If code generation raises Match, some equation probably contains @{term Rep_uint8} ([code abstract] equations for @{typ uint8} may use @{term Rep_uint8} because these instances will be folded away.) To convert @{typ "8 word"} values into @{typ uint8}, use @{term "Abs_uint8'"}. \ definition Rep_uint8' where [simp]: "Rep_uint8' = Rep_uint8" lemma Rep_uint8'_transfer [transfer_rule]: "rel_fun cr_uint8 (=) (\x. x) Rep_uint8'" unfolding Rep_uint8'_def by(rule uint8.rep_transfer) lemma Rep_uint8'_code [code]: "Rep_uint8' x = (BITS n. bit x n)" by transfer (simp add: set_bits_bit_eq) lift_definition Abs_uint8' :: "8 word \ uint8" is "\x :: 8 word. x" . lemma Abs_uint8'_code [code]: "Abs_uint8' x = Uint8 (integer_of_int (uint x))" including integer.lifting by transfer simp declare [[code drop: "term_of_class.term_of :: uint8 \ _"]] lemma term_of_uint8_code [code]: defines "TR \ typerep.Typerep" and "bit0 \ STR ''Numeral_Type.bit0''" shows "term_of_class.term_of x = Code_Evaluation.App (Code_Evaluation.Const (STR ''Uint8.uint8.Abs_uint8'') (TR (STR ''fun'') [TR (STR ''Word.word'') [TR bit0 [TR bit0 [TR bit0 [TR (STR ''Numeral_Type.num1'') []]]]], TR (STR ''Uint8.uint8'') []])) (term_of_class.term_of (Rep_uint8' x))" by(simp add: term_of_anything) lemma Uin8_code [code abstract]: "Rep_uint8 (Uint8 i) = word_of_int (int_of_integer_symbolic i)" unfolding Uint8_def int_of_integer_symbolic_def by(simp add: Abs_uint8_inverse) code_printing type_constructor uint8 \ (SML) "Word8.word" and (Haskell) "Uint8.Word8" and (Scala) "Byte" | constant Uint8 \ (SML) "Word8.fromLargeInt (IntInf.toLarge _)" and (Haskell) "(Prelude.fromInteger _ :: Uint8.Word8)" and (Haskell_Quickcheck) "(Prelude.fromInteger (Prelude.toInteger _) :: Uint8.Word8)" and (Scala) "_.byteValue" | constant "0 :: uint8" \ (SML) "(Word8.fromInt 0)" and (Haskell) "(0 :: Uint8.Word8)" and (Scala) "0.toByte" | constant "1 :: uint8" \ (SML) "(Word8.fromInt 1)" and (Haskell) "(1 :: Uint8.Word8)" and (Scala) "1.toByte" | constant "plus :: uint8 \ _ \ _" \ (SML) "Word8.+ ((_), (_))" and (Haskell) infixl 6 "+" and (Scala) "(_ +/ _).toByte" | constant "uminus :: uint8 \ _" \ (SML) "Word8.~" and (Haskell) "negate" and (Scala) "(- _).toByte" | constant "minus :: uint8 \ _" \ (SML) "Word8.- ((_), (_))" and (Haskell) infixl 6 "-" and (Scala) "(_ -/ _).toByte" | constant "times :: uint8 \ _ \ _" \ (SML) "Word8.* ((_), (_))" and (Haskell) infixl 7 "*" and (Scala) "(_ */ _).toByte" | constant "HOL.equal :: uint8 \ _ \ bool" \ (SML) "!((_ : Word8.word) = _)" and (Haskell) infix 4 "==" and (Scala) infixl 5 "==" | class_instance uint8 :: equal \ (Haskell) - | constant "less_eq :: uint8 \ _ \ bool" \ (SML) "Word8.<= ((_), (_))" and (Haskell) infix 4 "<=" and (Scala) "Uint8.less'_eq" | constant "less :: uint8 \ _ \ bool" \ (SML) "Word8.< ((_), (_))" and (Haskell) infix 4 "<" and (Scala) "Uint8.less" | constant "NOT :: uint8 \ _" \ (SML) "Word8.notb" and (Haskell) "Data'_Bits.complement" and (Scala) "_.unary'_~.toByte" | constant "(AND) :: uint8 \ _" \ (SML) "Word8.andb ((_),/ (_))" and (Haskell) infixl 7 "Data_Bits..&." and (Scala) "(_ & _).toByte" | constant "(OR) :: uint8 \ _" \ (SML) "Word8.orb ((_),/ (_))" and (Haskell) infixl 5 "Data_Bits..|." and (Scala) "(_ | _).toByte" | constant "(XOR) :: uint8 \ _" \ (SML) "Word8.xorb ((_),/ (_))" and (Haskell) "Data'_Bits.xor" and (Scala) "(_ ^ _).toByte" definition uint8_divmod :: "uint8 \ uint8 \ uint8 \ uint8" where "uint8_divmod x y = (if y = 0 then (undefined ((div) :: uint8 \ _) x (0 :: uint8), undefined ((mod) :: uint8 \ _) x (0 :: uint8)) else (x div y, x mod y))" definition uint8_div :: "uint8 \ uint8 \ uint8" where "uint8_div x y = fst (uint8_divmod x y)" definition uint8_mod :: "uint8 \ uint8 \ uint8" where "uint8_mod x y = snd (uint8_divmod x y)" lemma div_uint8_code [code]: "x div y = (if y = 0 then 0 else uint8_div x y)" including undefined_transfer unfolding uint8_divmod_def uint8_div_def by transfer (simp add: word_div_def) lemma mod_uint8_code [code]: "x mod y = (if y = 0 then x else uint8_mod x y)" including undefined_transfer unfolding uint8_mod_def uint8_divmod_def by transfer (simp add: word_mod_def) definition uint8_sdiv :: "uint8 \ uint8 \ uint8" where "uint8_sdiv x y = (if y = 0 then undefined ((div) :: uint8 \ _) x (0 :: uint8) else Abs_uint8 (Rep_uint8 x sdiv Rep_uint8 y))" definition div0_uint8 :: "uint8 \ uint8" where [code del]: "div0_uint8 x = undefined ((div) :: uint8 \ _) x (0 :: uint8)" declare [[code abort: div0_uint8]] definition mod0_uint8 :: "uint8 \ uint8" where [code del]: "mod0_uint8 x = undefined ((mod) :: uint8 \ _) x (0 :: uint8)" declare [[code abort: mod0_uint8]] lemma uint8_divmod_code [code]: "uint8_divmod x y = (if 0x80 \ y then if x < y then (0, x) else (1, x - y) else if y = 0 then (div0_uint8 x, mod0_uint8 x) else let q = (uint8_sdiv (x >> 1) y) << 1; r = x - q * y in if r \ y then (q + 1, r - y) else (q, r))" including undefined_transfer unfolding uint8_divmod_def uint8_sdiv_def div0_uint8_def mod0_uint8_def apply transfer apply (simp add: divmod_via_sdivmod) apply (simp add: shiftl_eq_push_bit shiftr_eq_drop_bit) done lemma uint8_sdiv_code [code abstract]: "Rep_uint8 (uint8_sdiv x y) = (if y = 0 then Rep_uint8 (undefined ((div) :: uint8 \ _) x (0 :: uint8)) else Rep_uint8 x sdiv Rep_uint8 y)" unfolding uint8_sdiv_def by(simp add: Abs_uint8_inverse) text \ Note that we only need a translation for signed division, but not for the remainder because @{thm uint8_divmod_code} computes both with division only. \ code_printing constant uint8_div \ (SML) "Word8.div ((_), (_))" and (Haskell) "Prelude.div" | constant uint8_mod \ (SML) "Word8.mod ((_), (_))" and (Haskell) "Prelude.mod" | constant uint8_divmod \ (Haskell) "divmod" | constant uint8_sdiv \ (Scala) "(_ '/ _).toByte" definition uint8_test_bit :: "uint8 \ integer \ bool" where [code del]: "uint8_test_bit x n = - (if n < 0 \ 7 < n then undefined (test_bit :: uint8 \ _) x n - else x !! (nat_of_integer n))" + (if n < 0 \ 7 < n then undefined (bit :: uint8 \ _) x n + else bit x (nat_of_integer n))" lemma bit_uint8_code [code]: "bit x n \ n < 8 \ uint8_test_bit x (integer_of_nat n)" including undefined_transfer integer.lifting unfolding uint8_test_bit_def by (transfer, simp, transfer, simp) lemma uint8_test_bit_code [code]: "uint8_test_bit w n = - (if n < 0 \ 7 < n then undefined (test_bit :: uint8 \ _) w n else Rep_uint8 w !! nat_of_integer n)" + (if n < 0 \ 7 < n then undefined (bit :: uint8 \ _) w n else bit (Rep_uint8 w) (nat_of_integer n))" unfolding uint8_test_bit_def - by (simp add: bit_uint8.rep_eq test_bit_eq_bit) + by (simp add: bit_uint8.rep_eq) code_printing constant uint8_test_bit \ (SML) "Uint8.test'_bit" and (Haskell) "Data'_Bits.testBitBounded" and (Scala) "Uint8.test'_bit" and (Eval) "(fn x => fn i => if i < 0 orelse i >= 8 then raise (Fail \"argument to uint8'_test'_bit out of bounds\") else Uint8.test'_bit x i)" definition uint8_set_bit :: "uint8 \ integer \ bool \ uint8" where [code del]: "uint8_set_bit x n b = (if n < 0 \ 7 < n then undefined (set_bit :: uint8 \ _) x n b else set_bit x (nat_of_integer n) b)" lemma set_bit_uint8_code [code]: "set_bit x n b = (if n < 8 then uint8_set_bit x (integer_of_nat n) b else x)" including undefined_transfer integer.lifting unfolding uint8_set_bit_def by(transfer)(auto cong: conj_cong simp add: not_less set_bit_beyond word_size) lemma uint8_set_bit_code [code abstract]: "Rep_uint8 (uint8_set_bit w n b) = (if n < 0 \ 7 < n then Rep_uint8 (undefined (set_bit :: uint8 \ _) w n b) else set_bit (Rep_uint8 w) (nat_of_integer n) b)" including undefined_transfer unfolding uint8_set_bit_def by transfer simp code_printing constant uint8_set_bit \ (SML) "Uint8.set'_bit" and (Haskell) "Data'_Bits.setBitBounded" and (Scala) "Uint8.set'_bit" and (Eval) "(fn x => fn i => fn b => if i < 0 orelse i >= 8 then raise (Fail \"argument to uint8'_set'_bit out of bounds\") else Uint8.set'_bit x i b)" lift_definition uint8_set_bits :: "(nat \ bool) \ uint8 \ nat \ uint8" is set_bits_aux . lemma uint8_set_bits_code [code]: "uint8_set_bits f w n = (if n = 0 then w else let n' = n - 1 in uint8_set_bits f (push_bit 1 w OR (if f n' then 1 else 0)) n')" apply (transfer fixing: n) apply (cases n) apply (simp_all add: shiftl_eq_push_bit) done lemma set_bits_uint8 [code]: "(BITS n. f n) = uint8_set_bits f 0 8" by transfer(simp add: set_bits_conv_set_bits_aux) -lemma lsb_code [code]: fixes x :: uint8 shows "lsb x = x !! 0" - by transfer (simp add: lsb_odd) +lemma lsb_code [code]: fixes x :: uint8 shows "lsb x = bit x 0" + by (simp add: lsb_odd) definition uint8_shiftl :: "uint8 \ integer \ uint8" where [code del]: "uint8_shiftl x n = (if n < 0 \ 8 \ n then undefined (push_bit :: nat \ uint8 \ _) x n else push_bit (nat_of_integer n) x)" lemma shiftl_uint8_code [code]: "push_bit n x = (if n < 8 then uint8_shiftl x (integer_of_nat n) else 0)" including undefined_transfer integer.lifting unfolding uint8_shiftl_def by transfer simp lemma uint8_shiftl_code [code abstract]: "Rep_uint8 (uint8_shiftl w n) = (if n < 0 \ 8 \ n then Rep_uint8 (undefined (push_bit :: nat \ uint8 \ _) w n) else push_bit (nat_of_integer n) (Rep_uint8 w))" including undefined_transfer unfolding uint8_shiftl_def by transfer simp code_printing constant uint8_shiftl \ (SML) "Uint8.shiftl" and (Haskell) "Data'_Bits.shiftlBounded" and (Scala) "Uint8.shiftl" and (Eval) "(fn x => fn i => if i < 0 orelse i >= 8 then raise (Fail \"argument to uint8'_shiftl out of bounds\") else Uint8.shiftl x i)" definition uint8_shiftr :: "uint8 \ integer \ uint8" where [code del]: "uint8_shiftr x n = (if n < 0 \ 8 \ n then undefined (shiftr :: uint8 \ _) x n else x >> (nat_of_integer n))" lemma shiftr_uint8_code [code]: "drop_bit n x = (if n < 8 then uint8_shiftr x (integer_of_nat n) else 0)" including undefined_transfer integer.lifting unfolding uint8_shiftr_def by transfer simp lemma uint8_shiftr_code [code abstract]: "Rep_uint8 (uint8_shiftr w n) = (if n < 0 \ 8 \ n then Rep_uint8 (undefined (shiftr :: uint8 \ _) w n) else drop_bit (nat_of_integer n) (Rep_uint8 w))" including undefined_transfer unfolding uint8_shiftr_def by transfer simp code_printing constant uint8_shiftr \ (SML) "Uint8.shiftr" and (Haskell) "Data'_Bits.shiftrBounded" and (Scala) "Uint8.shiftr" and (Eval) "(fn x => fn i => if i < 0 orelse i >= 8 then raise (Fail \"argument to uint8'_shiftr out of bounds\") else Uint8.shiftr x i)" definition uint8_sshiftr :: "uint8 \ integer \ uint8" where [code del]: "uint8_sshiftr x n = (if n < 0 \ 8 \ n then undefined sshiftr_uint8 x n else sshiftr_uint8 x (nat_of_integer n))" lemma sshiftr_uint8_code [code]: "x >>> n = - (if n < 8 then uint8_sshiftr x (integer_of_nat n) else if x !! 7 then -1 else 0)" + (if n < 8 then uint8_sshiftr x (integer_of_nat n) else if bit x 7 then -1 else 0)" including undefined_transfer integer.lifting unfolding uint8_sshiftr_def by transfer (simp add: not_less signed_drop_bit_beyond word_size) lemma uint8_sshiftr_code [code abstract]: "Rep_uint8 (uint8_sshiftr w n) = (if n < 0 \ 8 \ n then Rep_uint8 (undefined sshiftr_uint8 w n) else signed_drop_bit (nat_of_integer n) (Rep_uint8 w))" including undefined_transfer unfolding uint8_sshiftr_def by transfer simp code_printing constant uint8_sshiftr \ (SML) "Uint8.shiftr'_signed" and (Haskell) "(Prelude.fromInteger (Prelude.toInteger (Data'_Bits.shiftrBounded (Prelude.fromInteger (Prelude.toInteger _) :: Uint8.Int8) _)) :: Uint8.Word8)" and (Scala) "Uint8.shiftr'_signed" and (Eval) "(fn x => fn i => if i < 0 orelse i >= 8 then raise (Fail \"argument to uint8'_sshiftr out of bounds\") else Uint8.shiftr'_signed x i)" -lemma uint8_msb_test_bit: "msb x \ (x :: uint8) !! 7" +lemma uint8_msb_test_bit: "msb x \ bit (x :: uint8) 7" by transfer (simp add: msb_word_iff_bit) lemma msb_uint16_code [code]: "msb x \ uint8_test_bit x 7" by (simp add: uint8_test_bit_def uint8_msb_test_bit) lemma uint8_of_int_code [code]: "uint8_of_int i = Uint8 (integer_of_int i)" including integer.lifting by transfer simp lemma int_of_uint8_code [code]: "int_of_uint8 x = int_of_integer (integer_of_uint8 x)" by(simp add: integer_of_uint8_def) lemma nat_of_uint8_code [code]: "nat_of_uint8 x = nat_of_integer (integer_of_uint8 x)" unfolding integer_of_uint8_def including integer.lifting by transfer simp definition integer_of_uint8_signed :: "uint8 \ integer" where - "integer_of_uint8_signed n = (if n !! 7 then undefined integer_of_uint8 n else integer_of_uint8 n)" + "integer_of_uint8_signed n = (if bit n 7 then undefined integer_of_uint8 n else integer_of_uint8 n)" lemma integer_of_uint8_signed_code [code]: "integer_of_uint8_signed n = (if bit n 7 then undefined integer_of_uint8 n else integer_of_int (uint (Rep_uint8' n)))" unfolding integer_of_uint8_signed_def integer_of_uint8_def including undefined_transfer by transfer simp lemma integer_of_uint8_code [code]: "integer_of_uint8 n = (if bit n 7 then integer_of_uint8_signed (n AND 0x7F) OR 0x80 else integer_of_uint8_signed n)" proof - have \(0x7F :: uint8) = mask 7\ by (simp add: mask_eq_exp_minus_1) then have *: \n AND 0x7F = take_bit 7 n\ by (simp only: take_bit_eq_mask) have **: \(0x80 :: int) = 2 ^ 7\ by simp show ?thesis unfolding integer_of_uint8_def integer_of_uint8_signed_def o_def * including undefined_transfer integer.lifting apply transfer apply (auto simp add: bit_take_bit_iff uint_take_bit_eq) apply (rule bit_eqI) apply (simp add: bit_uint_iff bit_or_iff bit_take_bit_iff) apply (simp only: ** bit_exp_iff) apply auto done qed code_printing constant "integer_of_uint8" \ (SML) "IntInf.fromLarge (Word8.toLargeInt _)" and (Haskell) "Prelude.toInteger" | constant "integer_of_uint8_signed" \ (Scala) "BigInt" section \Quickcheck setup\ definition uint8_of_natural :: "natural \ uint8" where "uint8_of_natural x \ Uint8 (integer_of_natural x)" instantiation uint8 :: "{random, exhaustive, full_exhaustive}" begin definition "random_uint8 \ qc_random_cnv uint8_of_natural" definition "exhaustive_uint8 \ qc_exhaustive_cnv uint8_of_natural" definition "full_exhaustive_uint8 \ qc_full_exhaustive_cnv uint8_of_natural" instance .. end instantiation uint8 :: narrowing begin interpretation quickcheck_narrowing_samples "\i. let x = Uint8 i in (x, 0xFF - x)" "0" "Typerep.Typerep (STR ''Uint8.uint8'') []" . definition "narrowing_uint8 d = qc_narrowing_drawn_from (narrowing_samples d) d" declare [[code drop: "partial_term_of :: uint8 itself \ _"]] lemmas partial_term_of_uint8 [code] = partial_term_of_code instance .. end no_notation sshiftr_uint8 (infixl ">>>" 55) end diff --git a/thys/Promela/PromelaDatastructures.thy b/thys/Promela/PromelaDatastructures.thy --- a/thys/Promela/PromelaDatastructures.thy +++ b/thys/Promela/PromelaDatastructures.thy @@ -1,1377 +1,1373 @@ section "Data structures as used in Promela" theory PromelaDatastructures imports CAVA_Base.CAVA_Base CAVA_Base.Lexord_List PromelaAST "HOL-Library.IArray" Deriving.Compare_Instances CAVA_Base.CAVA_Code_Target begin -(*<*) -no_notation test_bit (infixl "!!" 100) -(*>*) - subsection \Abstract Syntax Tree \emph{after} preprocessing\ text \ From the plain AST stemming from the parser, we'd like to have one containing more information while also removing duplicated constructs. This is achieved in the preprocessing step. The additional information contains: \begin{itemize} \item variable type (including whether it represents a channel or not) \item global vs local variable \end{itemize} Also certain constructs are expanded (like for-loops) or different nodes in the AST are collapsed into one parametrized node (e.g.\ the different send-operations). This preprocessing phase also tries to detect certain static errors and will bail out with an exception if such is encountered. \ datatype binOp = BinOpAdd | BinOpSub | BinOpMul | BinOpDiv | BinOpMod | BinOpGr | BinOpLe | BinOpGEq | BinOpLEq | BinOpEq | BinOpNEq | BinOpAnd | BinOpOr datatype unOp = UnOpMinus | UnOpNeg datatype expr = ExprBinOp binOp (*left*) expr (*right*) expr | ExprUnOp unOp expr | ExprCond (*cond*) expr (*exprTrue*) expr (*exprFalse*) expr | ExprLen chanRef | ExprVarRef varRef | ExprConst integer | ExprMConst integer String.literal (* MType replaced by constant *) | ExprTimeOut | ExprFull chanRef | ExprEmpty chanRef | ExprPoll chanRef "recvArg list" bool (* sorted *) and varRef = VarRef (*global*) bool (*name*) String.literal (*index*) "expr option" and chanRef = ChanRef varRef \ \explicit type for channels\ and recvArg = RecvArgVar varRef | RecvArgEval expr | RecvArgConst integer | RecvArgMConst integer String.literal datatype varType = VTBounded integer integer | VTChan text \Variable declarations at the beginning of a proctype or at global level.\ datatype varDecl = VarDeclNum (*bounds*) integer integer (*name*) String.literal (*size*) "integer option" (*init*) "expr option" | VarDeclChan (*name*) String.literal (*size*) "integer option" (*capacityTypes*) "(integer * varType list) option" text \Variable declarations during a proctype.\ datatype procVarDecl = ProcVarDeclNum (*bounds*) integer integer (*name*) String.literal (*size*) "integer option" (*init*) "expr option" | ProcVarDeclChan (*name*) String.literal (*size*) "integer option" datatype procArg = ProcArg varType String.literal datatype stmnt = StmntIf "(step list) list" | StmntDo "(step list) list" | StmntAtomic "step list" | StmntSeq "step list" | StmntSend chanRef "expr list" bool (*sorted*) | StmntRecv chanRef "recvArg list" bool (*sorted*) bool (*remove?*) | StmntAssign varRef expr | StmntElse | StmntBreak | StmntSkip | StmntGoTo String.literal | StmntLabeled String.literal stmnt | StmntRun (*name*) String.literal (*args*) "expr list" | StmntCond expr | StmntAssert expr and step = StepStmnt stmnt (*unless*) "stmnt option" | StepDecl "procVarDecl list" | StepSkip datatype proc = ProcType (*active*) "(integer option) option" (*name*) String.literal (*args*) "procArg list" (*decls*) "varDecl list" (*seq*) "step list" | Init "varDecl list" "step list" type_synonym ltl = "\ \name:\ String.literal \ \ \formula:\ String.literal" type_synonym promela = "varDecl list \ proc list \ ltl list" subsection \Preprocess the AST of the parser into our variant\ text \We setup some functionality for printing warning or even errors. All those constants are logically @{term undefined}, but replaced by the parser for something meaningful.\ consts warn :: "String.literal \ unit" abbreviation "with_warn msg e \ let _ = warn msg in e" abbreviation "the_warn opt msg \ case opt of None \ () | _ \ warn msg" text \\usc\: "Unsupported Construct"\ definition [code del]: "usc (c :: String.literal) \ undefined" definition [code del]: "err (e :: String.literal) = undefined" abbreviation "errv e v \ err (e + v)" definition [simp, code del]: "abort (msg :: String.literal) f = f ()" abbreviation "abortv msg v f \ abort (msg + v) f" code_printing code_module PromelaUtils \ (SML) \ structure PromelaUtils = struct exception UnsupportedConstruct of string exception StaticError of string exception RuntimeError of string fun warn msg = TextIO.print ("Warning: " ^ msg ^ "\n") fun usc c = raise (UnsupportedConstruct c) fun err e = raise (StaticError e) fun abort msg _ = raise (RuntimeError msg) end\ | constant warn \ (SML) "PromelaUtils.warn" | constant usc \ (SML) "PromelaUtils.usc" | constant err \ (SML) "PromelaUtils.err" | constant abort \ (SML) "PromelaUtils.abort" code_reserved SML PromelaUtils (*<*) ML_val \@{code hd}\ (* Test code-printing setup. If this fails, the setup is skewed. *) (*>*) text \The preprocessing is done for each type on its own.\ primrec ppBinOp :: "AST.binOp \ binOp" where "ppBinOp AST.BinOpAdd = BinOpAdd" | "ppBinOp AST.BinOpSub = BinOpSub" | "ppBinOp AST.BinOpMul = BinOpMul" | "ppBinOp AST.BinOpDiv = BinOpDiv" | "ppBinOp AST.BinOpMod = BinOpMod" | "ppBinOp AST.BinOpGr = BinOpGr" | "ppBinOp AST.BinOpLe = BinOpLe" | "ppBinOp AST.BinOpGEq = BinOpGEq" | "ppBinOp AST.BinOpLEq = BinOpLEq" | "ppBinOp AST.BinOpEq = BinOpEq" | "ppBinOp AST.BinOpNEq = BinOpNEq" | "ppBinOp AST.BinOpAnd = BinOpAnd" | "ppBinOp AST.BinOpOr = BinOpOr" | "ppBinOp AST.BinOpBitAnd = usc STR ''BinOpBitAnd''" | "ppBinOp AST.BinOpBitXor = usc STR ''BinOpBitXor''" | "ppBinOp AST.BinOpBitOr = usc STR ''BinOpBitOr''" | "ppBinOp AST.BinOpShiftL = usc STR ''BinOpShiftL''" | "ppBinOp AST.BinOpShiftR = usc STR ''BinOpShiftR''" primrec ppUnOp :: "AST.unOp \ unOp" where "ppUnOp AST.UnOpMinus = UnOpMinus" | "ppUnOp AST.UnOpNeg = UnOpNeg" | "ppUnOp AST.UnOpComp = usc STR ''UnOpComp''" text \The data structure holding all information on variables we found so far.\ type_synonym var_data = " (String.literal, (integer option \ bool)) lm \ \channels\ \ (String.literal, (integer option \ bool)) lm \ \variables\ \ (String.literal, integer) lm \ \mtypes\ \ (String.literal, varRef) lm \ \aliases (used for inlines)\" definition dealWithVar :: "var_data \ String.literal \ (String.literal \ integer option \ bool \ expr option \ 'a) \ (String.literal \ integer option \ bool \ expr option \ 'a) \ (integer \ 'a) \ 'a" where "dealWithVar cvm n fC fV fM \ ( let (c,v,m,a) = cvm in let (n, idx) = case lm.lookup n a of None \ (n, None) | Some (VarRef _ name idx) \ (name, idx) in case lm.lookup n m of Some i \ (case idx of None \ fM i | _ \ err STR ''Array subscript used on MType (via alias).'') | None \ (case lm.lookup n v of Some g \ fV n g idx | None \ (case lm.lookup n c of Some g \ fC n g idx | None \ err (STR ''Unknown variable referenced: '' + n))))" primrec enforceChan :: "varRef + chanRef \ chanRef" where "enforceChan (Inl _) = err STR ''Channel expected. Got normal variable.''" | "enforceChan (Inr c) = c" fun liftChan :: "varRef + chanRef \ varRef" where "liftChan (Inl v) = v" | "liftChan (Inr (ChanRef v)) = v" fun resolveIdx :: "expr option \ expr option \ expr option" where "resolveIdx None None = None" | "resolveIdx idx None = idx" | "resolveIdx None aliasIdx = aliasIdx" | "resolveIdx _ _ = err STR ''Array subscript used twice (via alias).''" fun ppExpr :: "var_data \ AST.expr \ expr" and ppVarRef :: "var_data \ AST.varRef \ varRef + chanRef" and ppRecvArg :: "var_data \ AST.recvArg \ recvArg" where "ppVarRef cvm (AST.VarRef name idx None) = dealWithVar cvm name (\name (_,g) aIdx. let idx = map_option (ppExpr cvm) idx in Inr (ChanRef (VarRef g name (resolveIdx idx aIdx)))) (\name (_,g) aIdx. let idx = map_option (ppExpr cvm) idx in Inl (VarRef g name (resolveIdx idx aIdx))) (\_. err STR ''Variable expected. Got MType.'')" | "ppVarRef cvm (AST.VarRef _ _ (Some _)) = usc STR ''next operation on variables''" | "ppExpr cvm AST.ExprTimeOut = ExprTimeOut" | "ppExpr cvm (AST.ExprConst c) = ExprConst c" | "ppExpr cvm (AST.ExprBinOp bo l r) = ExprBinOp (ppBinOp bo) (ppExpr cvm l) (ppExpr cvm r)" | "ppExpr cvm (AST.ExprUnOp uo e) = ExprUnOp (ppUnOp uo) (ppExpr cvm e)" | "ppExpr cvm (AST.ExprCond c t f) = ExprCond (ppExpr cvm c) (ppExpr cvm t) (ppExpr cvm f)" | "ppExpr cvm (AST.ExprLen v) = ExprLen (enforceChan (ppVarRef cvm v))" | "ppExpr cvm (AST.ExprFull v) = ExprFull (enforceChan (ppVarRef cvm v))" | "ppExpr cvm (AST.ExprEmpty v) = ExprEmpty (enforceChan (ppVarRef cvm v))" (* the following two are special constructs in Promela for helping Partial Order Reductions we don't have such things (yet), so use simple negation *) | "ppExpr cvm (AST.ExprNFull v) = ExprUnOp UnOpNeg (ExprFull (enforceChan (ppVarRef cvm v)))" | "ppExpr cvm (AST.ExprNEmpty v) = ExprUnOp UnOpNeg (ExprEmpty (enforceChan (ppVarRef cvm v)))" | "ppExpr cvm (AST.ExprVarRef v) = ( let to_exp = \_. ExprVarRef (liftChan (ppVarRef cvm v)) in case v of AST.VarRef name None None \ dealWithVar cvm name (\_ _ _. to_exp()) (\_ _ _. to_exp()) (\i. ExprMConst i name) | _ \ to_exp())" | "ppExpr cvm (AST.ExprPoll v es) = ExprPoll (enforceChan (ppVarRef cvm v)) (map (ppRecvArg cvm) es) False" | "ppExpr cvm (AST.ExprRndPoll v es) = ExprPoll (enforceChan (ppVarRef cvm v)) (map (ppRecvArg cvm) es) True" | "ppExpr cvm AST.ExprNP = usc STR ''ExprNP''" | "ppExpr cvm (AST.ExprEnabled _) = usc STR ''ExprEnabled''" | "ppExpr cvm (AST.ExprPC _) = usc STR ''ExprPC''" | "ppExpr cvm (AST.ExprRemoteRef _ _ _) = usc STR ''ExprRemoteRef''" | "ppExpr cvm (AST.ExprGetPrio _) = usc STR ''ExprGetPrio''" | "ppExpr cvm (AST.ExprSetPrio _ _) = usc STR ''ExprSetPrio''" | "ppRecvArg cvm (AST.RecvArgVar v) = ( let to_ra = \_. RecvArgVar (liftChan (ppVarRef cvm v)) in case v of AST.VarRef name None None \ dealWithVar cvm name (\_ _ _. to_ra()) (\_ _ _. to_ra()) (\i. RecvArgMConst i name) | _ \ to_ra())" | "ppRecvArg cvm (AST.RecvArgEval e) = RecvArgEval (ppExpr cvm e)" | "ppRecvArg cvm (AST.RecvArgConst c) = RecvArgConst c" primrec ppVarType :: "AST.varType \ varType" where "ppVarType AST.VarTypeBit = VTBounded 0 1" | "ppVarType AST.VarTypeBool = VTBounded 0 1" | "ppVarType AST.VarTypeByte = VTBounded 0 255" | "ppVarType AST.VarTypePid = VTBounded 0 255" | "ppVarType AST.VarTypeShort = VTBounded (-(2^15)) ((2^15) - 1)" | "ppVarType AST.VarTypeInt = VTBounded (-(2^31)) ((2^31) - 1)" | "ppVarType AST.VarTypeMType = VTBounded 1 255" | "ppVarType AST.VarTypeChan = VTChan" | "ppVarType AST.VarTypeUnsigned = usc STR ''VarTypeUnsigned''" | "ppVarType (AST.VarTypeCustom _) = usc STR ''VarTypeCustom''" fun ppVarDecl :: "var_data \ varType \ bool \ AST.varDecl \ var_data \ varDecl" where "ppVarDecl (c,v,m,a) (VTBounded l h) g (AST.VarDeclNum name sze init) = ( case lm.lookup name v of Some _ \ errv STR ''Duplicate variable '' name | _ \ (case lm.lookup name a of Some _ \ errv STR ''Variable name clashes with alias: '' name | _ \ ((c, lm.update name (sze,g) v, m, a), VarDeclNum l h name sze (map_option (ppExpr (c,v,m,a)) init))))" | "ppVarDecl _ _ g (AST.VarDeclNum name sze init) = err STR ''Assiging num to non-num''" | "ppVarDecl (c,v,m,a) VTChan g (AST.VarDeclChan name sze cap) = ( let cap' = map_option (apsnd (map ppVarType)) cap in case lm.lookup name c of Some _ \ errv STR ''Duplicate variable '' name | _ \ (case lm.lookup name a of Some _ \ errv STR ''Variable name clashes with alias: '' name | _ \ ((lm.update name (sze, g) c, v, m, a), VarDeclChan name sze cap')))" | "ppVarDecl _ _ g (AST.VarDeclChan name sze init) = err STR ''Assiging chan to non-chan''" | "ppVarDecl (c,v,m,a) (VTBounded l h) g (AST.VarDeclMType name sze init) = ( let init = map_option (\mty. case lm.lookup mty m of None \ errv STR ''Unknown MType '' mty | Some mval \ ExprMConst mval mty) init in case lm.lookup name c of Some _ \ errv STR ''Duplicate variable '' name | _ \ (case lm.lookup name a of Some _ \ errv STR ''Variable name clashes with alias: '' name | _ \ ((c, lm.update name (sze,g) v, m, a), VarDeclNum l h name sze init)))" | "ppVarDecl _ _ g (AST.VarDeclMType name sze init) = err STR ''Assiging num to non-num''" | "ppVarDecl _ _ _ (AST.VarDeclUnsigned _ _ _) = usc STR ''VarDeclUnsigned''" definition ppProcVarDecl :: "var_data \ varType \ bool \ AST.varDecl \ var_data \ procVarDecl" where "ppProcVarDecl cvm ty g v = (case ppVarDecl cvm ty g v of (cvm, VarDeclNum l h name sze init) \ (cvm, ProcVarDeclNum l h name sze init) | (cvm, VarDeclChan name sze None) \ (cvm, ProcVarDeclChan name sze) | _ \ err STR ''Channel initilizations only allowed at the beginning of proctypes.'')" fun ppProcArg :: "var_data \ varType \ bool \ AST.varDecl \ var_data \ procArg" where "ppProcArg (c,v,m,a) (VTBounded l h) g (AST.VarDeclNum name None None) = ( case lm.lookup name v of Some _ \ errv STR ''Duplicate variable '' name | _ \ (case lm.lookup name a of Some _ \ errv STR ''Variable name clashes with alias: '' name | _ \ ((c, lm.update name (None, g) v, m, a), ProcArg (VTBounded l h) name)))" | "ppProcArg _ _ _ (AST.VarDeclNum _ _ _) = err STR ''Invalid proctype arguments''" | "ppProcArg (c,v,m,a) VTChan g (AST.VarDeclChan name None None) = ( case lm.lookup name c of Some _ \ errv STR ''Duplicate variable '' name | _ \ (case lm.lookup name a of Some _ \ errv STR ''Variable name clashes with alias: '' name | _ \ ((lm.update name (None, g) c, v, m, a), ProcArg VTChan name)))" | "ppProcArg _ _ _ (AST.VarDeclChan _ _ _) = err STR ''Invalid proctype arguments''" | "ppProcArg (c,v,m,a) (VTBounded l h) g (AST.VarDeclMType name None None) = ( case lm.lookup name v of Some _ \ errv STR ''Duplicate variable '' name | _ \ (case lm.lookup name a of Some _ \ errv STR ''Variable name clashes with alias: '' name | _ \ ((c, lm.update name (None, g) v, m, a), ProcArg (VTBounded l h) name)))" | "ppProcArg _ _ _ (AST.VarDeclMType _ _ _) = err STR ''Invalid proctype arguments''" | "ppProcArg _ _ _ (AST.VarDeclUnsigned _ _ _) = usc STR ''VarDeclUnsigned''" text \Some preprocessing functions enrich the @{typ var_data} argument and hence return a new updated one. When chaining multiple calls to such functions after another, we need to make sure, the @{typ var_data} is passed accordingly. @{term cvm_fold} does exactly that for such a function @{term g} and a list of nodes @{term ss}.\ definition cvm_fold where "cvm_fold g cvm ss = foldl (\(cvm,ss) s. apsnd (\s'. ss@[s']) (g cvm s)) (cvm, []) ss" lemma cvm_fold_cong[fundef_cong]: assumes "cvm = cvm'" and "stepss = stepss'" and "\x d. x \ set stepss \ g d x = g' d x" shows "cvm_fold g cvm stepss = cvm_fold g' cvm' stepss'" unfolding cvm_fold_def using assms by (fastforce intro: foldl_cong split: prod.split) fun liftDecl where "liftDecl f g cvm (AST.Decl vis t decls) = ( let _ = the_warn vis STR ''Visibility in declarations not supported. Ignored.'' in let t = ppVarType t in cvm_fold (\cvm. f cvm t g) cvm decls)" definition ppDecl :: "bool \ var_data \ AST.decl \ var_data \ varDecl list" where "ppDecl = liftDecl ppVarDecl" definition ppDeclProc :: "var_data \ AST.decl \ var_data \ procVarDecl list" where "ppDeclProc = liftDecl ppProcVarDecl False" definition ppDeclProcArg :: "var_data \ AST.decl \ var_data \ procArg list" where "ppDeclProcArg = liftDecl ppProcArg False" (* increment *) definition incr :: "varRef \ stmnt" where "incr v = StmntAssign v (ExprBinOp BinOpAdd (ExprVarRef v) (ExprConst 1))" (* decrement *) definition decr :: "varRef \ stmnt" where "decr v = StmntAssign v (ExprBinOp BinOpSub (ExprVarRef v) (ExprConst 1))" text \ Transforms \verb+for (i : lb .. ub) steps+ into \begin{verbatim} { i = lb; do :: i =< ub -> steps; i++ :: else -> break od } \end{verbatim} \ definition forFromTo :: "varRef \ expr \ expr \ step list \ stmnt" where "forFromTo i lb ub steps = ( let \ \\i = lb\\ loop_pre = StepStmnt (StmntAssign i lb) None; \ \\i \ ub\\ loop_cond = StepStmnt (StmntCond (ExprBinOp BinOpLEq (ExprVarRef i) ub)) None; \ \\i++\\ loop_incr = StepStmnt (incr i) None; \ \\i \ ub -> ...; i++\\ loop_body = loop_cond # steps @ [loop_incr]; \ \\else -> break\\ loop_abort = [StepStmnt StmntElse None, StepStmnt StmntBreak None]; \ \\do :: i \ ub -> ... :: else -> break od\\ loop = StepStmnt (StmntDo [loop_body, loop_abort]) None in StmntSeq [loop_pre, loop])" text \ Transforms (where @{term a} is an array with @{term N} entries) \verb+for (i in a) steps+ into \begin{verbatim}{ i = 0; do :: i < N -> steps; i++ :: else -> break od }\end{verbatim} \ definition forInArray :: "varRef \ integer \ step list \ stmnt" where "forInArray i N steps = ( let \ \\i = 0\\ loop_pre = StepStmnt (StmntAssign i (ExprConst 0)) None; \ \\i < N\\ loop_cond = StepStmnt (StmntCond (ExprBinOp BinOpLe (ExprVarRef i) (ExprConst N))) None; \ \\i++\\ loop_incr = StepStmnt (incr i) None; \ \\i < N -> ...; i++\\ loop_body = loop_cond # steps @ [loop_incr]; \ \\else -> break\\ loop_abort = [StepStmnt StmntElse None, StepStmnt StmntBreak None]; \ \\do :: i < N -> ... :: else -> break od\\ loop = StepStmnt (StmntDo [loop_body, loop_abort]) None in StmntSeq [loop_pre, loop])" text \ Transforms (where @{term c} is a channel) \verb+for (msg in c) steps+ into \begin{verbatim}{ byte :tmp: = 0; do :: :tmp: < len(c) -> c?msg; c!msg; steps; :tmp:++ :: else -> break od }\end{verbatim} \ definition forInChan :: "varRef \ chanRef \ step list \ stmnt" where "forInChan msg c steps = ( let \ \\byte :tmp: = 0\\ tmpStr = STR '':tmp:''; loop_pre = StepDecl [ProcVarDeclNum 0 255 tmpStr None (Some (ExprConst 0))]; tmp = VarRef False tmpStr None; \ \\:tmp: < len(c)\\ loop_cond = StepStmnt (StmntCond (ExprBinOp BinOpLe (ExprVarRef tmp) (ExprLen c))) None; \ \\:tmp:++\\ loop_incr = StepStmnt (incr tmp) None; \ \\c?msg\\ recv = StepStmnt (StmntRecv c [RecvArgVar msg] False True) None; \ \\c!msg\\ send = StepStmnt (StmntSend c [ExprVarRef msg] False) None; \ \\:tmp: < len(c) -> c?msg; c!msg; ...; :tmp:++\\ loop_body = [loop_cond, recv, send] @ steps @ [loop_incr]; \ \\else -> break\\ loop_abort = [StepStmnt StmntElse None, StepStmnt StmntBreak None]; \ \\do :: :tmp: < len(c) -> ... :: else -> break od\\ loop = StepStmnt (StmntDo [loop_body, loop_abort]) None in StmntSeq [loop_pre, loop])" text \ Transforms \verb+select (i : lb .. ub)+ into \begin{verbatim}{ i = lb; do :: i < ub -> i++ :: break od }\end{verbatim} \ definition select :: "varRef \ expr \ expr \ stmnt" where "select i lb ub = ( let \ \\i = lb\\ pre = StepStmnt (StmntAssign i lb) None; \ \\i < ub\\ cond = StepStmnt (StmntCond (ExprBinOp BinOpLe (ExprVarRef i) ub)) None; \ \\i++\\ incr = StepStmnt (incr i) None; \ \\i < ub -> i++\\ loop_body = [cond, incr]; \ \\break\\ loop_abort = [StepStmnt StmntBreak None]; \ \\do :: i < ub -> ... :: break od\\ loop = StepStmnt (StmntDo [loop_body, loop_abort]) None in StmntSeq [pre, loop])" type_synonym inlines = "(String.literal, String.literal list \ (var_data \ var_data \ step list)) lm" type_synonym stmnt_data = " bool \ varDecl list \ inlines \ var_data" fun ppStep :: "stmnt_data \ AST.step \ stmnt_data * step" and ppStmnt :: "stmnt_data \ AST.stmnt \ stmnt_data * stmnt" where "ppStep cvm (AST.StepStmnt s u) = ( let (cvm', s') = ppStmnt cvm s in case u of None \ (cvm', StepStmnt s' None) | Some u \ let (cvm'',u') = ppStmnt cvm' u in (cvm'', StepStmnt s' (Some u')))" | "ppStep (False, ps, i, cvm) (AST.StepDecl d) = map_prod (\cvm. (False, ps, i, cvm)) StepDecl (ppDeclProc cvm d)" | "ppStep (True, ps, i, cvm) (AST.StepDecl d) = ( let (cvm', ps') = ppDecl False cvm d in ((True, ps@ps', i, cvm'), StepSkip))" | "ppStep (_,cvm) (AST.StepXR _) = with_warn STR ''StepXR not supported. Ignored.'' ((False,cvm), StepSkip)" | "ppStep (_,cvm) (AST.StepXS _) = with_warn STR ''StepXS not supported. Ignored.'' ((False,cvm), StepSkip)" | "ppStmnt (_,cvm) (AST.StmntBreak) = ((False,cvm), StmntBreak)" | "ppStmnt (_,cvm) (AST.StmntElse) = ((False,cvm), StmntElse)" | "ppStmnt (_,cvm) (AST.StmntGoTo l) = ((False,cvm), StmntGoTo l)" | "ppStmnt (_,cvm) (AST.StmntLabeled l s) = apsnd (StmntLabeled l) (ppStmnt (False,cvm) s)" | "ppStmnt (_,ps,i,cvm) (AST.StmntCond e) = ((False,ps,i,cvm), StmntCond (ppExpr cvm e))" | "ppStmnt (_,ps,i,cvm) (AST.StmntAssert e) = ((False,ps,i,cvm), StmntAssert (ppExpr cvm e))" | "ppStmnt (_,ps,i,cvm) (AST.StmntAssign v e) = ((False,ps,i,cvm), StmntAssign (liftChan (ppVarRef cvm v)) (ppExpr cvm e))" | "ppStmnt (_,ps,i,cvm) (AST.StmntSend v es) = ((False,ps,i,cvm), StmntSend (enforceChan (ppVarRef cvm v)) (map (ppExpr cvm) es) False)" | "ppStmnt (_,ps,i,cvm) (AST.StmntSortSend v es) = ((False,ps,i,cvm), StmntSend (enforceChan (ppVarRef cvm v)) (map (ppExpr cvm) es) True)" | "ppStmnt (_,ps,i,cvm) (AST.StmntRecv v rs) = ((False,ps,i,cvm), StmntRecv (enforceChan (ppVarRef cvm v)) (map (ppRecvArg cvm) rs) False True)" | "ppStmnt (_,ps,i,cvm) (AST.StmntRecvX v rs) = ((False,ps,i,cvm), StmntRecv (enforceChan (ppVarRef cvm v)) (map (ppRecvArg cvm) rs) False False)" | "ppStmnt (_,ps,i,cvm) (AST.StmntRndRecv v rs) = ((False,ps,i,cvm), StmntRecv (enforceChan (ppVarRef cvm v)) (map (ppRecvArg cvm) rs) True True)" | "ppStmnt (_,ps,i,cvm) (AST.StmntRndRecvX v rs) = ((False,ps,i,cvm), StmntRecv (enforceChan (ppVarRef cvm v)) (map (ppRecvArg cvm) rs) True False)" | "ppStmnt (_,ps,i,cvm) (AST.StmntRun n es p) = ( let _ = the_warn p STR ''Priorities for 'run' not supported. Ignored.'' in ((False,ps,i,cvm), StmntRun n (map (ppExpr cvm) es)))" | "ppStmnt (_,cvm) (AST.StmntSeq ss) = apsnd StmntSeq (cvm_fold ppStep (False,cvm) ss)" | "ppStmnt (_,cvm) (AST.StmntAtomic ss) = apsnd StmntAtomic (cvm_fold ppStep (False,cvm) ss)" | "ppStmnt (_,cvm) (AST.StmntIf sss) = apsnd StmntIf (cvm_fold (cvm_fold ppStep) (False,cvm) sss)" | "ppStmnt (_,cvm) (AST.StmntDo sss) = apsnd StmntDo (cvm_fold (cvm_fold ppStep) (False,cvm) sss)" (* Replace i++ and i-- by i = i + 1 / i = i - 1 *) | "ppStmnt (_,ps,i,cvm) (AST.StmntIncr v) = ((False,ps,i,cvm), incr (liftChan (ppVarRef cvm v)))" | "ppStmnt (_,ps,i,cvm) (AST.StmntDecr v) = ((False,ps,i,cvm), decr (liftChan (ppVarRef cvm v)))" | "ppStmnt (_,cvm) (AST.StmntPrintF _ _) = with_warn STR ''PrintF ignored'' ((False,cvm), StmntSkip)" | "ppStmnt (_,cvm) (AST.StmntPrintM _) = with_warn STR ''PrintM ignored'' ((False,cvm), StmntSkip)" | "ppStmnt (_,ps,inl,cvm) (AST.StmntFor (AST.RangeFromTo i lb ub) steps) = ( let i = liftChan (ppVarRef cvm i); (lb,ub) = (ppExpr cvm lb, ppExpr cvm ub) in apsnd (forFromTo i lb ub) (cvm_fold ppStep (False,ps,inl,cvm) steps))" | "ppStmnt (_,ps,inl,cvm) (AST.StmntFor (AST.RangeIn i v) steps) = ( let i = liftChan (ppVarRef cvm i); (cvm',steps) = cvm_fold ppStep (False,ps,inl,cvm) steps in case ppVarRef cvm v of Inr c \ (cvm', forInChan i c steps) | Inl (VarRef _ _ (Some _)) \ err STR ''Iterating over array-member.'' | Inl (VarRef _ name None) \ ( let (_,v,_) = cvm in case fst (the (lm.lookup name v)) of None \ err STR ''Iterating over non-array variable.'' | Some N \ (cvm', forInArray i N steps)))" | "ppStmnt (_,ps,inl,cvm) (AST.StmntSelect (AST.RangeFromTo i lb ub)) = ( let i = liftChan (ppVarRef cvm i); (lb, ub) = (ppExpr cvm lb, ppExpr cvm ub) in ((False,ps,inl,cvm), select i lb ub))" | "ppStmnt (_,cvm) (AST.StmntSelect (AST.RangeIn _ _)) = err STR ''\"in\" not allowed in select''" | "ppStmnt (_,ps,inl,cvm) (AST.StmntCall macro args) = ( let args = map (liftChan \ ppVarRef cvm) args; (c,v,m,a) = cvm in case lm.lookup macro inl of None \ errv STR ''Calling unknown macro '' macro | Some (names,sF) \ if length names \ length args then (err STR ''Called macro with wrong number of arguments.'') else let a' = foldl (\a (k,v). lm.update k v a) a (zip names args) in let ((c,v,m,_),steps) = sF (c,v,m,a') in ((False,ps,inl,c,v,m,a), StmntSeq steps))" | "ppStmnt cvm (AST.StmntDStep _) = usc STR ''StmntDStep''" fun ppModule :: "var_data \ inlines \ AST.module \ var_data \ inlines \ (varDecl list + proc + ltl)" where "ppModule (cvm, inl) (AST.ProcType act name args prio prov steps) = ( let _ = the_warn prio STR ''Priorities for procs not supported. Ignored.''; _ = the_warn prov STR ''Priov (??) for procs not supported. Ignored.''; (cvm', args) = cvm_fold ppDeclProcArg cvm args; ((_, vars, _, _), steps) = cvm_fold ppStep (True,[],inl,cvm') steps in (cvm, inl, Inr (Inl (ProcType act name (concat args) vars steps))))" | "ppModule (cvm,inl) (AST.Init prio steps) = ( let _ = the_warn prio STR ''Priorities for procs not supported. Ignored.'' in let ((_, vars, _, _), steps) = cvm_fold ppStep (True,[],inl,cvm) steps in (cvm, inl, Inr (Inl (Init vars steps))))" | "ppModule (cvm,inl) (AST.Ltl name formula) = (cvm, inl, Inr (Inr (name, formula)))" | "ppModule (cvm,inl) (AST.ModuDecl decl) = apsnd (\ds. (inl,Inl ds)) (ppDecl True cvm decl)" | "ppModule (cvm,inl) (AST.MType mtys) = ( let (c,v,m,a) = cvm in let num = integer_of_nat (lm.size m) + 1 in let (m',_) = foldr (\mty (m,num). let m' = lm.update mty num m in (m',num+1)) mtys (m,num) in ((c,v,m',a), inl, Inl []))" | "ppModule (cvm,inl) (AST.Inline name args steps) = ( let stepF = (\cvm. let ((_,_,_,cvm),steps) = cvm_fold ppStep (False,[],inl,cvm) steps in (cvm,steps)) in let inl = lm.update name (args, stepF) inl in (cvm,inl, Inl[]))" | "ppModule cvm (AST.DProcType _ _ _ _ _ _) = usc STR ''DProcType''" | "ppModule cvm (AST.Never _) = usc STR ''Never''" | "ppModule cvm (AST.Trace _) = usc STR ''Trace''" | "ppModule cvm (AST.NoTrace _) = usc STR ''NoTrace''" | "ppModule cvm (AST.TypeDef _ _) = usc STR ''TypeDef''" definition preprocess :: "AST.module list \ promela" where "preprocess ms = ( let dflt_vars = [(STR ''_pid'', (None, False)), (STR ''__assert__'', (None, True)), (STR ''_'', (None, True))]; cvm = (lm.empty(), lm.to_map dflt_vars, lm.empty(), lm.empty()); (_,_,pr) = (foldl (\(cvm,inl,vs,ps,ls) m. let (cvm', inl', m') = ppModule (cvm,inl) m in case m' of Inl v \ (cvm',inl',vs@v,ps,ls) | Inr (Inl p) \ (cvm',inl',vs,ps@[p],ls) | Inr (Inr l) \ (cvm',inl',vs,ps,ls@[l])) (cvm, lm.empty(),[],[],[]) ms) in pr)" fun extractLTL :: "AST.module \ ltl option" where "extractLTL (AST.Ltl name formula) = Some (name, formula)" | "extractLTL _ = None" primrec extractLTLs :: "AST.module list \ (String.literal, String.literal) lm" where "extractLTLs [] = lm.empty()" | "extractLTLs (m#ms) = (case extractLTL m of None \ extractLTLs ms | Some (n,f) \ lm.update n f (extractLTLs ms))" definition lookupLTL :: "AST.module list \ String.literal \ String.literal option" where "lookupLTL ast k = lm.lookup k (extractLTLs ast)" subsection \The transition system\ text \ The edges in our transition system consist of a condition (evaluated under the current environment) and an effect (modifying the current environment). Further they may be atomic, \ie a whole row of such edges is taken before yielding a new state. Additionally, they carry a priority: the edges are checked from highest to lowest priority, and if one edge on a higher level can be taken, the lower levels are ignored. The states of the system do not carry any information. \ datatype edgeCond = ECElse | ECTrue | ECFalse | ECExpr expr | ECRun String.literal | ECSend chanRef | ECRecv chanRef "recvArg list" bool (* sorted *) datatype edgeEffect = EEEnd | EEId | EEGoto | EEAssert expr | EEAssign varRef expr | EEDecl procVarDecl | EERun String.literal "expr list" | EESend chanRef "expr list" bool (*sorted*) | EERecv chanRef "recvArg list" bool (*sorted*) bool (*remove*) datatype edgeIndex = Index nat | LabelJump String.literal "nat option" datatype edgeAtomic = NonAtomic | Atomic | InAtomic record edge = cond :: edgeCond effect :: edgeEffect target :: edgeIndex prio :: integer atomic :: edgeAtomic definition isAtomic :: "edge \ bool" where "isAtomic e = (case atomic e of Atomic \ True | _ \ False)" definition inAtomic :: "edge \ bool" where "inAtomic e = (case atomic e of NonAtomic \ False | _ \ True)" subsection \State\ datatype variable = Var varType integer | VArray varType nat "integer iarray" datatype channel = Channel integer "varType list" "integer list list" | HSChannel "varType list" (* handshake channel *) | InvChannel (* Invalid / closed channel *) type_synonym var_dict = "(String.literal, variable) lm" type_synonym labels = "(String.literal, nat) lm" type_synonym ltls = "(String.literal, String.literal) lm" type_synonym states = "(\ \prio:\ integer \ edge list) iarray" type_synonym channels = "channel list" type_synonym process = "nat \ \offset\ \ edgeIndex \ \start\ \ procArg list \ \args\ \ varDecl list \ \top decls\" record program = processes :: "process iarray" labels :: "labels iarray" states :: "states iarray" proc_names :: "String.literal iarray" proc_data :: "(String.literal, nat) lm" record pState = \ \State of a process\ pid :: nat \ \Process identifier\ vars :: var_dict \ \Dictionary of variables\ pc :: nat \ \Program counter\ channels :: "integer list" \ \List of channels created in the process. Used to close them on finalization.\ idx :: nat \ \Offset into the arrays of @{type program}\ hide_const (open) idx record gState = \ \Global state\ vars :: var_dict \ \Global variables\ channels :: channels \ \Channels are by construction part of the global state, even when created in a process.\ timeout :: bool \ \Set to True if no process can take a transition.\ procs :: "pState list" \ \List of all running processes. A process is removed from it, when there is no running one with a higher index.\ record gState\<^sub>I = gState + \ \Additional internal infos\ handshake :: nat hsdata :: "integer list " \ \Data transferred via a handshake.\ exclusive :: nat \ \Set to the PID of the process, which is in an exclusive (= atomic) state.\ else :: bool \ \Set to True for each process, if it can not take a transition. Used before timeout.\ subsection \Printing\ primrec printBinOp :: "binOp \ string" where "printBinOp BinOpAdd = ''+''" | "printBinOp BinOpSub = ''-''" | "printBinOp BinOpMul = ''*''" | "printBinOp BinOpDiv = ''/''" | "printBinOp BinOpMod = ''mod''" | "printBinOp BinOpGr = ''>''" | "printBinOp BinOpLe = ''<''" | "printBinOp BinOpGEq = ''>=''" | "printBinOp BinOpLEq = ''=<''" | "printBinOp BinOpEq = ''==''" | "printBinOp BinOpNEq = ''!=''" | "printBinOp BinOpAnd = ''&&''" | "printBinOp BinOpOr = ''||''" primrec printUnOp :: "unOp \ string" where "printUnOp UnOpMinus = ''-''" | "printUnOp UnOpNeg = ''!''" definition printList :: "('a \ string) \ 'a list \ string \ string \ string \ string" where "printList f xs l r sep = ( let f' = (\str x. if str = [] then f x else str @ sep @ f x) in l @ (foldl f' [] xs) @ r)" lemma printList_cong [fundef_cong]: assumes "xs = xs'" and "l = l'" and "r = r'" and "sep = sep'" and "\x. x \ set xs \ f x = f' x" shows "printList f xs l r sep = printList f' xs' l' r' sep'" unfolding printList_def using assms by (auto intro: foldl_cong) fun printExpr :: "(integer \ string) \ expr \ string" and printFun :: "(integer \ string) \ string \ chanRef \ string" and printVarRef :: "(integer \ string) \ varRef \ string" and printChanRef :: "(integer \ string) \ chanRef \ string" and printRecvArg :: "(integer \ string) \ recvArg \ string" where "printExpr f ExprTimeOut = ''timeout''" | "printExpr f (ExprBinOp binOp left right) = printExpr f left @ '' '' @ printBinOp binOp @ '' '' @ printExpr f right" | "printExpr f (ExprUnOp unOp e) = printUnOp unOp @ printExpr f e" | "printExpr f (ExprVarRef varRef) = printVarRef f varRef" | "printExpr f (ExprConst i) = f i" | "printExpr f (ExprMConst i m) = String.explode m" | "printExpr f (ExprCond c l r) = ''( (( '' @ printExpr f c @ '' )) -> '' @ printExpr f l @ '' : '' @ printExpr f r @ '' )''" | "printExpr f (ExprLen chan) = printFun f ''len'' chan" | "printExpr f (ExprEmpty chan) = printFun f ''empty'' chan" | "printExpr f (ExprFull chan) = printFun f ''full'' chan" | "printExpr f (ExprPoll chan es srt) = ( let p = if srt then ''??'' else ''?'' in printChanRef f chan @ p @ printList (printRecvArg f) es ''['' '']'' '', '')" | "printVarRef _ (VarRef _ name None) = String.explode name" | "printVarRef f (VarRef _ name (Some indx)) = String.explode name @ ''['' @ printExpr f indx @ '']''" | "printChanRef f (ChanRef v) = printVarRef f v" | "printFun f fun var = fun @ ''('' @ printChanRef f var @ '')''" | "printRecvArg f (RecvArgVar v) = printVarRef f v" | "printRecvArg f (RecvArgConst c) = f c" | "printRecvArg f (RecvArgMConst _ m) = String.explode m" | "printRecvArg f (RecvArgEval e) = ''eval('' @ printExpr f e @ '')''" fun printVarDecl :: "(integer \ string) \ procVarDecl \ string" where "printVarDecl f (ProcVarDeclNum _ _ n None None) = String.explode n @ '' = 0''" | "printVarDecl f (ProcVarDeclNum _ _ n None (Some e)) = String.explode n @ '' = '' @ printExpr f e" | "printVarDecl f (ProcVarDeclNum _ _ n (Some i) None) = String.explode n @ ''['' @ f i @ ''] = 0''" | "printVarDecl f (ProcVarDeclNum _ _ n (Some i) (Some e)) = String.explode n @ ''[''@ f i @ ''] = '' @ printExpr f e" | "printVarDecl f (ProcVarDeclChan n None) = ''chan '' @ String.explode n" | "printVarDecl f (ProcVarDeclChan n (Some i)) = ''chan '' @ String.explode n @ ''['' @ f i @ '']''" primrec printCond :: "(integer \ string) \ edgeCond \ string" where "printCond f ECElse = ''else''" | "printCond f ECTrue = ''true''" | "printCond f ECFalse = ''false''" | "printCond f (ECRun n) = ''run '' @ String.explode n @ ''(...)''" | "printCond f (ECExpr e) = printExpr f e" | "printCond f (ECSend c) = printChanRef f c @ ''! ...''" | "printCond f (ECRecv c _ _) = printChanRef f c @ ''? ...''" primrec printEffect :: "(integer \ string) \ edgeEffect \ string" where "printEffect f EEEnd = ''-- end --''" | "printEffect f EEId = ''ID''" | "printEffect f EEGoto = ''goto''" | "printEffect f (EEAssert e) = ''assert('' @ printExpr f e @'')''" | "printEffect f (EERun n _) = ''run '' @ String.explode n @ ''(...)''" | "printEffect f (EEAssign v expr) = printVarRef f v @ '' = '' @ printExpr f expr" | "printEffect f (EEDecl d) = printVarDecl f d" | "printEffect f (EESend v es srt) = ( let s = if srt then ''!!'' else ''!'' in printChanRef f v @ s @ printList (printExpr f) es ''('' '')'' '', '')" | "printEffect f (EERecv v rs srt rem) = ( let p = if srt then ''??'' else ''?'' in let (l,r) = if rem then (''('', '')'') else (''<'', ''>'') in printChanRef f v @ p @ printList (printRecvArg f) rs l r '', '')" primrec printIndex :: "(integer \ string) \ edgeIndex \ string" where "printIndex f (Index pos) = f (integer_of_nat pos)" | "printIndex _ (LabelJump l _) = String.explode l" definition printEdge :: "(integer \ string) \ nat \ edge \ string" where "printEdge f indx e = ( let tStr = printIndex f (target e); pStr = if prio e < 0 then '' Prio: '' @ f (prio e) else []; atom = if isAtomic e then \x. x @ '' {A}'' else id; pEff = \_. atom (printEffect f (effect e)); contStr = case (cond e) of ECTrue \ pEff () | ECFalse \ pEff () | ECSend _ \ pEff() | ECRecv _ _ _\ pEff() | _ \ atom (''(( '' @ printCond f (cond e) @ '' ))'') in f (integer_of_nat indx) @ '' ---> '' @ tStr @ '' => '' @ contStr @ pStr)" definition printEdges :: "(integer \ string) \ states \ string list" where "printEdges f es = concat (map (\n. map (printEdge f n) (snd (es !! n))) (rev [0.. string) \ labels \ string list" where "printLabels f ls = lm.iterate ls (\(k,l) res. (''Label '' @ String.explode k @ '': '' @ f (integer_of_nat l)) # res) []" fun printProcesses :: "(integer \ string) \ program \ string list" where "printProcesses f prog = lm.iterate (proc_data prog) (\(k,idx) res. let (_,start,_,_) = processes prog !! idx in [] # (''Process '' @ String.explode k) # [] # printEdges f (states prog !! idx) @ [''START ---> '' @ printIndex f start, []] @ printLabels f (labels prog !! idx) @ res) []" (*<*) (*section {* Instantiations *} text {* Here instantiations for classes @{class linorder} and @{class hashable} are given for our datatypes. As we include other structures, which sometime also lack those instantiations, this is done here too. *} subsection {* Others *} text {* The following lemmas are needed to make our hashing and linorder sound. NB: It cannot be proven that @{prop "Assoc_List.update k v (Assoc_List.update k2 v2 ls) = Assoc_List.update k2 v2 (Assoc_List.update k v ls)"} Hence our implementation becomes unsound when order of insertion is not fix. *}*) lemma AL_update_idem: assumes "Assoc_List.lookup ls k = Some v" shows "Assoc_List.update k v ls = ls" proof - obtain lsl where lsl: "lsl = Assoc_List.impl_of ls" by blast with assms have "map_of lsl k = Some v" by (simp add: Assoc_List.lookup_def) hence "AList.update_with_aux v k (\_. v) lsl = lsl" by (induct lsl) auto with lsl show ?thesis by (simp add: Assoc_List.update_def Assoc_List.update_with_def Assoc_List_impl_of) qed lemma AL_update_update_idem: assumes "Assoc_List.lookup ls k = Some v" shows "Assoc_List.update k v (Assoc_List.update k v2 ls) = ls" proof - obtain lsl where lsl: "lsl = Assoc_List.impl_of ls" by blast with assms have "map_of lsl k = Some v" by (simp add: Assoc_List.lookup_def) hence "AList.update_with_aux v k (\_. v) (AList.update_with_aux v2 k (\_. v2) lsl) = lsl" by (induct lsl) auto with lsl show ?thesis by (metis Assoc_List.update_def Assoc_List_impl_of impl_of_update_with) qed lemma AL_update_delete_idem: assumes "Assoc_List.lookup ls k = None" shows "Assoc_List.delete k (Assoc_List.update k v ls) = ls" proof - obtain lsl where lsl: "lsl = Assoc_List.impl_of ls" by blast with assms have "map_of lsl k = None" by (simp add: Assoc_List.lookup_def) hence "AList.delete_aux k (AList.update_with_aux v k (\_. v) lsl) = lsl" by (induct lsl) auto with lsl show ?thesis by (simp add: Assoc_List.delete_def Assoc_List.update_def assoc_list.impl_of_inverse impl_of_update_with) qed instantiation assoc_list :: (hashable,hashable) hashable begin definition "def_hashmap_size (_::('a,'b) assoc_list itself) \ (10 :: nat)" definition [simp]: "hashcode \ hashcode \ Assoc_List.impl_of" instance by standard (simp_all add: def_hashmap_size_assoc_list_def) end (* instantiation XXX :: (hashable_uint, hashable_uint) hashable begin definition hashcode_XXX :: "('a, 'b) XXX \ nat" where "hashcode_XXX \ hashcode_nat" definition bounded_hashcode_XXX :: "nat \ ('a, 'b) XXX \ nat" where "bounded_hashcode_XXX = bounded_hashcode_nat" definition def_hashmap_size_XXX :: "('a, 'b) XXX itself \ nat" where "def_hashmap_size_XXX \ def_hashmap_size_uint" instance apply standard unfolding def_hashmap_size_XXX_def bounded_hashcode_XXX_def using hashable_from_hashable_uint by auto end *) instantiation assoc_list :: (linorder,linorder) linorder begin definition [simp]: "less_eq_assoc_list (a :: ('a,'b) assoc_list) (b :: ('a,'b) assoc_list) \ lexlist (Assoc_List.impl_of a) \ lexlist (Assoc_List.impl_of b)" definition [simp]: "less_assoc_list (a :: ('a,'b) assoc_list) (b :: ('a,'b) assoc_list) \ lexlist (Assoc_List.impl_of a) < lexlist (Assoc_List.impl_of b)" instance apply standard apply (auto) apply (metis assoc_list_ext lexlist_ext lexlist_def) done end (* Other instantiations for types from Main *) (*instantiation iarray :: (linorder) linorder begin definition [simp]: "less_eq_iarray (a :: 'a iarray) (b :: 'a iarray) \ lexlist (IArray.list_of a) \ lexlist (IArray.list_of b)" definition [simp]: "less_iarray (a :: 'a iarray) (b :: 'a iarray) \ lexlist (IArray.list_of a) < lexlist (IArray.list_of b)" instance apply standard apply auto apply (metis iarray.exhaust list_of.simps lexlist_ext lexlist_def) done end*) derive linorder iarray instantiation lexlist :: (hashable) hashable begin definition "def_hashmap_size_lexlist = (\_ :: 'a lexlist itself. 2 * def_hashmap_size TYPE('a))" definition "hashcode_lexlist = hashcode o unlex" instance proof from def_hashmap_size[where ?'a = "'a"] show "1 < def_hashmap_size TYPE('a lexlist)" by(simp add: def_hashmap_size_lexlist_def) qed end text \Instead of operating on the list representation of an @{const IArray}, we walk it directly, using the indices.\ primrec walk_iarray' :: "('b \ 'a \ 'b) \ 'a iarray \ 'b \ nat \ nat \ 'b" where "walk_iarray' _ _ x 0 _ = x" | "walk_iarray' f a x (Suc l) p = (let y = f x (a !! p) in walk_iarray' f a y l (p + 1))" lemma walk_iarray'_Cons: "walk_iarray' f (IArray (a#xs)) x l (Suc p) = walk_iarray' f (IArray xs) x l p" by (induct l arbitrary: p x) simp_all definition walk_iarray :: "('b \ 'a \ 'b) \ 'a iarray \ 'b \ 'b" where "walk_iarray f a x = walk_iarray' f a x (IArray.length a) 0" lemma walk_iarray_Cons: "walk_iarray f (IArray (a#xs)) b = walk_iarray f (IArray xs) (f b a)" by (simp add: walk_iarray_def walk_iarray'_Cons) lemma walk_iarray_append: "walk_iarray f (IArray (xs@[x])) b = f (walk_iarray f (IArray xs) b) x" by (induct xs arbitrary: b) (simp add: walk_iarray_def, simp add: walk_iarray_Cons) lemma walk_iarray_foldl': "walk_iarray f (IArray xs) x = foldl f x xs" by (induction xs rule: rev_induct) (simp add: walk_iarray_def, simp add: walk_iarray_append) lemma walk_iarray_foldl: "walk_iarray f a x = foldl f x (IArray.list_of a)" by (cases a) (simp add: walk_iarray_foldl') instantiation iarray :: (hashable) hashable begin definition [simp]: "hashcode a = foldl (\h v. h * 33 + hashcode v) 0 (IArray.list_of a)" definition "def_hashmap_size = (\_ :: 'a iarray itself. 10)" instance by standard (simp_all add: def_hashmap_size_iarray_def) lemma [code]: "hashcode a = walk_iarray (\h v. h * 33 + hashcode v) a 0" by (simp add: walk_iarray_foldl) end (* Other instantiations for types from Main *) instantiation array :: (linorder) linorder begin definition [simp]: "less_eq_array (a :: 'a array) (b :: 'a array) \ lexlist (list_of_array a) \ lexlist (list_of_array b)" definition [simp]: "less_array (a :: 'a array) (b :: 'a array) \ lexlist (list_of_array a) < lexlist (list_of_array b)" instance apply standard apply auto apply (metis array.exhaust list_of_array.simps lexlist_ext lexlist_def) done end text \Same for arrays from the ICF.\ primrec walk_array' :: "('b \ 'a \ 'b) \ 'a array \ 'b \ nat \ nat \ 'b" where "walk_array' _ _ x 0 _ = x" | "walk_array' f a x (Suc l) p = (let y = f x (array_get a p) in walk_array' f a y l (p + 1))" lemma walk_array'_Cons: "walk_array' f (Array (a#xs)) x l (Suc p) = walk_array' f (Array xs) x l p" by (induct l arbitrary: p x) simp_all definition walk_array :: "('b \ 'a \ 'b) \ 'a array \ 'b \ 'b" where "walk_array f a x = walk_array' f a x (array_length a) 0" lemma walk_array_Cons: "walk_array f (Array (a#xs)) b = walk_array f (Array xs) (f b a)" by (simp add: walk_array_def walk_array'_Cons) lemma walk_array_append: "walk_array f (Array (xs@[x])) b = f (walk_array f (Array xs) b) x" by (induct xs arbitrary: b) (simp add: walk_array_def, simp add: walk_array_Cons) lemma walk_array_foldl': "walk_array f (Array xs) x = foldl f x xs" by (induction xs rule: rev_induct) (simp add: walk_array_def, simp add: walk_array_append) lemma walk_array_foldl: "walk_array f a x = foldl f x (list_of_array a)" by (cases a) (simp add: walk_array_foldl') (* TODO: Move to array.thy *) instantiation array :: (hashable) hashable begin definition [simp]: "hashcode a = foldl (\h v. h * 33 + hashcode v) 0 (list_of_array a)" definition "def_hashmap_size = (\_ :: 'a array itself. 10)" instance by standard (simp_all add: def_hashmap_size_array_def) lemma [code]: "hashcode a = walk_array (\h v. h * 33 + hashcode v) a 0" by (simp add: walk_array_foldl) end (*subsection {* Ours *}*) derive linorder varType derive linorder variable instantiation varType :: hashable begin definition "def_hashmap_size_varType (_::varType itself) \ (10::nat)" fun hashcode_varType where "hashcode_varType (VTBounded i1 i2) = hashcode (i1,i2)" | "hashcode_varType VTChan = 23" instance by standard (simp add: def_hashmap_size_varType_def) end instantiation variable :: hashable begin definition "def_hashmap_size_variable (_::variable itself) \ (10::nat)" fun hashcode_variable where "hashcode_variable (Var i1 i2) = hashcode (i1,i2)" | "hashcode_variable (VArray i1 i2 ia) = hashcode (i1,i2,ia)" instance by standard (simp add: def_hashmap_size_variable_def) end fun channel_to_tuple where "channel_to_tuple (Channel io vs iss) = (3::nat,io,lexlist vs, lexlist (map lexlist iss))" | "channel_to_tuple (HSChannel vs) = (2,0,lexlist vs, lexlist [])" | "channel_to_tuple InvChannel = (1,0,lexlist [], lexlist [])" instantiation channel :: linorder begin definition [simp]: "less_eq_channel xs ys \ channel_to_tuple xs \ channel_to_tuple ys" definition [simp]: "less_channel xs ys \ channel_to_tuple xs < channel_to_tuple ys" instance apply standard apply (auto) apply (case_tac x) apply (case_tac [!] y) apply (auto dest!: map_inj_on intro!: inj_onI lexlist_ext simp: Lex_inject lexlist_def) done end instantiation channel :: hashable begin definition "def_hashmap_size_channel (_::channel itself) \ (10::nat)" fun hashcode_channel where "hashcode_channel (Channel io vs iss) = hashcode (io, vs, iss)" | "hashcode_channel (HSChannel vs) = 42 * hashcode vs" | "hashcode_channel InvChannel = 4711" instance by standard (simp add: def_hashmap_size_channel_def) end function pState2HASH where "pState2HASH \ pid = p, vars = v, pc = c, channels = ch, idx = s, \ = m \ = (p, v, c, lexlist ch, s, m)" by (metis pState.surjective) force termination by lexicographic_order lemma pState2HASH_eq: "pState2HASH x = pState2HASH y \ x = y" by (cases x, cases y) (auto intro: lexlist_ext simp: lexlist_def) instantiation pState_ext :: (linorder) linorder begin definition [simp]: "less_eq_pState_ext (a :: 'a pState_ext) (b :: 'a pState_ext) \ pState2HASH a \ pState2HASH b" definition [simp]: "less_pState_ext (a :: 'a pState_ext) (b :: 'a pState_ext) \ pState2HASH a < pState2HASH b" instance by standard (auto simp: pState2HASH_eq) end instantiation pState_ext :: (hashable) hashable begin definition "def_hashmap_size_pState_ext (_::'a pState_ext itself) \ (10::nat)" definition [simp]: "hashcode \ hashcode \ pState2HASH" instance by standard (simp_all add: def_hashmap_size_pState_ext_def) end function gState2HASH where "gState2HASH \ gState.vars = v, channels = ch, timeout = t, procs = p, \ = m \ = (v, lexlist ch, t, lexlist p, m)" by (metis gState.surjective) force termination by lexicographic_order lemma gState2HASH_eq: "gState2HASH x = gState2HASH y \ x = y" by (cases x, cases y) (auto intro: lexlist_ext simp: lexlist_def) instantiation gState_ext :: (linorder) linorder begin definition [simp]: "less_eq_gState_ext (a :: 'a gState_ext) (b :: 'a gState_ext) \ gState2HASH a \ gState2HASH b" definition [simp]: "less_gState_ext (a :: 'a gState_ext) (b :: 'a gState_ext) \ gState2HASH a < gState2HASH b" instance by standard (auto simp: gState2HASH_eq) end instantiation gState_ext :: (hashable) hashable begin definition "def_hashmap_size_gState_ext (_::'a gState_ext itself) \ (10::nat)" definition [simp]: "hashcode \ hashcode \ gState2HASH" instance by standard (simp_all add: def_hashmap_size_gState_ext_def) end (*>*) end diff --git a/thys/Word_Lib/Aligned.thy b/thys/Word_Lib/Aligned.thy --- a/thys/Word_Lib/Aligned.thy +++ b/thys/Word_Lib/Aligned.thy @@ -1,1245 +1,1267 @@ (* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section "Word Alignment" theory Aligned imports "HOL-Library.Word" More_Word Word_EqI Typedef_Morphisms begin lift_definition is_aligned :: \'a::len word \ nat \ bool\ is \\k n. 2 ^ n dvd take_bit LENGTH('a) k\ by simp lemma is_aligned_iff_udvd: \is_aligned w n \ 2 ^ n udvd w\ by transfer (simp flip: take_bit_eq_0_iff add: min_def) lemma is_aligned_iff_take_bit_eq_0: \is_aligned w n \ take_bit n w = 0\ by (simp add: is_aligned_iff_udvd take_bit_eq_0_iff exp_dvd_iff_exp_udvd) lemma is_aligned_iff_dvd_int: \is_aligned ptr n \ 2 ^ n dvd uint ptr\ by transfer simp lemma is_aligned_iff_dvd_nat: \is_aligned ptr n \ 2 ^ n dvd unat ptr\ proof - have \unat ptr = nat \uint ptr\\ by transfer simp then have \2 ^ n dvd unat ptr \ 2 ^ n dvd uint ptr\ by (simp only: dvd_nat_abs_iff) simp then show ?thesis by (simp add: is_aligned_iff_dvd_int) qed lemma is_aligned_0 [simp]: \is_aligned 0 n\ by transfer simp lemma is_aligned_at_0 [simp]: \is_aligned w 0\ by transfer simp lemma is_aligned_beyond_length: \is_aligned w n \ w = 0\ if \LENGTH('a) \ n\ for w :: \'a::len word\ using that apply (simp add: is_aligned_iff_udvd) apply transfer apply auto done lemma is_alignedI [intro?]: \is_aligned x n\ if \x = 2 ^ n * k\ for x :: \'a::len word\ proof (unfold is_aligned_iff_udvd) from that show \2 ^ n udvd x\ using dvd_triv_left exp_dvd_iff_exp_udvd by blast qed lemma is_alignedE: fixes w :: \'a::len word\ assumes \is_aligned w n\ obtains q where \w = 2 ^ n * word_of_nat q\ \q < 2 ^ (LENGTH('a) - n)\ proof (cases \n < LENGTH('a)\) case False with assms have \w = 0\ by (simp add: is_aligned_beyond_length) with that [of 0] show thesis by simp next case True moreover define m where \m = LENGTH('a) - n\ ultimately have l: \LENGTH('a) = n + m\ and \m \ 0\ by simp_all from \n < LENGTH('a)\ have *: \unat (2 ^ n :: 'a word) = 2 ^ n\ by transfer simp from assms have \2 ^ n udvd w\ by (simp add: is_aligned_iff_udvd) then obtain v :: \'a word\ where \unat w = unat (2 ^ n :: 'a word) * unat v\ .. moreover define q where \q = unat v\ ultimately have unat_w: \unat w = 2 ^ n * q\ by (simp add: *) then have \word_of_nat (unat w) = (word_of_nat (2 ^ n * q) :: 'a word)\ by simp then have w: \w = 2 ^ n * word_of_nat q\ by simp moreover have \q < 2 ^ (LENGTH('a) - n)\ proof (rule ccontr) assume \\ q < 2 ^ (LENGTH('a) - n)\ then have \2 ^ (LENGTH('a) - n) \ q\ by simp then have \2 ^ LENGTH('a) \ 2 ^ n * q\ by (simp add: l power_add) with unat_w [symmetric] show False by (metis le_antisym nat_less_le unsigned_less) qed ultimately show thesis using that by blast qed lemma is_alignedE' [elim?]: fixes w :: \'a::len word\ assumes \is_aligned w n\ obtains q where \w = push_bit n (word_of_nat q)\ \q < 2 ^ (LENGTH('a) - n)\ proof - from assms obtain q where \w = 2 ^ n * word_of_nat q\ \q < 2 ^ (LENGTH('a) - n)\ by (rule is_alignedE) then have \w = push_bit n (word_of_nat q)\ by (simp add: push_bit_eq_mult) with that show thesis using \q < 2 ^ (LENGTH('a) - n)\ . qed lemma is_aligned_mask: \is_aligned w n \ w AND mask n = 0\ by (simp add: is_aligned_iff_take_bit_eq_0 take_bit_eq_mask) lemma is_aligned_imp_not_bit: \\ bit w m\ if \is_aligned w n\ and \m < n\ for w :: \'a::len word\ proof - from \is_aligned w n\ obtain q where \w = push_bit n (word_of_nat q)\ \q < 2 ^ (LENGTH('a) - n)\ .. moreover have \\ bit (push_bit n (word_of_nat q :: 'a word)) m\ using \m < n\ by (simp add: bit_simps) ultimately show ?thesis by simp qed lemma is_aligned_weaken: "\ is_aligned w x; x \ y \ \ is_aligned w y" unfolding is_aligned_iff_dvd_nat by (erule dvd_trans [rotated]) (simp add: le_imp_power_dvd) lemma is_alignedE_pre: fixes w::"'a::len word" assumes aligned: "is_aligned w n" shows rl: "\q. w = 2 ^ n * (of_nat q) \ q < 2 ^ (LENGTH('a) - n)" using aligned is_alignedE by blast lemma aligned_add_aligned: fixes x::"'a::len word" assumes aligned1: "is_aligned x n" and aligned2: "is_aligned y m" and lt: "m \ n" shows "is_aligned (x + y) m" proof cases assume nlt: "n < LENGTH('a)" show ?thesis unfolding is_aligned_iff_dvd_nat dvd_def proof - from aligned2 obtain q2 where yv: "y = 2 ^ m * of_nat q2" and q2v: "q2 < 2 ^ (LENGTH('a) - m)" by (auto elim: is_alignedE) from lt obtain k where kv: "m + k = n" by (auto simp: le_iff_add) with aligned1 obtain q1 where xv: "x = 2 ^ (m + k) * of_nat q1" and q1v: "q1 < 2 ^ (LENGTH('a) - (m + k))" by (auto elim: is_alignedE) have l1: "2 ^ (m + k) * q1 < 2 ^ LENGTH('a)" by (rule nat_less_power_trans [OF q1v]) (subst kv, rule order_less_imp_le [OF nlt]) have l2: "2 ^ m * q2 < 2 ^ LENGTH('a)" by (rule nat_less_power_trans [OF q2v], rule order_less_imp_le [OF order_le_less_trans]) fact+ have "x = of_nat (2 ^ (m + k) * q1)" using xv by simp moreover have "y = of_nat (2 ^ m * q2)" using yv by simp ultimately have upls: "unat x + unat y = 2 ^ m * (2 ^ k * q1 + q2)" proof - have f1: "unat x = 2 ^ (m + k) * q1" by (metis (no_types) \x = of_nat (2 ^ (m + k) * q1)\ l1 nat_mod_lem word_unat.inverse_norm zero_less_numeral zero_less_power) have "unat y = 2 ^ m * q2" by (metis (no_types) \y = of_nat (2 ^ m * q2)\ l2 nat_mod_lem word_unat.inverse_norm zero_less_numeral zero_less_power) then show ?thesis using f1 by (simp add: power_add semiring_normalization_rules(34)) qed (* (2 ^ k * q1 + q2) *) show "\d. unat (x + y) = 2 ^ m * d" proof (cases "unat x + unat y < 2 ^ LENGTH('a)") case True have "unat (x + y) = unat x + unat y" by (subst unat_plus_if', rule if_P) fact also have "\ = 2 ^ m * (2 ^ k * q1 + q2)" by (rule upls) finally show ?thesis .. next case False then have "unat (x + y) = (unat x + unat y) mod 2 ^ LENGTH('a)" by (subst unat_word_ariths(1)) simp also have "\ = (2 ^ m * (2 ^ k * q1 + q2)) mod 2 ^ LENGTH('a)" by (subst upls, rule refl) also have "\ = 2 ^ m * ((2 ^ k * q1 + q2) mod 2 ^ (LENGTH('a) - m))" proof - have "m \ len_of (TYPE('a))" by (meson le_trans less_imp_le_nat lt nlt) then show ?thesis by (metis mult_mod_right ordered_cancel_comm_monoid_diff_class.add_diff_inverse power_add) qed finally show ?thesis .. qed qed next assume "\ n < LENGTH('a)" with assms show ?thesis by (simp add: is_aligned_mask not_less take_bit_eq_mod power_overflow word_arith_nat_defs(7) flip: take_bit_eq_mask) qed corollary aligned_sub_aligned: "\is_aligned (x::'a::len word) n; is_aligned y m; m \ n\ \ is_aligned (x - y) m" apply (simp del: add_uminus_conv_diff add:diff_conv_add_uminus) apply (erule aligned_add_aligned, simp_all) apply (erule is_alignedE) apply (rule_tac k="- of_nat q" in is_alignedI) apply simp done lemma is_aligned_shift: fixes k::"'a::len word" shows "is_aligned (k << m) m" proof cases assume mv: "m < LENGTH('a)" from mv obtain q where mq: "m + q = LENGTH('a)" and "0 < q" by (auto dest: less_imp_add_positive) have "(2::nat) ^ m dvd unat (k << m)" proof have kv: "(unat k div 2 ^ q) * 2 ^ q + unat k mod 2 ^ q = unat k" by (rule div_mult_mod_eq) have "unat (k << m) = unat (2 ^ m * k)" by (simp add: shiftl_t2n) also have "\ = (2 ^ m * unat k) mod (2 ^ LENGTH('a))" using mv by (simp add: unat_word_ariths(2)) also have "\ = 2 ^ m * (unat k mod 2 ^ q)" by (subst mq [symmetric], subst power_add, subst mod_mult2_eq) simp finally show "unat (k << m) = 2 ^ m * (unat k mod 2 ^ q)" . qed then show ?thesis by (unfold is_aligned_iff_dvd_nat) next assume "\ m < LENGTH('a)" then show ?thesis by (simp add: not_less power_overflow is_aligned_mask shiftl_zero_size word_size) qed lemma word_mod_by_0: "k mod (0::'a::len word) = k" by (simp add: word_arith_nat_mod) lemma aligned_mod_eq_0: fixes p::"'a::len word" assumes al: "is_aligned p sz" shows "p mod 2 ^ sz = 0" proof cases assume szv: "sz < LENGTH('a)" with al show ?thesis unfolding is_aligned_iff_dvd_nat by (simp add: and_mask_dvd_nat p2_gt_0 word_mod_2p_is_mask) next assume "\ sz < LENGTH('a)" with al show ?thesis by (simp add: is_aligned_mask flip: take_bit_eq_mask take_bit_eq_mod) qed lemma is_aligned_triv: "is_aligned (2 ^ n ::'a::len word) n" by (rule is_alignedI [where k = 1], simp) lemma is_aligned_mult_triv1: "is_aligned (2 ^ n * x ::'a::len word) n" by (rule is_alignedI [OF refl]) lemma is_aligned_mult_triv2: "is_aligned (x * 2 ^ n ::'a::len word) n" by (subst mult.commute, simp add: is_aligned_mult_triv1) lemma word_power_less_0_is_0: fixes x :: "'a::len word" shows "x < a ^ 0 \ x = 0" by simp lemma is_aligned_no_wrap: fixes off :: "'a::len word" fixes ptr :: "'a::len word" assumes al: "is_aligned ptr sz" and off: "off < 2 ^ sz" shows "unat ptr + unat off < 2 ^ LENGTH('a)" proof - have szv: "sz < LENGTH('a)" using off p2_gt_0 word_neq_0_conv by fastforce from al obtain q where ptrq: "ptr = 2 ^ sz * of_nat q" and qv: "q < 2 ^ (LENGTH('a) - sz)" by (auto elim: is_alignedE) show ?thesis proof (cases "sz = 0") case True then show ?thesis using off ptrq qv by simp next case False then have sne: "0 < sz" .. show ?thesis proof - have uq: "unat (of_nat q ::'a::len word) = q" apply (subst unat_of_nat) apply (rule mod_less) apply (rule order_less_trans [OF qv]) apply (rule power_strict_increasing [OF diff_less [OF sne]]) apply (simp_all) done have uptr: "unat ptr = 2 ^ sz * q" apply (subst ptrq) apply (subst iffD1 [OF unat_mult_lem]) apply (subst unat_power_lower [OF szv]) apply (subst uq) apply (rule nat_less_power_trans [OF qv order_less_imp_le [OF szv]]) apply (subst uq) apply (subst unat_power_lower [OF szv]) apply simp done show "unat ptr + unat off < 2 ^ LENGTH('a)" using szv apply (subst uptr) apply (subst mult.commute, rule nat_add_offset_less [OF _ qv]) apply (rule order_less_le_trans [OF unat_mono [OF off] order_eq_refl]) apply simp_all done qed qed qed lemma is_aligned_no_wrap': fixes ptr :: "'a::len word" assumes al: "is_aligned ptr sz" and off: "off < 2 ^ sz" shows "ptr \ ptr + off" by (subst no_plus_overflow_unat_size, subst word_size, rule is_aligned_no_wrap) fact+ lemma is_aligned_no_overflow': fixes p :: "'a::len word" assumes al: "is_aligned p n" shows "p \ p + (2 ^ n - 1)" proof cases assume "n n ptr \ ptr + 2^sz - 1" by (drule is_aligned_no_overflow') (simp add: field_simps) lemma replicate_not_True: "\n. xs = replicate n False \ True \ set xs" by (induct xs) auto lemma map_zip_replicate_False_xor: "n = length xs \ map (\(x, y). x = (\ y)) (zip xs (replicate n False)) = xs" by (induct xs arbitrary: n, auto) lemma drop_minus_lem: "\ n \ length xs; 0 < n; n' = length xs \ \ drop (n' - n) xs = rev xs ! (n - 1) # drop (Suc (n' - n)) xs" proof (induct xs arbitrary: n n') case Nil then show ?case by simp next case (Cons y ys) from Cons.prems show ?case apply simp apply (cases "n = Suc (length ys)") apply (simp add: nth_append) apply (simp add: Suc_diff_le Cons.hyps nth_append) apply clarsimp apply arith done qed lemma drop_minus: "\ n < length xs; n' = length xs \ \ drop (n' - Suc n) xs = rev xs ! n # drop (n' - n) xs" apply (subst drop_minus_lem) apply simp apply simp apply simp apply simp apply (cases "length xs", simp) apply (simp add: Suc_diff_le) done lemma aligned_add_xor: \(x + 2 ^ n) XOR 2 ^ n = x\ if al: \is_aligned (x::'a::len word) n'\ and le: \n < n'\ proof - have \\ bit x n\ using that by (rule is_aligned_imp_not_bit) then have \x + 2 ^ n = x OR 2 ^ n\ by (subst disjunctive_add) (auto simp add: bit_simps disjunctive_add) moreover have \(x OR 2 ^ n) XOR 2 ^ n = x\ by (rule bit_word_eqI) (auto simp add: bit_simps \\ bit x n\) ultimately show ?thesis by simp qed lemma is_aligned_add_mult_multI: fixes p :: "'a::len word" shows "\is_aligned p m; n \ m; n' = n\ \ is_aligned (p + x * 2 ^ n * z) n'" apply (erule aligned_add_aligned) apply (auto intro: is_alignedI [where k="x*z"]) done lemma is_aligned_add_multI: fixes p :: "'a::len word" shows "\is_aligned p m; n \ m; n' = n\ \ is_aligned (p + x * 2 ^ n) n'" apply (erule aligned_add_aligned) apply (auto intro: is_alignedI [where k="x"]) done lemma is_aligned_no_wrap''': fixes ptr :: "'a::len word" shows"\ is_aligned ptr sz; sz < LENGTH('a); off < 2 ^ sz \ \ unat ptr + off < 2 ^ LENGTH('a)" apply (drule is_aligned_no_wrap[where off="of_nat off"]) apply (simp add: word_less_nat_alt) apply (erule order_le_less_trans[rotated]) apply (simp add: take_bit_eq_mod) apply (subst(asm) unat_of_nat_len) apply (erule order_less_trans) apply (erule power_strict_increasing) apply simp apply assumption done lemma is_aligned_get_word_bits: fixes p :: "'a::len word" shows "\ is_aligned p n; \ is_aligned p n; n < LENGTH('a) \ \ P; \ p = 0; n \ LENGTH('a) \ \ P \ \ P" apply (cases "n < LENGTH('a)") apply simp apply simp apply (erule meta_mp) apply (simp add: is_aligned_mask power_add power_overflow not_less flip: take_bit_eq_mask) apply (metis take_bit_length_eq take_bit_of_0 take_bit_tightened) done lemma aligned_small_is_0: "\ is_aligned x n; x < 2 ^ n \ \ x = 0" by (simp add: is_aligned_mask less_mask_eq) corollary is_aligned_less_sz: "\is_aligned a sz; a \ 0\ \ \ a < 2 ^ sz" by (rule notI, drule(1) aligned_small_is_0, erule(1) notE) lemma aligned_at_least_t2n_diff: "\is_aligned x n; is_aligned y n; x < y\ \ x \ y - 2 ^ n" apply (erule is_aligned_get_word_bits[where p=y]) apply (rule ccontr) apply (clarsimp simp: linorder_not_le) apply (subgoal_tac "y - x = 0") apply clarsimp apply (rule aligned_small_is_0) apply (erule(1) aligned_sub_aligned) apply simp apply unat_arith apply simp done lemma is_aligned_no_overflow'': "\is_aligned x n; x + 2 ^ n \ 0\ \ x \ x + 2 ^ n" apply (frule is_aligned_no_overflow') apply (erule order_trans) apply (simp add: field_simps) apply (erule word_sub_1_le) done +lemma is_aligned_bitI: + \is_aligned p m\ if \\n. n < m \ \ bit p n\ + apply (simp add: is_aligned_mask) + apply (rule bit_word_eqI) + using that + apply (auto simp add: bit_simps) + done + lemma is_aligned_nth [word_eqI_simps]: - "is_aligned p m = (\n < m. \p !! n)" - apply (clarsimp simp: is_aligned_mask bang_eq word_size) - apply (rule iffI) - apply clarsimp - apply (case_tac "n < size p") - apply (simp add: word_size) - apply (drule test_bit_size) - apply simp - apply clarsimp + "is_aligned p m = (\n < m. \ bit p n)" + apply (auto intro: is_aligned_bitI simp add: is_aligned_mask bit_eq_iff) + apply (auto simp: bit_simps) + using bit_imp_le_length not_less apply blast done lemma range_inter: "({a..b} \ {c..d} = {}) = (\x. \(a \ x \ x \ b \ c \ x \ x \ d))" by auto lemma aligned_inter_non_empty: "\ {p..p + (2 ^ n - 1)} \ {p..p + 2 ^ m - 1} = {}; is_aligned p n; is_aligned p m\ \ False" apply (clarsimp simp only: range_inter) apply (erule_tac x=p in allE) apply simp apply (erule impE) apply (erule is_aligned_no_overflow') apply (erule notE) apply (erule is_aligned_no_overflow) done lemma not_aligned_mod_nz: assumes al: "\ is_aligned a n" shows "a mod 2 ^ n \ 0" apply (rule ccontr) using al apply (rule notE) apply simp apply (rule is_alignedI [of _ _ \a div 2 ^ n\]) apply (metis add.right_neutral mult.commute word_mod_div_equality) done lemma nat_add_offset_le: fixes x :: nat assumes yv: "y \ 2 ^ n" and xv: "x < 2 ^ m" and mn: "sz = m + n" shows "x * 2 ^ n + y \ 2 ^ sz" proof (subst mn) from yv obtain qy where "y + qy = 2 ^ n" by (auto simp: le_iff_add) have "x * 2 ^ n + y \ x * 2 ^ n + 2 ^ n" using yv xv by simp also have "\ = (x + 1) * 2 ^ n" by simp also have "\ \ 2 ^ (m + n)" using xv by (subst power_add) (rule mult_le_mono1, simp) finally show "x * 2 ^ n + y \ 2 ^ (m + n)" . qed lemma is_aligned_no_wrap_le: fixes ptr::"'a::len word" assumes al: "is_aligned ptr sz" and szv: "sz < LENGTH('a)" and off: "off \ 2 ^ sz" shows "unat ptr + off \ 2 ^ LENGTH('a)" proof - from al obtain q where ptrq: "ptr = 2 ^ sz * of_nat q" and qv: "q < 2 ^ (LENGTH('a) - sz)" by (auto elim: is_alignedE) show ?thesis proof (cases "sz = 0") case True then show ?thesis using off ptrq qv by (auto simp add: le_Suc_eq Suc_le_eq) (simp add: le_less) next case False then have sne: "0 < sz" .. show ?thesis proof - have uq: "unat (of_nat q :: 'a word) = q" apply (subst unat_of_nat) apply (rule mod_less) apply (rule order_less_trans [OF qv]) apply (rule power_strict_increasing [OF diff_less [OF sne]]) apply simp_all done have uptr: "unat ptr = 2 ^ sz * q" apply (subst ptrq) apply (subst iffD1 [OF unat_mult_lem]) apply (subst unat_power_lower [OF szv]) apply (subst uq) apply (rule nat_less_power_trans [OF qv order_less_imp_le [OF szv]]) apply (subst uq) apply (subst unat_power_lower [OF szv]) apply simp done show "unat ptr + off \ 2 ^ LENGTH('a)" using szv apply (subst uptr) apply (subst mult.commute, rule nat_add_offset_le [OF off qv]) apply simp done qed qed qed lemma is_aligned_neg_mask: "m \ n \ is_aligned (x AND NOT (mask n)) m" by (metis and_not_mask is_aligned_shift is_aligned_weaken) lemma unat_minus: "unat (- (x :: 'a :: len word)) = (if x = 0 then 0 else 2 ^ size x - unat x)" using unat_sub_if_size[where x="2 ^ size x" and y=x] by (simp add: unat_eq_0 word_size) lemma is_aligned_minus: \is_aligned (- p) n\ if \is_aligned p n\ for p :: \'a::len word\ using that apply (cases \n < LENGTH('a)\) apply (simp_all add: not_less is_aligned_beyond_length) apply transfer apply (simp flip: take_bit_eq_0_iff) apply (subst take_bit_minus [symmetric]) apply simp done lemma add_mask_lower_bits: "\is_aligned (x :: 'a :: len word) n; - \n' \ n. n' < LENGTH('a) \ \ p !! n'\ \ x + p AND NOT (mask n) = x" + \n' \ n. n' < LENGTH('a) \ \ bit p n'\ \ x + p AND NOT (mask n) = x" apply (subst word_plus_and_or_coroll) apply (rule word_eqI) apply (clarsimp simp: word_size is_aligned_nth) apply (erule_tac x=na in allE)+ - apply simp + apply (simp add: bit_simps) apply (rule bit_word_eqI) - apply (auto simp add: bit_simps not_less test_bit_eq_bit) - apply (metis is_aligned_nth not_le test_bit_eq_bit) + apply (auto simp add: bit_simps not_less word_size) + apply (metis is_aligned_nth not_le) done lemma is_aligned_andI1: "is_aligned x n \ is_aligned (x AND y) n" - by (simp add: is_aligned_nth) + by (simp add: is_aligned_nth bit_simps) lemma is_aligned_andI2: "is_aligned y n \ is_aligned (x AND y) n" - by (simp add: is_aligned_nth) + by (simp add: is_aligned_nth bit_simps) lemma is_aligned_shiftl: "is_aligned w (n - m) \ is_aligned (w << m) n" by (simp add: is_aligned_nth nth_shiftl) lemma is_aligned_shiftr: "is_aligned w (n + m) \ is_aligned (w >> m) n" by (simp add: is_aligned_nth nth_shiftr) lemma is_aligned_shiftl_self: "is_aligned (p << n) n" by (rule is_aligned_shift) lemma is_aligned_neg_mask_eq: "is_aligned p n \ p AND NOT (mask n) = p" by (metis add.left_neutral is_aligned_mask word_plus_and_or_coroll2) lemma is_aligned_shiftr_shiftl: "is_aligned w n \ w >> n << n = w" by (metis and_not_mask is_aligned_neg_mask_eq) lemma aligned_shiftr_mask_shiftl: "is_aligned x n \ ((x >> n) AND mask v) << n = x AND mask (v + n)" apply (rule word_eqI) - apply (simp add: word_size nth_shiftl nth_shiftr) - apply (subgoal_tac "\m. x !! m \ m \ n") + apply (simp add: word_size nth_shiftl nth_shiftr bit_simps) + apply (subgoal_tac "\m. bit x m \ m \ n") apply auto[1] apply (clarsimp simp: is_aligned_mask) apply (drule_tac x=m in word_eqD) apply (frule test_bit_size) - apply (simp add: word_size) + apply (simp add: word_size bit_simps) done lemma mask_zero: "is_aligned x a \ x AND mask a = 0" by (metis is_aligned_mask) lemma is_aligned_neg_mask_eq_concrete: "\ is_aligned p n; msk AND NOT (mask n) = NOT (mask n) \ \ p AND msk = p" by (metis word_bw_assocs(1) word_bw_comms(1) is_aligned_neg_mask_eq) lemma is_aligned_and_not_zero: "\ is_aligned n k; n \ 0 \ \ 2 ^ k \ n" using is_aligned_less_sz leI by blast lemma is_aligned_and_2_to_k: "(n AND 2 ^ k - 1) = 0 \ is_aligned (n :: 'a :: len word) k" by (simp add: is_aligned_mask mask_eq_decr_exp) lemma is_aligned_power2: "b \ a \ is_aligned (2 ^ a) b" by (metis is_aligned_triv is_aligned_weaken) lemma aligned_sub_aligned': "\ is_aligned (a :: 'a :: len word) n; is_aligned b n; n < LENGTH('a) \ \ is_aligned (a - b) n" by (simp add: aligned_sub_aligned) lemma is_aligned_neg_mask_weaken: "\ is_aligned p n; m \ n \ \ p AND NOT (mask m) = p" using is_aligned_neg_mask_eq is_aligned_weaken by blast lemma is_aligned_neg_mask2 [simp]: "is_aligned (a AND NOT (mask n)) n" by (simp add: and_not_mask is_aligned_shift) lemma is_aligned_0': "is_aligned 0 n" by (fact is_aligned_0) lemma aligned_add_offset_no_wrap: fixes off :: "('a::len) word" and x :: "'a word" assumes al: "is_aligned x sz" and offv: "off < 2 ^ sz" shows "unat x + unat off < 2 ^ LENGTH('a)" proof cases assume szv: "sz < LENGTH('a)" from al obtain k where xv: "x = 2 ^ sz * (of_nat k)" and kl: "k < 2 ^ (LENGTH('a) - sz)" by (auto elim: is_alignedE) show ?thesis using szv apply (subst xv) apply (subst unat_mult_power_lem[OF kl]) apply (subst mult.commute, rule nat_add_offset_less) apply (rule less_le_trans[OF unat_mono[OF offv, simplified]]) apply (erule eq_imp_le[OF unat_power_lower]) apply (rule kl) apply simp done next assume "\ sz < LENGTH('a)" with offv show ?thesis by (simp add: not_less power_overflow ) qed lemma aligned_add_offset_mod: fixes x :: "('a::len) word" assumes al: "is_aligned x sz" and kv: "k < 2 ^ sz" shows "(x + k) mod 2 ^ sz = k" proof cases assume szv: "sz < LENGTH('a)" have ux: "unat x + unat k < 2 ^ LENGTH('a)" by (rule aligned_add_offset_no_wrap) fact+ show ?thesis using al szv apply - apply (erule is_alignedE) apply (subst word_unat.Rep_inject [symmetric]) apply (subst unat_mod) apply (subst iffD1 [OF unat_add_lem], rule ux) apply simp apply (subst unat_mult_power_lem, assumption+) apply (simp) apply (rule mod_less[OF less_le_trans[OF unat_mono], OF kv]) apply (erule eq_imp_le[OF unat_power_lower]) done next assume "\ sz < LENGTH('a)" with al show ?thesis by (simp add: not_less power_overflow is_aligned_mask mask_eq_decr_exp word_mod_by_0) qed lemma aligned_neq_into_no_overlap: fixes x :: "'a::len word" assumes neq: "x \ y" and alx: "is_aligned x sz" and aly: "is_aligned y sz" shows "{x .. x + (2 ^ sz - 1)} \ {y .. y + (2 ^ sz - 1)} = {}" proof cases assume szv: "sz < LENGTH('a)" show ?thesis proof (rule equals0I, clarsimp) fix z assume xb: "x \ z" and xt: "z \ x + (2 ^ sz - 1)" and yb: "y \ z" and yt: "z \ y + (2 ^ sz - 1)" have rl: "\(p::'a word) k w. \uint p + uint k < 2 ^ LENGTH('a); w = p + k; w \ p + (2 ^ sz - 1) \ \ k < 2 ^ sz" apply - apply simp apply (subst (asm) add.commute, subst (asm) add.commute, drule word_plus_mcs_4) apply (subst add.commute, subst no_plus_overflow_uint_size) apply transfer apply simp apply (auto simp add: le_less power_2_ge_iff szv) apply (metis le_less_trans mask_eq_decr_exp mask_lt_2pn order_less_imp_le szv) done from xb obtain kx where kx: "z = x + kx" and kxl: "uint x + uint kx < 2 ^ LENGTH('a)" by (clarsimp dest!: word_le_exists') from yb obtain ky where ky: "z = y + ky" and kyl: "uint y + uint ky < 2 ^ LENGTH('a)" by (clarsimp dest!: word_le_exists') have "x = y" proof - have "kx = z mod 2 ^ sz" proof (subst kx, rule sym, rule aligned_add_offset_mod) show "kx < 2 ^ sz" by (rule rl) fact+ qed fact+ also have "\ = ky" proof (subst ky, rule aligned_add_offset_mod) show "ky < 2 ^ sz" using kyl ky yt by (rule rl) qed fact+ finally have kxky: "kx = ky" . moreover have "x + kx = y + ky" by (simp add: kx [symmetric] ky [symmetric]) ultimately show ?thesis by simp qed then show False using neq by simp qed next assume "\ sz < LENGTH('a)" with neq alx aly have False by (simp add: is_aligned_mask mask_eq_decr_exp power_overflow) then show ?thesis .. qed lemma is_aligned_add_helper: "\ is_aligned p n; d < 2 ^ n \ \ (p + d AND mask n = d) \ (p + d AND (NOT (mask n)) = p)" apply (subst (asm) is_aligned_mask) apply (drule less_mask_eq) apply (rule context_conjI) apply (subst word_plus_and_or_coroll) apply (simp_all flip: take_bit_eq_mask) apply (metis take_bit_eq_mask word_bw_lcs(1) word_log_esimps(1)) apply (metis add.commute add_left_imp_eq take_bit_eq_mask word_plus_and_or_coroll2) done lemmas mask_inner_mask = mask_eqs(1) lemma mask_add_aligned: "is_aligned p n \ (p + q) AND mask n = q AND mask n" apply (simp add: is_aligned_mask) apply (subst mask_inner_mask [symmetric]) apply simp done lemma mask_out_add_aligned: assumes al: "is_aligned p n" shows "p + (q AND NOT (mask n)) = (p + q) AND NOT (mask n)" using mask_add_aligned [OF al] by (simp add: mask_out_sub_mask) lemma is_aligned_add_or: "\is_aligned p n; d < 2 ^ n\ \ p + d = p OR d" apply (subst disjunctive_add) apply (simp_all add: is_aligned_iff_take_bit_eq_0) apply (simp add: bit_eq_iff) apply (auto simp add: bit_simps) subgoal for m apply (cases \m < n\) apply (auto simp add: not_less) apply (metis bit_take_bit_iff less_mask_eq take_bit_eq_mask) done done lemma not_greatest_aligned: "\ x < y; is_aligned x n; is_aligned y n \ \ x + 2 ^ n \ 0" by (metis NOT_mask add_diff_cancel_right' diff_0 is_aligned_neg_mask_eq not_le word_and_le1) lemma neg_mask_mono_le: "x \ y \ x AND NOT(mask n) \ y AND NOT(mask n)" for x :: "'a :: len word" proof (rule ccontr, simp add: linorder_not_le, cases "n < LENGTH('a)") case False then show "y AND NOT(mask n) < x AND NOT(mask n) \ False" by (simp add: mask_eq_decr_exp linorder_not_less power_overflow) next case True assume a: "x \ y" and b: "y AND NOT(mask n) < x AND NOT(mask n)" have word_bits: "n < LENGTH('a)" by fact have "y \ (y AND NOT(mask n)) + (y AND mask n)" by (simp add: word_plus_and_or_coroll2 add.commute) also have "\ \ (y AND NOT(mask n)) + 2 ^ n" apply (rule word_plus_mono_right) apply (rule order_less_imp_le, rule and_mask_less_size) apply (simp add: word_size word_bits) apply (rule is_aligned_no_overflow'', simp add: is_aligned_neg_mask word_bits) apply (rule not_greatest_aligned, rule b; simp add: is_aligned_neg_mask) done also have "\ \ x AND NOT(mask n)" using b apply (subst add.commute) apply (rule le_plus) apply (rule aligned_at_least_t2n_diff; simp add: is_aligned_neg_mask) apply (rule ccontr, simp add: linorder_not_le) apply (drule aligned_small_is_0[rotated]; simp add: is_aligned_neg_mask) done also have "\ \ x" by (rule word_and_le2) also have "x \ y" by fact finally show "False" using b by simp qed lemma and_neg_mask_eq_iff_not_mask_le: "w AND NOT(mask n) = NOT(mask n) \ NOT(mask n) \ w" for w :: \'a::len word\ by (metis eq_iff neg_mask_mono_le word_and_le1 word_and_le2 word_bw_same(1)) lemma neg_mask_le_high_bits [word_eqI_simps]: - "NOT(mask n) \ w \ (\i \ {n ..< size w}. w !! i)" + \NOT (mask n) \ w \ (\i \ {n ..< size w}. bit w i)\ (is \?P \ ?Q\) for w :: \'a::len word\ - by (auto simp: word_size and_neg_mask_eq_iff_not_mask_le[symmetric] word_eq_iff neg_mask_test_bit) +proof + assume ?Q + then have \w AND NOT (mask n) = NOT (mask n)\ + by (auto simp add: bit_simps word_size intro: bit_word_eqI) + then show ?P + by (simp add: and_neg_mask_eq_iff_not_mask_le) +next + assume ?P + then have *: \w AND NOT (mask n) = NOT (mask n)\ + by (simp add: and_neg_mask_eq_iff_not_mask_le) + show \?Q\ + proof (rule ccontr) + assume \\ (\i\{n.. + then obtain m where m: \\ bit w m\ \n \ m\ \m < LENGTH('a)\ + by (auto simp add: word_size) + from * have \bit (w AND NOT (mask n)) m \ bit (NOT (mask n :: 'a word)) m\ + by auto + with m show False by (auto simp add: bit_simps) + qed +qed lemma is_aligned_add_less_t2n: "\is_aligned (p::'a::len word) n; d < 2^n; n \ m; p < 2^m\ \ p + d < 2^m" apply (case_tac "m < LENGTH('a)") apply (subst mask_eq_iff_w2p[symmetric]) apply (simp add: word_size) apply (simp add: is_aligned_add_or word_ao_dist less_mask_eq) apply (subst less_mask_eq) apply (erule order_less_le_trans) apply (erule(1) two_power_increasing) apply simp apply (simp add: power_overflow) done lemma aligned_offset_non_zero: "\ is_aligned x n; y < 2 ^ n; x \ 0 \ \ x + y \ 0" apply (cases "y = 0") apply simp apply (subst word_neq_0_conv) apply (subst gt0_iff_gem1) apply (erule is_aligned_get_word_bits) apply (subst field_simps[symmetric], subst plus_le_left_cancel_nowrap) apply (rule is_aligned_no_wrap') apply simp apply (rule word_leq_le_minus_one) apply simp apply assumption apply (erule (1) is_aligned_no_wrap') apply (simp add: gt0_iff_gem1 [symmetric] word_neq_0_conv) apply simp done lemma is_aligned_over_length: "\ is_aligned p n; LENGTH('a) \ n \ \ (p::'a::len word) = 0" by (simp add: is_aligned_mask mask_over_length) lemma is_aligned_no_overflow_mask: "is_aligned x n \ x \ x + mask n" by (simp add: mask_eq_decr_exp) (erule is_aligned_no_overflow') lemma aligned_mask_step: "\ n' \ n; p' \ p + mask n; is_aligned p n; is_aligned p' n' \ \ (p'::'a::len word) + mask n' \ p + mask n" apply (cases "LENGTH('a) \ n") apply (frule (1) is_aligned_over_length) apply (drule mask_over_length) apply clarsimp apply (simp add: not_le) apply (simp add: word_le_nat_alt unat_plus_simple) apply (subst unat_plus_simple[THEN iffD1], erule is_aligned_no_overflow_mask)+ apply (subst (asm) unat_plus_simple[THEN iffD1], erule is_aligned_no_overflow_mask) apply (clarsimp simp: dvd_def is_aligned_iff_dvd_nat) apply (rename_tac k k') apply (thin_tac "unat p = x" for p x)+ apply (subst Suc_le_mono[symmetric]) apply (simp only: Suc_2p_unat_mask) apply (drule le_imp_less_Suc, subst (asm) Suc_2p_unat_mask, assumption) apply (erule (1) power_2_mult_step_le) done lemma is_aligned_mask_offset_unat: fixes off :: "('a::len) word" and x :: "'a word" assumes al: "is_aligned x sz" and offv: "off \ mask sz" shows "unat x + unat off < 2 ^ LENGTH('a)" proof cases assume szv: "sz < LENGTH('a)" from al obtain k where xv: "x = 2 ^ sz * (of_nat k)" and kl: "k < 2 ^ (LENGTH('a) - sz)" by (auto elim: is_alignedE) from offv szv have offv': "unat off < 2 ^ sz" by (simp add: mask_2pm1 unat_less_power) show ?thesis using szv using al is_aligned_no_wrap''' offv' by blast next assume "\ sz < LENGTH('a)" with al have "x = 0" by (meson is_aligned_get_word_bits) thus ?thesis by simp qed lemma aligned_less_plus_1: "\ is_aligned x n; n > 0 \ \ x < x + 1" apply (rule plus_one_helper2) apply (rule order_refl) apply (clarsimp simp: field_simps) apply (drule arg_cong[where f="\x. x - 1"]) apply (clarsimp simp: is_aligned_mask) apply (drule word_eqD[where x=0]) - apply simp + apply (simp add: even_mask_iff) done lemma aligned_add_offset_less: "\is_aligned x n; is_aligned y n; x < y; z < 2 ^ n\ \ x + z < y" apply (cases "y = 0") apply simp apply (erule is_aligned_get_word_bits[where p=y], simp_all) apply (cases "z = 0", simp_all) apply (drule(2) aligned_at_least_t2n_diff[rotated -1]) apply (drule plus_one_helper2) apply (rule less_is_non_zero_p1) apply (rule aligned_less_plus_1) apply (erule aligned_sub_aligned[OF _ _ order_refl], simp_all add: is_aligned_triv)[1] apply (cases n, simp_all)[1] apply (simp only: trans[OF diff_add_eq diff_diff_eq2[symmetric]]) apply (drule word_less_add_right) apply (rule ccontr, simp add: linorder_not_le) apply (drule aligned_small_is_0, erule order_less_trans) apply (clarsimp simp: power_overflow) apply simp apply (erule order_le_less_trans[rotated], rule word_plus_mono_right) apply (erule word_le_minus_one_leq) apply (simp add: is_aligned_no_wrap' is_aligned_no_overflow field_simps) done lemma gap_between_aligned: "\a < (b :: 'a ::len word); is_aligned a n; is_aligned b n; n < LENGTH('a) \ \ a + (2^n - 1) < b" by (simp add: aligned_add_offset_less) lemma is_aligned_add_step_le: "\ is_aligned (a::'a::len word) n; is_aligned b n; a < b; b \ a + mask n \ \ False" apply (simp flip: not_le) apply (erule notE) apply (cases "LENGTH('a) \ n") apply (drule (1) is_aligned_over_length)+ apply (drule mask_over_length) apply clarsimp apply (clarsimp simp: word_le_nat_alt not_less not_le) apply (subst (asm) unat_plus_simple[THEN iffD1], erule is_aligned_no_overflow_mask) apply (subst (asm) unat_add_lem' [symmetric]) apply (simp add: is_aligned_mask_offset_unat) apply (metis gap_between_aligned linorder_not_less mask_eq_decr_exp unat_arith_simps(2)) done lemma aligned_add_mask_lessD: "\ x + mask n < y; is_aligned x n \ \ x < y" for y::"'a::len word" by (metis is_aligned_no_overflow' mask_2pm1 order_le_less_trans) lemma aligned_add_mask_less_eq: "\ is_aligned x n; is_aligned y n; n < LENGTH('a) \ \ (x + mask n < y) = (x < y)" for y::"'a::len word" using aligned_add_mask_lessD is_aligned_add_step_le word_le_not_less by blast lemma is_aligned_diff: fixes m :: "'a::len word" assumes alm: "is_aligned m s1" and aln: "is_aligned n s2" and s2wb: "s2 < LENGTH('a)" and nm: "m \ {n .. n + (2 ^ s2 - 1)}" and s1s2: "s1 \ s2" and s10: "0 < s1" (* Probably can be folded into the proof \ *) shows "\q. m - n = of_nat q * 2 ^ s1 \ q < 2 ^ (s2 - s1)" proof - have rl: "\m s. \ m < 2 ^ (LENGTH('a) - s); s < LENGTH('a) \ \ unat ((2::'a word) ^ s * of_nat m) = 2 ^ s * m" proof - fix m :: nat and s assume m: "m < 2 ^ (LENGTH('a) - s)" and s: "s < LENGTH('a)" then have "unat ((of_nat m) :: 'a word) = m" apply (subst unat_of_nat) apply (subst mod_less) apply (erule order_less_le_trans) apply (rule power_increasing) apply simp_all done then show "?thesis m s" using s m apply (subst iffD1 [OF unat_mult_lem]) apply (simp add: nat_less_power_trans)+ done qed have s1wb: "s1 < LENGTH('a)" using s2wb s1s2 by simp from alm obtain mq where mmq: "m = 2 ^ s1 * of_nat mq" and mq: "mq < 2 ^ (LENGTH('a) - s1)" by (auto elim: is_alignedE simp: field_simps) from aln obtain nq where nnq: "n = 2 ^ s2 * of_nat nq" and nq: "nq < 2 ^ (LENGTH('a) - s2)" by (auto elim: is_alignedE simp: field_simps) from s1s2 obtain sq where sq: "s2 = s1 + sq" by (auto simp: le_iff_add) note us1 = rl [OF mq s1wb] note us2 = rl [OF nq s2wb] from nm have "n \ m" by clarsimp then have "(2::'a word) ^ s2 * of_nat nq \ 2 ^ s1 * of_nat mq" using nnq mmq by simp then have "2 ^ s2 * nq \ 2 ^ s1 * mq" using s1wb s2wb by (simp add: word_le_nat_alt us1 us2) then have nqmq: "2 ^ sq * nq \ mq" using sq by (simp add: power_add) have "m - n = 2 ^ s1 * of_nat mq - 2 ^ s2 * of_nat nq" using mmq nnq by simp also have "\ = 2 ^ s1 * of_nat mq - 2 ^ s1 * 2 ^ sq * of_nat nq" using sq by (simp add: power_add) also have "\ = 2 ^ s1 * (of_nat mq - 2 ^ sq * of_nat nq)" by (simp add: field_simps) also have "\ = 2 ^ s1 * of_nat (mq - 2 ^ sq * nq)" using s1wb s2wb us1 us2 nqmq by (simp add: of_nat_diff) finally have mn: "m - n = of_nat (mq - 2 ^ sq * nq) * 2 ^ s1" by simp moreover from nm have "m - n \ 2 ^ s2 - 1" by - (rule word_diff_ls', (simp add: field_simps)+) then have "(2::'a word) ^ s1 * of_nat (mq - 2 ^ sq * nq) < 2 ^ s2" using mn s2wb by (simp add: field_simps) then have "of_nat (mq - 2 ^ sq * nq) < (2::'a word) ^ (s2 - s1)" proof (rule word_power_less_diff) have mm: "mq - 2 ^ sq * nq < 2 ^ (LENGTH('a) - s1)" using mq by simp moreover from s10 have "LENGTH('a) - s1 < LENGTH('a)" by (rule diff_less, simp) ultimately show "of_nat (mq - 2 ^ sq * nq) < (2::'a word) ^ (LENGTH('a) - s1)" using take_bit_nat_less_self_iff [of \LENGTH('a)\ \mq - 2 ^ sq * nq\] apply (auto simp add: word_less_nat_alt not_le not_less) apply (metis take_bit_nat_eq_self_iff) done qed then have "mq - 2 ^ sq * nq < 2 ^ (s2 - s1)" using mq s2wb apply (simp add: word_less_nat_alt take_bit_eq_mod) apply (subst (asm) mod_less) apply auto apply (rule order_le_less_trans) apply (rule diff_le_self) apply (erule order_less_le_trans) apply simp done ultimately show ?thesis by auto qed lemma is_aligned_addD1: assumes al1: "is_aligned (x + y) n" and al2: "is_aligned (x::'a::len word) n" shows "is_aligned y n" using al2 proof (rule is_aligned_get_word_bits) assume "x = 0" then show ?thesis using al1 by simp next assume nv: "n < LENGTH('a)" from al1 obtain q1 where xy: "x + y = 2 ^ n * of_nat q1" and "q1 < 2 ^ (LENGTH('a) - n)" by (rule is_alignedE) moreover from al2 obtain q2 where x: "x = 2 ^ n * of_nat q2" and "q2 < 2 ^ (LENGTH('a) - n)" by (rule is_alignedE) ultimately have "y = 2 ^ n * (of_nat q1 - of_nat q2)" by (simp add: field_simps) then show ?thesis using nv by (simp add: is_aligned_mult_triv1) qed lemmas is_aligned_addD2 = is_aligned_addD1[OF subst[OF add.commute, of "%x. is_aligned x n" for n]] lemma is_aligned_add: "\is_aligned p n; is_aligned q n\ \ is_aligned (p + q) n" by (simp add: is_aligned_mask mask_add_aligned) lemma aligned_shift: "\x < 2 ^ n; is_aligned (y :: 'a :: len word) n;n \ LENGTH('a)\ \ x + y >> n = y >> n" apply (subst word_plus_and_or_coroll; rule bit_word_eqI) - apply (auto simp add: bit_simps is_aligned_nth test_bit_eq_bit) - apply (metis less_2p_is_upper_bits_unset not_le test_bit_word_eq) - apply (metis le_add1 less_2p_is_upper_bits_unset test_bit_bin test_bit_word_eq) + apply (auto simp add: bit_simps is_aligned_nth) + apply (metis less_2p_is_upper_bits_unset not_le) + apply (metis le_add1 less_2p_is_upper_bits_unset test_bit_bin) done lemma aligned_shift': "\x < 2 ^ n; is_aligned (y :: 'a :: len word) n;n \ LENGTH('a)\ \ y + x >> n = y >> n" apply (subst word_plus_and_or_coroll; rule bit_word_eqI) - apply (auto simp add: bit_simps is_aligned_nth test_bit_eq_bit) - apply (metis less_2p_is_upper_bits_unset not_le test_bit_eq_bit) - apply (metis bit_imp_le_length le_add1 less_2p_is_upper_bits_unset test_bit_eq_bit) + apply (auto simp add: bit_simps is_aligned_nth) + apply (metis less_2p_is_upper_bits_unset not_le) + apply (metis bit_imp_le_length le_add1 less_2p_is_upper_bits_unset) done lemma and_neg_mask_plus_mask_mono: "(p AND NOT (mask n)) + mask n \ p" for p :: \'a::len word\ apply (rule word_le_minus_cancel[where x = "p AND NOT (mask n)"]) apply (clarsimp simp: subtract_mask) using word_and_le1[where a = "mask n" and y = p] apply (clarsimp simp: mask_eq_decr_exp word_le_less_eq) apply (rule is_aligned_no_overflow'[folded mask_2pm1]) apply (clarsimp simp: is_aligned_neg_mask) done lemma word_neg_and_le: "ptr \ (ptr AND NOT (mask n)) + (2 ^ n - 1)" for ptr :: \'a::len word\ by (simp add: and_neg_mask_plus_mask_mono mask_2pm1[symmetric]) lemma is_aligned_sub_helper: "\ is_aligned (p - d) n; d < 2 ^ n \ \ (p AND mask n = d) \ (p AND (NOT (mask n)) = p - d)" by (drule(1) is_aligned_add_helper, simp) lemma is_aligned_after_mask: "\is_aligned k m;m\ n\ \ is_aligned (k AND mask n) m" by (rule is_aligned_andI1) lemma and_mask_plus: "\is_aligned ptr m; m \ n; a < 2 ^ m\ \ ptr + a AND mask n = (ptr AND mask n) + a" apply (rule mask_eqI[where n = m]) apply (simp add:mask_twice min_def) apply (simp add:is_aligned_add_helper) apply (subst is_aligned_add_helper[THEN conjunct1]) apply (erule is_aligned_after_mask) apply simp apply simp apply simp apply (subgoal_tac "(ptr + a AND mask n) AND NOT (mask m) = (ptr + a AND NOT (mask m) ) AND mask n") apply (simp add:is_aligned_add_helper) apply (subst is_aligned_add_helper[THEN conjunct2]) apply (simp add:is_aligned_after_mask) apply simp apply simp apply (simp add:word_bw_comms word_bw_lcs) done end diff --git a/thys/Word_Lib/Bit_Comprehension.thy b/thys/Word_Lib/Bit_Comprehension.thy --- a/thys/Word_Lib/Bit_Comprehension.thy +++ b/thys/Word_Lib/Bit_Comprehension.thy @@ -1,250 +1,250 @@ (* * Copyright Brian Huffman, PSU; Jeremy Dawson and Gerwin Klein, NICTA * * SPDX-License-Identifier: BSD-2-Clause *) section \Comprehension syntax for bit expressions\ theory Bit_Comprehension imports "HOL-Library.Word" begin class bit_comprehension = ring_bit_operations + fixes set_bits :: \(nat \ bool) \ 'a\ (binder \BITS \ 10) assumes set_bits_bit_eq: \set_bits (bit a) = a\ begin lemma set_bits_False_eq [simp]: \(BITS _. False) = 0\ using set_bits_bit_eq [of 0] by (simp add: bot_fun_def) end instantiation int :: bit_comprehension begin definition \set_bits f = ( if \n. \m\n. f m = f n then let n = LEAST n. \m\n. f m = f n in signed_take_bit n (horner_sum of_bool 2 (map f [0.. instance proof fix k :: int from int_bit_bound [of k] obtain n where *: \\m. n \ m \ bit k m \ bit k n\ and **: \n > 0 \ bit k (n - 1) \ bit k n\ by blast then have ***: \\n. \n'\n. bit k n' \ bit k n\ by meson have l: \(LEAST q. \m\q. bit k m \ bit k q) = n\ apply (rule Least_equality) using * apply blast apply (metis "**" One_nat_def Suc_pred le_cases le0 neq0_conv not_less_eq_eq) done show \set_bits (bit k) = k\ apply (simp only: *** set_bits_int_def horner_sum_bit_eq_take_bit l) apply simp apply (rule bit_eqI) apply (simp add: bit_signed_take_bit_iff min_def) apply (auto simp add: not_le bit_take_bit_iff dest: *) done qed end lemma int_set_bits_K_False [simp]: "(BITS _. False) = (0 :: int)" by (simp add: set_bits_int_def) lemma int_set_bits_K_True [simp]: "(BITS _. True) = (-1 :: int)" by (simp add: set_bits_int_def) instantiation word :: (len) bit_comprehension begin definition word_set_bits_def: \(BITS n. P n) = (horner_sum of_bool 2 (map P [0.. instance by standard (simp add: word_set_bits_def horner_sum_bit_eq_take_bit) end -lemma bit_set_bits_word_iff: +lemma bit_set_bits_word_iff [bit_simps]: \bit (set_bits P :: 'a::len word) n \ n < LENGTH('a) \ P n\ by (auto simp add: word_set_bits_def bit_horner_sum_bit_word_iff) lemma set_bits_K_False [simp]: \set_bits (\_. False) = (0 :: 'a :: len word)\ by (rule bit_word_eqI) (simp add: bit_set_bits_word_iff) lemma set_bits_int_unfold': \set_bits f = (if \n. \n'\n. \ f n' then let n = LEAST n. \n'\n. \ f n' in horner_sum of_bool 2 (map f [0..n. \n'\n. f n' then let n = LEAST n. \n'\n. f n' in signed_take_bit n (horner_sum of_bool 2 (map f [0.. proof (cases \\n. \m\n. f m \ f n\) case True then obtain q where q: \\m\q. f m \ f q\ by blast define n where \n = (LEAST n. \m\n. f m \ f n)\ have \\m\n. f m \ f n\ unfolding n_def using q by (rule LeastI [of _ q]) then have n: \\m. n \ m \ f m \ f n\ by blast from n_def have n_eq: \(LEAST q. \m\q. f m \ f n) = n\ by (smt Least_equality Least_le \\m\n. f m = f n\ dual_order.refl le_refl n order_refl) show ?thesis proof (cases \f n\) case False with n have *: \\n. \n'\n. \ f n'\ by blast have **: \(LEAST n. \n'\n. \ f n') = n\ using False n_eq by simp from * False show ?thesis apply (simp add: set_bits_int_def n_def [symmetric] ** del: upt.upt_Suc) apply (auto simp add: take_bit_horner_sum_bit_eq bit_horner_sum_bit_iff take_map signed_take_bit_def set_bits_int_def horner_sum_bit_eq_take_bit simp del: upt.upt_Suc) done next case True with n have *: \\n. \n'\n. f n'\ by blast have ***: \\ (\n. \n'\n. \ f n')\ apply (rule ccontr) using * nat_le_linear by auto have **: \(LEAST n. \n'\n. f n') = n\ using True n_eq by simp from * *** True show ?thesis apply (simp add: set_bits_int_def n_def [symmetric] ** del: upt.upt_Suc) apply (auto simp add: take_bit_horner_sum_bit_eq bit_horner_sum_bit_iff take_map signed_take_bit_def set_bits_int_def horner_sum_bit_eq_take_bit nth_append simp del: upt.upt_Suc) done qed next case False then show ?thesis by (auto simp add: set_bits_int_def) qed inductive wf_set_bits_int :: "(nat \ bool) \ bool" for f :: "nat \ bool" where zeros: "\n' \ n. \ f n' \ wf_set_bits_int f" | ones: "\n' \ n. f n' \ wf_set_bits_int f" lemma wf_set_bits_int_simps: "wf_set_bits_int f \ (\n. (\n'\n. \ f n') \ (\n'\n. f n'))" by(auto simp add: wf_set_bits_int.simps) lemma wf_set_bits_int_const [simp]: "wf_set_bits_int (\_. b)" by(cases b)(auto intro: wf_set_bits_int.intros) lemma wf_set_bits_int_fun_upd [simp]: "wf_set_bits_int (f(n := b)) \ wf_set_bits_int f" (is "?lhs \ ?rhs") proof assume ?lhs then obtain n' where "(\n''\n'. \ (f(n := b)) n'') \ (\n''\n'. (f(n := b)) n'')" by(auto simp add: wf_set_bits_int_simps) hence "(\n''\max (Suc n) n'. \ f n'') \ (\n''\max (Suc n) n'. f n'')" by auto thus ?rhs by(auto simp only: wf_set_bits_int_simps) next assume ?rhs then obtain n' where "(\n''\n'. \ f n'') \ (\n''\n'. f n'')" (is "?wf f n'") by(auto simp add: wf_set_bits_int_simps) hence "?wf (f(n := b)) (max (Suc n) n')" by auto thus ?lhs by(auto simp only: wf_set_bits_int_simps) qed lemma wf_set_bits_int_Suc [simp]: "wf_set_bits_int (\n. f (Suc n)) \ wf_set_bits_int f" (is "?lhs \ ?rhs") by(auto simp add: wf_set_bits_int_simps intro: le_SucI dest: Suc_le_D) context fixes f assumes wff: "wf_set_bits_int f" begin lemma int_set_bits_unfold_BIT: "set_bits f = of_bool (f 0) + (2 :: int) * set_bits (f \ Suc)" using wff proof cases case (zeros n) show ?thesis proof(cases "\n. \ f n") case True hence "f = (\_. False)" by auto thus ?thesis using True by(simp add: o_def) next case False then obtain n' where "f n'" by blast with zeros have "(LEAST n. \n'\n. \ f n') = Suc (LEAST n. \n'\Suc n. \ f n')" by(auto intro: Least_Suc) also have "(\n. \n'\Suc n. \ f n') = (\n. \n'\n. \ f (Suc n'))" by(auto dest: Suc_le_D) also from zeros have "\n'\n. \ f (Suc n')" by auto ultimately show ?thesis using zeros apply (simp (no_asm_simp) add: set_bits_int_unfold' exI del: upt.upt_Suc flip: map_map split del: if_split) apply (simp only: map_Suc_upt upt_conv_Cons) apply simp done qed next case (ones n) show ?thesis proof(cases "\n. f n") case True hence "f = (\_. True)" by auto thus ?thesis using True by(simp add: o_def) next case False then obtain n' where "\ f n'" by blast with ones have "(LEAST n. \n'\n. f n') = Suc (LEAST n. \n'\Suc n. f n')" by(auto intro: Least_Suc) also have "(\n. \n'\Suc n. f n') = (\n. \n'\n. f (Suc n'))" by(auto dest: Suc_le_D) also from ones have "\n'\n. f (Suc n')" by auto moreover from ones have "(\n. \n'\n. \ f n') = False" by(auto intro!: exI[where x="max n m" for n m] simp add: max_def split: if_split_asm) moreover hence "(\n. \n'\n. \ f (Suc n')) = False" by(auto elim: allE[where x="Suc n" for n] dest: Suc_le_D) ultimately show ?thesis using ones apply (simp (no_asm_simp) add: set_bits_int_unfold' exI split del: if_split) apply (auto simp add: Let_def hd_map map_tl[symmetric] map_map[symmetric] map_Suc_upt upt_conv_Cons signed_take_bit_Suc not_le simp del: map_map) done qed qed lemma bin_last_set_bits [simp]: "odd (set_bits f :: int) = f 0" by (subst int_set_bits_unfold_BIT) simp_all lemma bin_rest_set_bits [simp]: "set_bits f div (2 :: int) = set_bits (f \ Suc)" by (subst int_set_bits_unfold_BIT) simp_all lemma bin_nth_set_bits [simp]: "bit (set_bits f :: int) m \ f m" using wff proof (induction m arbitrary: f) case 0 then show ?case by (simp add: Bit_Comprehension.bin_last_set_bits) next case Suc from Suc.IH [of "f \ Suc"] Suc.prems show ?case by (simp add: Bit_Comprehension.bin_rest_set_bits comp_def bit_Suc) qed end end diff --git a/thys/Word_Lib/Bits_Int.thy b/thys/Word_Lib/Bits_Int.thy --- a/thys/Word_Lib/Bits_Int.thy +++ b/thys/Word_Lib/Bits_Int.thy @@ -1,1463 +1,1459 @@ (* * Copyright Brian Huffman, PSU; Jeremy Dawson and Gerwin Klein, NICTA * * SPDX-License-Identifier: BSD-2-Clause *) section \Bitwise Operations on integers\ theory Bits_Int imports "HOL-Library.Word" Traditional_Infix_Syntax begin subsection \Implicit bit representation of \<^typ>\int\\ lemma bin_last_def: "(odd :: int \ bool) w \ w mod 2 = 1" by (fact odd_iff_mod_2_eq_one) lemma bin_last_numeral_simps [simp]: "\ odd (0 :: int)" "odd (1 :: int)" "odd (- 1 :: int)" "odd (Numeral1 :: int)" "\ odd (numeral (Num.Bit0 w) :: int)" "odd (numeral (Num.Bit1 w) :: int)" "\ odd (- numeral (Num.Bit0 w) :: int)" "odd (- numeral (Num.Bit1 w) :: int)" by simp_all lemma bin_rest_numeral_simps [simp]: "(\k::int. k div 2) 0 = 0" "(\k::int. k div 2) 1 = 0" "(\k::int. k div 2) (- 1) = - 1" "(\k::int. k div 2) Numeral1 = 0" "(\k::int. k div 2) (numeral (Num.Bit0 w)) = numeral w" "(\k::int. k div 2) (numeral (Num.Bit1 w)) = numeral w" "(\k::int. k div 2) (- numeral (Num.Bit0 w)) = - numeral w" "(\k::int. k div 2) (- numeral (Num.Bit1 w)) = - numeral (w + Num.One)" by simp_all lemma bin_rl_eqI: "\(\k::int. k div 2) x = (\k::int. k div 2) y; odd x = odd y\ \ x = y" by (auto elim: oddE) lemma [simp]: shows bin_rest_lt0: "(\k::int. k div 2) i < 0 \ i < 0" and bin_rest_ge_0: "(\k::int. k div 2) i \ 0 \ i \ 0" by auto lemma bin_rest_gt_0 [simp]: "(\k::int. k div 2) x > 0 \ x > 1" by auto subsection \Bit projection\ lemma bin_nth_eq_iff: "(bit :: int \ nat \ bool) x = (bit :: int \ nat \ bool) y \ x = y" by (simp add: bit_eq_iff fun_eq_iff) lemma bin_eqI: "x = y" if "\n. (bit :: int \ nat \ bool) x n \ (bit :: int \ nat \ bool) y n" using that bin_nth_eq_iff [of x y] by (simp add: fun_eq_iff) lemma bin_eq_iff: "x = y \ (\n. (bit :: int \ nat \ bool) x n = (bit :: int \ nat \ bool) y n)" by (fact bit_eq_iff) lemma bin_nth_zero [simp]: "\ (bit :: int \ nat \ bool) 0 n" by simp lemma bin_nth_1 [simp]: "(bit :: int \ nat \ bool) 1 n \ n = 0" by (cases n) (simp_all add: bit_Suc) lemma bin_nth_minus1 [simp]: "(bit :: int \ nat \ bool) (- 1) n" by (induction n) (simp_all add: bit_Suc) lemma bin_nth_numeral: "(\k::int. k div 2) x = y \ (bit :: int \ nat \ bool) x (numeral n) = (bit :: int \ nat \ bool) y (pred_numeral n)" by (simp add: numeral_eq_Suc bit_Suc) lemmas bin_nth_numeral_simps [simp] = bin_nth_numeral [OF bin_rest_numeral_simps(8)] lemmas bin_nth_simps = bit_0 bit_Suc bin_nth_zero bin_nth_minus1 bin_nth_numeral_simps lemma nth_2p_bin: "(bit :: int \ nat \ bool) (2 ^ n) m = (m = n)" \ \for use when simplifying with \bin_nth_Bit\\ by (auto simp add: bit_exp_iff) lemma nth_rest_power_bin: "(bit :: int \ nat \ bool) (((\k::int. k div 2) ^^ k) w) n = (bit :: int \ nat \ bool) w (n + k)" apply (induct k arbitrary: n) apply clarsimp apply clarsimp apply (simp only: bit_Suc [symmetric] add_Suc) done lemma bin_nth_numeral_unfold: "(bit :: int \ nat \ bool) (numeral (num.Bit0 x)) n \ n > 0 \ (bit :: int \ nat \ bool) (numeral x) (n - 1)" "(bit :: int \ nat \ bool) (numeral (num.Bit1 x)) n \ (n > 0 \ (bit :: int \ nat \ bool) (numeral x) (n - 1))" by (cases n; simp)+ subsection \Truncating\ definition bin_sign :: "int \ int" where "bin_sign k = (if k \ 0 then 0 else - 1)" lemma bin_sign_simps [simp]: "bin_sign 0 = 0" "bin_sign 1 = 0" "bin_sign (- 1) = - 1" "bin_sign (numeral k) = 0" "bin_sign (- numeral k) = -1" by (simp_all add: bin_sign_def) lemma bin_sign_rest [simp]: "bin_sign ((\k::int. k div 2) w) = bin_sign w" by (simp add: bin_sign_def) lemma bintrunc_mod2p: "(take_bit :: nat \ int \ int) n w = w mod 2 ^ n" by (fact take_bit_eq_mod) lemma sbintrunc_mod2p: "(signed_take_bit :: nat \ int \ int) n w = (w + 2 ^ n) mod 2 ^ Suc n - 2 ^ n" by (simp add: bintrunc_mod2p signed_take_bit_eq_take_bit_shift) lemma sbintrunc_eq_take_bit: \(signed_take_bit :: nat \ int \ int) n k = take_bit (Suc n) (k + 2 ^ n) - 2 ^ n\ by (fact signed_take_bit_eq_take_bit_shift) lemma sign_bintr: "bin_sign ((take_bit :: nat \ int \ int) n w) = 0" by (simp add: bin_sign_def) lemma bintrunc_n_0: "(take_bit :: nat \ int \ int) n 0 = 0" by (fact take_bit_of_0) lemma sbintrunc_n_0: "(signed_take_bit :: nat \ int \ int) n 0 = 0" by (fact signed_take_bit_of_0) lemma sbintrunc_n_minus1: "(signed_take_bit :: nat \ int \ int) n (- 1) = -1" by (fact signed_take_bit_of_minus_1) lemma bintrunc_Suc_numeral: "(take_bit :: nat \ int \ int) (Suc n) 1 = 1" "(take_bit :: nat \ int \ int) (Suc n) (- 1) = 1 + 2 * (take_bit :: nat \ int \ int) n (- 1)" "(take_bit :: nat \ int \ int) (Suc n) (numeral (Num.Bit0 w)) = 2 * (take_bit :: nat \ int \ int) n (numeral w)" "(take_bit :: nat \ int \ int) (Suc n) (numeral (Num.Bit1 w)) = 1 + 2 * (take_bit :: nat \ int \ int) n (numeral w)" "(take_bit :: nat \ int \ int) (Suc n) (- numeral (Num.Bit0 w)) = 2 * (take_bit :: nat \ int \ int) n (- numeral w)" "(take_bit :: nat \ int \ int) (Suc n) (- numeral (Num.Bit1 w)) = 1 + 2 * (take_bit :: nat \ int \ int) n (- numeral (w + Num.One))" by (simp_all add: take_bit_Suc) lemma sbintrunc_0_numeral [simp]: "(signed_take_bit :: nat \ int \ int) 0 1 = -1" "(signed_take_bit :: nat \ int \ int) 0 (numeral (Num.Bit0 w)) = 0" "(signed_take_bit :: nat \ int \ int) 0 (numeral (Num.Bit1 w)) = -1" "(signed_take_bit :: nat \ int \ int) 0 (- numeral (Num.Bit0 w)) = 0" "(signed_take_bit :: nat \ int \ int) 0 (- numeral (Num.Bit1 w)) = -1" by simp_all lemma sbintrunc_Suc_numeral: "(signed_take_bit :: nat \ int \ int) (Suc n) 1 = 1" "(signed_take_bit :: nat \ int \ int) (Suc n) (numeral (Num.Bit0 w)) = 2 * (signed_take_bit :: nat \ int \ int) n (numeral w)" "(signed_take_bit :: nat \ int \ int) (Suc n) (numeral (Num.Bit1 w)) = 1 + 2 * (signed_take_bit :: nat \ int \ int) n (numeral w)" "(signed_take_bit :: nat \ int \ int) (Suc n) (- numeral (Num.Bit0 w)) = 2 * (signed_take_bit :: nat \ int \ int) n (- numeral w)" "(signed_take_bit :: nat \ int \ int) (Suc n) (- numeral (Num.Bit1 w)) = 1 + 2 * (signed_take_bit :: nat \ int \ int) n (- numeral (w + Num.One))" by (simp_all add: signed_take_bit_Suc) lemma bin_sign_lem: "(bin_sign ((signed_take_bit :: nat \ int \ int) n bin) = -1) = bit bin n" by (simp add: bin_sign_def) lemma nth_bintr: "(bit :: int \ nat \ bool) ((take_bit :: nat \ int \ int) m w) n \ n < m \ (bit :: int \ nat \ bool) w n" by (fact bit_take_bit_iff) lemma nth_sbintr: "(bit :: int \ nat \ bool) ((signed_take_bit :: nat \ int \ int) m w) n = (if n < m then (bit :: int \ nat \ bool) w n else (bit :: int \ nat \ bool) w m)" by (simp add: bit_signed_take_bit_iff min_def) lemma bin_nth_Bit0: "(bit :: int \ nat \ bool) (numeral (Num.Bit0 w)) n \ (\m. n = Suc m \ (bit :: int \ nat \ bool) (numeral w) m)" using bit_double_iff [of \numeral w :: int\ n] by (auto intro: exI [of _ \n - 1\]) lemma bin_nth_Bit1: "(bit :: int \ nat \ bool) (numeral (Num.Bit1 w)) n \ n = 0 \ (\m. n = Suc m \ (bit :: int \ nat \ bool) (numeral w) m)" using even_bit_succ_iff [of \2 * numeral w :: int\ n] bit_double_iff [of \numeral w :: int\ n] by auto lemma bintrunc_bintrunc_l: "n \ m \ (take_bit :: nat \ int \ int) m ((take_bit :: nat \ int \ int) n w) = (take_bit :: nat \ int \ int) n w" by simp lemma sbintrunc_sbintrunc_l: "n \ m \ (signed_take_bit :: nat \ int \ int) m ((signed_take_bit :: nat \ int \ int) n w) = (signed_take_bit :: nat \ int \ int) n w" by (simp add: min_def) lemma bintrunc_bintrunc_ge: "n \ m \ (take_bit :: nat \ int \ int) n ((take_bit :: nat \ int \ int) m w) = (take_bit :: nat \ int \ int) n w" by (rule bin_eqI) (auto simp: nth_bintr) lemma bintrunc_bintrunc_min [simp]: "(take_bit :: nat \ int \ int) m ((take_bit :: nat \ int \ int) n w) = (take_bit :: nat \ int \ int) (min m n) w" by (rule take_bit_take_bit) lemma sbintrunc_sbintrunc_min [simp]: "(signed_take_bit :: nat \ int \ int) m ((signed_take_bit :: nat \ int \ int) n w) = (signed_take_bit :: nat \ int \ int) (min m n) w" by (rule signed_take_bit_signed_take_bit) lemmas sbintrunc_Suc_Pls = signed_take_bit_Suc [where a="0::int", simplified bin_last_numeral_simps bin_rest_numeral_simps] lemmas sbintrunc_Suc_Min = signed_take_bit_Suc [where a="-1::int", simplified bin_last_numeral_simps bin_rest_numeral_simps] lemmas sbintrunc_Sucs = sbintrunc_Suc_Pls sbintrunc_Suc_Min sbintrunc_Suc_numeral lemmas sbintrunc_Pls = signed_take_bit_0 [where a="0::int", simplified bin_last_numeral_simps bin_rest_numeral_simps] lemmas sbintrunc_Min = signed_take_bit_0 [where a="-1::int", simplified bin_last_numeral_simps bin_rest_numeral_simps] lemmas sbintrunc_0_simps = sbintrunc_Pls sbintrunc_Min lemmas sbintrunc_simps = sbintrunc_0_simps sbintrunc_Sucs lemma bintrunc_minus: "0 < n \ (take_bit :: nat \ int \ int) (Suc (n - 1)) w = (take_bit :: nat \ int \ int) n w" by auto lemma sbintrunc_minus: "0 < n \ (signed_take_bit :: nat \ int \ int) (Suc (n - 1)) w = (signed_take_bit :: nat \ int \ int) n w" by auto lemmas sbintrunc_minus_simps = sbintrunc_Sucs [THEN [2] sbintrunc_minus [symmetric, THEN trans]] lemma sbintrunc_BIT_I: \0 < n \ (signed_take_bit :: nat \ int \ int) (n - 1) 0 = y \ (signed_take_bit :: nat \ int \ int) n 0 = 2 * y\ by simp lemma sbintrunc_Suc_Is: \(signed_take_bit :: nat \ int \ int) n (- 1) = y \ (signed_take_bit :: nat \ int \ int) (Suc n) (- 1) = 1 + 2 * y\ by auto lemma sbintrunc_Suc_lem: "(signed_take_bit :: nat \ int \ int) (Suc n) x = y \ m = Suc n \ (signed_take_bit :: nat \ int \ int) m x = y" by (rule ssubst) lemmas sbintrunc_Suc_Ialts = sbintrunc_Suc_Is [THEN sbintrunc_Suc_lem] lemma sbintrunc_bintrunc_lt: "m > n \ (signed_take_bit :: nat \ int \ int) n ((take_bit :: nat \ int \ int) m w) = (signed_take_bit :: nat \ int \ int) n w" by (rule bin_eqI) (auto simp: nth_sbintr nth_bintr) lemma bintrunc_sbintrunc_le: "m \ Suc n \ (take_bit :: nat \ int \ int) m ((signed_take_bit :: nat \ int \ int) n w) = (take_bit :: nat \ int \ int) m w" by (rule take_bit_signed_take_bit) lemmas bintrunc_sbintrunc [simp] = order_refl [THEN bintrunc_sbintrunc_le] lemmas sbintrunc_bintrunc [simp] = lessI [THEN sbintrunc_bintrunc_lt] lemmas bintrunc_bintrunc [simp] = order_refl [THEN bintrunc_bintrunc_l] lemmas sbintrunc_sbintrunc [simp] = order_refl [THEN sbintrunc_sbintrunc_l] lemma bintrunc_sbintrunc' [simp]: "0 < n \ (take_bit :: nat \ int \ int) n ((signed_take_bit :: nat \ int \ int) (n - 1) w) = (take_bit :: nat \ int \ int) n w" by (cases n) simp_all lemma sbintrunc_bintrunc' [simp]: "0 < n \ (signed_take_bit :: nat \ int \ int) (n - 1) ((take_bit :: nat \ int \ int) n w) = (signed_take_bit :: nat \ int \ int) (n - 1) w" by (cases n) simp_all lemma bin_sbin_eq_iff: "(take_bit :: nat \ int \ int) (Suc n) x = (take_bit :: nat \ int \ int) (Suc n) y \ (signed_take_bit :: nat \ int \ int) n x = (signed_take_bit :: nat \ int \ int) n y" apply (rule iffI) apply (rule box_equals [OF _ sbintrunc_bintrunc sbintrunc_bintrunc]) apply simp apply (rule box_equals [OF _ bintrunc_sbintrunc bintrunc_sbintrunc]) apply simp done lemma bin_sbin_eq_iff': "0 < n \ (take_bit :: nat \ int \ int) n x = (take_bit :: nat \ int \ int) n y \ (signed_take_bit :: nat \ int \ int) (n - 1) x = (signed_take_bit :: nat \ int \ int) (n - 1) y" by (cases n) (simp_all add: bin_sbin_eq_iff) lemmas bintrunc_sbintruncS0 [simp] = bintrunc_sbintrunc' [unfolded One_nat_def] lemmas sbintrunc_bintruncS0 [simp] = sbintrunc_bintrunc' [unfolded One_nat_def] lemmas bintrunc_bintrunc_l' = le_add1 [THEN bintrunc_bintrunc_l] lemmas sbintrunc_sbintrunc_l' = le_add1 [THEN sbintrunc_sbintrunc_l] (* although bintrunc_minus_simps, if added to default simpset, tends to get applied where it's not wanted in developing the theories, we get a version for when the word length is given literally *) lemmas nat_non0_gr = trans [OF iszero_def [THEN Not_eq_iff [THEN iffD2]] refl] lemma bintrunc_numeral: "(take_bit :: nat \ int \ int) (numeral k) x = of_bool (odd x) + 2 * (take_bit :: nat \ int \ int) (pred_numeral k) (x div 2)" by (simp add: numeral_eq_Suc take_bit_Suc mod_2_eq_odd) lemma sbintrunc_numeral: "(signed_take_bit :: nat \ int \ int) (numeral k) x = of_bool (odd x) + 2 * (signed_take_bit :: nat \ int \ int) (pred_numeral k) (x div 2)" by (simp add: numeral_eq_Suc signed_take_bit_Suc mod2_eq_if) lemma bintrunc_numeral_simps [simp]: "(take_bit :: nat \ int \ int) (numeral k) (numeral (Num.Bit0 w)) = 2 * (take_bit :: nat \ int \ int) (pred_numeral k) (numeral w)" "(take_bit :: nat \ int \ int) (numeral k) (numeral (Num.Bit1 w)) = 1 + 2 * (take_bit :: nat \ int \ int) (pred_numeral k) (numeral w)" "(take_bit :: nat \ int \ int) (numeral k) (- numeral (Num.Bit0 w)) = 2 * (take_bit :: nat \ int \ int) (pred_numeral k) (- numeral w)" "(take_bit :: nat \ int \ int) (numeral k) (- numeral (Num.Bit1 w)) = 1 + 2 * (take_bit :: nat \ int \ int) (pred_numeral k) (- numeral (w + Num.One))" "(take_bit :: nat \ int \ int) (numeral k) 1 = 1" by (simp_all add: bintrunc_numeral) lemma sbintrunc_numeral_simps [simp]: "(signed_take_bit :: nat \ int \ int) (numeral k) (numeral (Num.Bit0 w)) = 2 * (signed_take_bit :: nat \ int \ int) (pred_numeral k) (numeral w)" "(signed_take_bit :: nat \ int \ int) (numeral k) (numeral (Num.Bit1 w)) = 1 + 2 * (signed_take_bit :: nat \ int \ int) (pred_numeral k) (numeral w)" "(signed_take_bit :: nat \ int \ int) (numeral k) (- numeral (Num.Bit0 w)) = 2 * (signed_take_bit :: nat \ int \ int) (pred_numeral k) (- numeral w)" "(signed_take_bit :: nat \ int \ int) (numeral k) (- numeral (Num.Bit1 w)) = 1 + 2 * (signed_take_bit :: nat \ int \ int) (pred_numeral k) (- numeral (w + Num.One))" "(signed_take_bit :: nat \ int \ int) (numeral k) 1 = 1" by (simp_all add: sbintrunc_numeral) lemma no_bintr_alt1: "(take_bit :: nat \ int \ int) n = (\w. w mod 2 ^ n :: int)" by (rule ext) (rule bintrunc_mod2p) lemma range_bintrunc: "range ((take_bit :: nat \ int \ int) n) = {i. 0 \ i \ i < 2 ^ n}" by (auto simp add: take_bit_eq_mod image_iff) (metis mod_pos_pos_trivial) lemma no_sbintr_alt2: "(signed_take_bit :: nat \ int \ int) n = (\w. (w + 2 ^ n) mod 2 ^ Suc n - 2 ^ n :: int)" by (rule ext) (simp add : sbintrunc_mod2p) lemma range_sbintrunc: "range ((signed_take_bit :: nat \ int \ int) n) = {i. - (2 ^ n) \ i \ i < 2 ^ n}" proof - have \surj (\k::int. k + 2 ^ n)\ by (rule surjI [of _ \(\k. k - 2 ^ n)\]) simp moreover have \(signed_take_bit :: nat \ int \ int) n = ((\k. k - 2 ^ n) \ take_bit (Suc n) \ (\k. k + 2 ^ n))\ by (simp add: sbintrunc_eq_take_bit fun_eq_iff) ultimately show ?thesis apply (simp only: fun.set_map range_bintrunc) apply (auto simp add: image_iff) apply presburger done qed lemma sbintrunc_inc: \k + 2 ^ Suc n \ (signed_take_bit :: nat \ int \ int) n k\ if \k < - (2 ^ n)\ using that by (fact signed_take_bit_int_greater_eq) lemma sbintrunc_dec: \(signed_take_bit :: nat \ int \ int) n k \ k - 2 ^ (Suc n)\ if \k \ 2 ^ n\ using that by (fact signed_take_bit_int_less_eq) lemma bintr_ge0: "0 \ (take_bit :: nat \ int \ int) n w" by (simp add: bintrunc_mod2p) lemma bintr_lt2p: "(take_bit :: nat \ int \ int) n w < 2 ^ n" by (simp add: bintrunc_mod2p) lemma bintr_Min: "(take_bit :: nat \ int \ int) n (- 1) = 2 ^ n - 1" by (simp add: stable_imp_take_bit_eq) lemma sbintr_ge: "- (2 ^ n) \ (signed_take_bit :: nat \ int \ int) n w" by (simp add: sbintrunc_mod2p) lemma sbintr_lt: "(signed_take_bit :: nat \ int \ int) n w < 2 ^ n" by (simp add: sbintrunc_mod2p) lemma sign_Pls_ge_0: "bin_sign bin = 0 \ bin \ 0" for bin :: int by (simp add: bin_sign_def) lemma sign_Min_lt_0: "bin_sign bin = -1 \ bin < 0" for bin :: int by (simp add: bin_sign_def) lemma bin_rest_trunc: "(\k::int. k div 2) ((take_bit :: nat \ int \ int) n bin) = (take_bit :: nat \ int \ int) (n - 1) ((\k::int. k div 2) bin)" by (simp add: take_bit_rec [of n bin]) lemma bin_rest_power_trunc: "((\k::int. k div 2) ^^ k) ((take_bit :: nat \ int \ int) n bin) = (take_bit :: nat \ int \ int) (n - k) (((\k::int. k div 2) ^^ k) bin)" by (induct k) (auto simp: bin_rest_trunc) lemma bin_rest_trunc_i: "(take_bit :: nat \ int \ int) n ((\k::int. k div 2) bin) = (\k::int. k div 2) ((take_bit :: nat \ int \ int) (Suc n) bin)" by (auto simp add: take_bit_Suc) lemma bin_rest_strunc: "(\k::int. k div 2) ((signed_take_bit :: nat \ int \ int) (Suc n) bin) = (signed_take_bit :: nat \ int \ int) n ((\k::int. k div 2) bin)" by (simp add: signed_take_bit_Suc) lemma bintrunc_rest [simp]: "(take_bit :: nat \ int \ int) n ((\k::int. k div 2) ((take_bit :: nat \ int \ int) n bin)) = (\k::int. k div 2) ((take_bit :: nat \ int \ int) n bin)" by (induct n arbitrary: bin) (simp_all add: take_bit_Suc) lemma sbintrunc_rest [simp]: "(signed_take_bit :: nat \ int \ int) n ((\k::int. k div 2) ((signed_take_bit :: nat \ int \ int) n bin)) = (\k::int. k div 2) ((signed_take_bit :: nat \ int \ int) n bin)" by (induct n arbitrary: bin) (simp_all add: signed_take_bit_Suc mod2_eq_if) lemma bintrunc_rest': "(take_bit :: nat \ int \ int) n \ (\k::int. k div 2) \ (take_bit :: nat \ int \ int) n = (\k::int. k div 2) \ (take_bit :: nat \ int \ int) n" by (rule ext) auto lemma sbintrunc_rest': "(signed_take_bit :: nat \ int \ int) n \ (\k::int. k div 2) \ (signed_take_bit :: nat \ int \ int) n = (\k::int. k div 2) \ (signed_take_bit :: nat \ int \ int) n" by (rule ext) auto lemma rco_lem: "f \ g \ f = g \ f \ f \ (g \ f) ^^ n = g ^^ n \ f" apply (rule ext) apply (induct_tac n) apply (simp_all (no_asm)) apply (drule fun_cong) apply (unfold o_def) apply (erule trans) apply simp done lemmas rco_bintr = bintrunc_rest' [THEN rco_lem [THEN fun_cong], unfolded o_def] lemmas rco_sbintr = sbintrunc_rest' [THEN rco_lem [THEN fun_cong], unfolded o_def] subsection \Splitting and concatenation\ definition bin_split :: \nat \ int \ int \ int\ where [simp]: \bin_split n k = (drop_bit n k, take_bit n k)\ lemma [code]: "bin_split (Suc n) w = (let (w1, w2) = bin_split n (w div 2) in (w1, of_bool (odd w) + 2 * w2))" "bin_split 0 w = (w, 0)" by (simp_all add: drop_bit_Suc take_bit_Suc mod_2_eq_odd) lemma bin_cat_eq_push_bit_add_take_bit: \concat_bit n l k = push_bit n k + take_bit n l\ by (simp add: concat_bit_eq) lemma bin_sign_cat: "bin_sign ((\k n l. concat_bit n l k) x n y) = bin_sign x" proof - have \0 \ x\ if \0 \ x * 2 ^ n + y mod 2 ^ n\ proof - have \y mod 2 ^ n < 2 ^ n\ using pos_mod_bound [of \2 ^ n\ y] by simp then have \\ y mod 2 ^ n \ 2 ^ n\ by (simp add: less_le) with that have \x \ - 1\ by auto have *: \- 1 \ (- (y mod 2 ^ n)) div 2 ^ n\ by (simp add: zdiv_zminus1_eq_if) from that have \- (y mod 2 ^ n) \ x * 2 ^ n\ by simp then have \(- (y mod 2 ^ n)) div 2 ^ n \ (x * 2 ^ n) div 2 ^ n\ using zdiv_mono1 zero_less_numeral zero_less_power by blast with * have \- 1 \ x * 2 ^ n div 2 ^ n\ by simp with \x \ - 1\ show ?thesis by simp qed then show ?thesis by (simp add: bin_sign_def not_le not_less bin_cat_eq_push_bit_add_take_bit push_bit_eq_mult take_bit_eq_mod) qed lemma bin_cat_assoc: "(\k n l. concat_bit n l k) ((\k n l. concat_bit n l k) x m y) n z = (\k n l. concat_bit n l k) x (m + n) ((\k n l. concat_bit n l k) y n z)" by (fact concat_bit_assoc) lemma bin_cat_assoc_sym: "(\k n l. concat_bit n l k) x m ((\k n l. concat_bit n l k) y n z) = (\k n l. concat_bit n l k) ((\k n l. concat_bit n l k) x (m - n) y) (min m n) z" by (fact concat_bit_assoc_sym) definition bin_rcat :: \nat \ int list \ int\ where \bin_rcat n = horner_sum (take_bit n) (2 ^ n) \ rev\ lemma bin_rcat_eq_foldl: \bin_rcat n = foldl (\u v. (\k n l. concat_bit n l k) u n v) 0\ proof fix ks :: \int list\ show \bin_rcat n ks = foldl (\u v. (\k n l. concat_bit n l k) u n v) 0 ks\ by (induction ks rule: rev_induct) (simp_all add: bin_rcat_def concat_bit_eq push_bit_eq_mult) qed fun bin_rsplit_aux :: "nat \ nat \ int \ int list \ int list" where "bin_rsplit_aux n m c bs = (if m = 0 \ n = 0 then bs else let (a, b) = bin_split n c in bin_rsplit_aux n (m - n) a (b # bs))" definition bin_rsplit :: "nat \ nat \ int \ int list" where "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []" fun bin_rsplitl_aux :: "nat \ nat \ int \ int list \ int list" where "bin_rsplitl_aux n m c bs = (if m = 0 \ n = 0 then bs else let (a, b) = bin_split (min m n) c in bin_rsplitl_aux n (m - n) a (b # bs))" definition bin_rsplitl :: "nat \ nat \ int \ int list" where "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []" declare bin_rsplit_aux.simps [simp del] declare bin_rsplitl_aux.simps [simp del] lemma bin_nth_cat: "(bit :: int \ nat \ bool) ((\k n l. concat_bit n l k) x k y) n = (if n < k then (bit :: int \ nat \ bool) y n else (bit :: int \ nat \ bool) x (n - k))" by (simp add: bit_concat_bit_iff) lemma bin_nth_drop_bit_iff: \(bit :: int \ nat \ bool) (drop_bit n c) k \ (bit :: int \ nat \ bool) c (n + k)\ by (simp add: bit_drop_bit_eq) lemma bin_nth_take_bit_iff: \(bit :: int \ nat \ bool) (take_bit n c) k \ k < n \ (bit :: int \ nat \ bool) c k\ by (fact bit_take_bit_iff) lemma bin_nth_split: "bin_split n c = (a, b) \ (\k. (bit :: int \ nat \ bool) a k = (bit :: int \ nat \ bool) c (n + k)) \ (\k. (bit :: int \ nat \ bool) b k = (k < n \ (bit :: int \ nat \ bool) c k))" by (auto simp add: bin_nth_drop_bit_iff bin_nth_take_bit_iff) lemma bin_cat_zero [simp]: "(\k n l. concat_bit n l k) 0 n w = (take_bit :: nat \ int \ int) n w" by (simp add: bin_cat_eq_push_bit_add_take_bit) lemma bintr_cat1: "(take_bit :: nat \ int \ int) (k + n) ((\k n l. concat_bit n l k) a n b) = (\k n l. concat_bit n l k) ((take_bit :: nat \ int \ int) k a) n b" by (metis bin_cat_assoc bin_cat_zero) lemma bintr_cat: "(take_bit :: nat \ int \ int) m ((\k n l. concat_bit n l k) a n b) = (\k n l. concat_bit n l k) ((take_bit :: nat \ int \ int) (m - n) a) n ((take_bit :: nat \ int \ int) (min m n) b)" by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr) lemma bintr_cat_same [simp]: "(take_bit :: nat \ int \ int) n ((\k n l. concat_bit n l k) a n b) = (take_bit :: nat \ int \ int) n b" by (auto simp add : bintr_cat) lemma cat_bintr [simp]: "(\k n l. concat_bit n l k) a n ((take_bit :: nat \ int \ int) n b) = (\k n l. concat_bit n l k) a n b" by (simp add: bin_cat_eq_push_bit_add_take_bit) lemma split_bintrunc: "bin_split n c = (a, b) \ b = (take_bit :: nat \ int \ int) n c" by simp lemma bin_cat_split: "bin_split n w = (u, v) \ w = (\k n l. concat_bit n l k) u n v" by (auto simp add: bin_cat_eq_push_bit_add_take_bit bits_ident) lemma drop_bit_bin_cat_eq: \drop_bit n ((\k n l. concat_bit n l k) v n w) = v\ by (rule bit_eqI) (simp add: bit_drop_bit_eq bit_concat_bit_iff) lemma take_bit_bin_cat_eq: \take_bit n ((\k n l. concat_bit n l k) v n w) = take_bit n w\ by (rule bit_eqI) (simp add: bit_concat_bit_iff) lemma bin_split_cat: "bin_split n ((\k n l. concat_bit n l k) v n w) = (v, (take_bit :: nat \ int \ int) n w)" by (simp add: drop_bit_bin_cat_eq take_bit_bin_cat_eq) lemma bin_split_zero [simp]: "bin_split n 0 = (0, 0)" by simp lemma bin_split_minus1 [simp]: "bin_split n (- 1) = (- 1, (take_bit :: nat \ int \ int) n (- 1))" by simp lemma bin_split_trunc: "bin_split (min m n) c = (a, b) \ bin_split n ((take_bit :: nat \ int \ int) m c) = ((take_bit :: nat \ int \ int) (m - n) a, b)" apply (induct n arbitrary: m b c, clarsimp) apply (simp add: bin_rest_trunc Let_def split: prod.split_asm) apply (case_tac m) apply (auto simp: Let_def drop_bit_Suc take_bit_Suc mod_2_eq_odd split: prod.split_asm) done lemma bin_split_trunc1: "bin_split n c = (a, b) \ bin_split n ((take_bit :: nat \ int \ int) m c) = ((take_bit :: nat \ int \ int) (m - n) a, (take_bit :: nat \ int \ int) m b)" apply (induct n arbitrary: m b c, clarsimp) apply (simp add: bin_rest_trunc Let_def split: prod.split_asm) apply (case_tac m) apply (auto simp: Let_def drop_bit_Suc take_bit_Suc mod_2_eq_odd split: prod.split_asm) done lemma bin_cat_num: "(\k n l. concat_bit n l k) a n b = a * 2 ^ n + (take_bit :: nat \ int \ int) n b" by (simp add: bin_cat_eq_push_bit_add_take_bit push_bit_eq_mult) lemma bin_split_num: "bin_split n b = (b div 2 ^ n, b mod 2 ^ n)" by (simp add: drop_bit_eq_div take_bit_eq_mod) lemmas bin_rsplit_aux_simps = bin_rsplit_aux.simps bin_rsplitl_aux.simps lemmas rsplit_aux_simps = bin_rsplit_aux_simps lemmas th_if_simp1 = if_split [where P = "(=) l", THEN iffD1, THEN conjunct1, THEN mp] for l lemmas th_if_simp2 = if_split [where P = "(=) l", THEN iffD1, THEN conjunct2, THEN mp] for l lemmas rsplit_aux_simp1s = rsplit_aux_simps [THEN th_if_simp1] lemmas rsplit_aux_simp2ls = rsplit_aux_simps [THEN th_if_simp2] \ \these safe to \[simp add]\ as require calculating \m - n\\ lemmas bin_rsplit_aux_simp2s [simp] = rsplit_aux_simp2ls [unfolded Let_def] lemmas rbscl = bin_rsplit_aux_simp2s (2) lemmas rsplit_aux_0_simps [simp] = rsplit_aux_simp1s [OF disjI1] rsplit_aux_simp1s [OF disjI2] lemma bin_rsplit_aux_append: "bin_rsplit_aux n m c (bs @ cs) = bin_rsplit_aux n m c bs @ cs" apply (induct n m c bs rule: bin_rsplit_aux.induct) apply (subst bin_rsplit_aux.simps) apply (subst bin_rsplit_aux.simps) apply (clarsimp split: prod.split) done lemma bin_rsplitl_aux_append: "bin_rsplitl_aux n m c (bs @ cs) = bin_rsplitl_aux n m c bs @ cs" apply (induct n m c bs rule: bin_rsplitl_aux.induct) apply (subst bin_rsplitl_aux.simps) apply (subst bin_rsplitl_aux.simps) apply (clarsimp split: prod.split) done lemmas rsplit_aux_apps [where bs = "[]"] = bin_rsplit_aux_append bin_rsplitl_aux_append lemmas rsplit_def_auxs = bin_rsplit_def bin_rsplitl_def lemmas rsplit_aux_alts = rsplit_aux_apps [unfolded append_Nil rsplit_def_auxs [symmetric]] lemma bin_split_minus: "0 < n \ bin_split (Suc (n - 1)) w = bin_split n w" by auto lemma bin_split_pred_simp [simp]: "(0::nat) < numeral bin \ bin_split (numeral bin) w = (let (w1, w2) = bin_split (numeral bin - 1) ((\k::int. k div 2) w) in (w1, of_bool (odd w) + 2 * w2))" by (simp add: take_bit_rec drop_bit_rec mod_2_eq_odd) lemma bin_rsplit_aux_simp_alt: "bin_rsplit_aux n m c bs = (if m = 0 \ n = 0 then bs else let (a, b) = bin_split n c in bin_rsplit n (m - n, a) @ b # bs)" apply (simp add: bin_rsplit_aux.simps [of n m c bs]) apply (subst rsplit_aux_alts) apply (simp add: bin_rsplit_def) done lemmas bin_rsplit_simp_alt = trans [OF bin_rsplit_def bin_rsplit_aux_simp_alt] lemmas bthrs = bin_rsplit_simp_alt [THEN [2] trans] lemma bin_rsplit_size_sign' [rule_format]: "n > 0 \ rev sw = bin_rsplit n (nw, w) \ \v\set sw. (take_bit :: nat \ int \ int) n v = v" apply (induct sw arbitrary: nw w) apply clarsimp apply clarsimp apply (drule bthrs) apply (simp (no_asm_use) add: Let_def split: prod.split_asm if_split_asm) apply clarify apply simp done lemmas bin_rsplit_size_sign = bin_rsplit_size_sign' [OF asm_rl rev_rev_ident [THEN trans] set_rev [THEN equalityD2 [THEN subsetD]]] lemma bin_nth_rsplit [rule_format] : "n > 0 \ m < n \ \w k nw. rev sw = bin_rsplit n (nw, w) \ k < size sw \ (bit :: int \ nat \ bool) (sw ! k) m = (bit :: int \ nat \ bool) w (k * n + m)" apply (induct sw) apply clarsimp apply clarsimp apply (drule bthrs) apply (simp (no_asm_use) add: Let_def split: prod.split_asm if_split_asm) apply (erule allE, erule impE, erule exI) apply (case_tac k) apply clarsimp prefer 2 apply clarsimp apply (erule allE) apply (erule (1) impE) apply (simp add: bit_drop_bit_eq ac_simps) apply (simp add: bit_take_bit_iff ac_simps) done lemma bin_rsplit_all: "0 < nw \ nw \ n \ bin_rsplit n (nw, w) = [(take_bit :: nat \ int \ int) n w]" by (auto simp: bin_rsplit_def rsplit_aux_simp2ls split: prod.split dest!: split_bintrunc) lemma bin_rsplit_l [rule_format]: "\bin. bin_rsplitl n (m, bin) = bin_rsplit n (m, (take_bit :: nat \ int \ int) m bin)" apply (rule_tac a = "m" in wf_less_than [THEN wf_induct]) apply (simp (no_asm) add: bin_rsplitl_def bin_rsplit_def) apply (rule allI) apply (subst bin_rsplitl_aux.simps) apply (subst bin_rsplit_aux.simps) apply (clarsimp simp: Let_def split: prod.split) apply (simp add: ac_simps) apply (subst rsplit_aux_alts(1)) apply (subst rsplit_aux_alts(2)) apply clarsimp unfolding bin_rsplit_def bin_rsplitl_def apply (simp add: drop_bit_take_bit) apply (case_tac \x < n\) apply (simp_all add: not_less min_def) done lemma bin_rsplit_rcat [rule_format]: "n > 0 \ bin_rsplit n (n * size ws, bin_rcat n ws) = map ((take_bit :: nat \ int \ int) n) ws" apply (unfold bin_rsplit_def bin_rcat_eq_foldl) apply (rule_tac xs = ws in rev_induct) apply clarsimp apply clarsimp apply (subst rsplit_aux_alts) apply (simp add: drop_bit_bin_cat_eq take_bit_bin_cat_eq) done lemma bin_rsplit_aux_len_le [rule_format] : "\ws m. n \ 0 \ ws = bin_rsplit_aux n nw w bs \ length ws \ m \ nw + length bs * n \ m * n" proof - have *: R if d: "i \ j \ m < j'" and R1: "i * k \ j * k \ R" and R2: "Suc m * k' \ j' * k' \ R" for i j j' k k' m :: nat and R using d apply safe apply (rule R1, erule mult_le_mono1) apply (rule R2, erule Suc_le_eq [THEN iffD2 [THEN mult_le_mono1]]) done have **: "0 < sc \ sc - n + (n + lb * n) \ m * n \ sc + lb * n \ m * n" for sc m n lb :: nat apply safe apply arith apply (case_tac "sc \ n") apply arith apply (insert linorder_le_less_linear [of m lb]) apply (erule_tac k=n and k'=n in *) apply arith apply simp done show ?thesis apply (induct n nw w bs rule: bin_rsplit_aux.induct) apply (subst bin_rsplit_aux.simps) apply (simp add: ** Let_def split: prod.split) done qed lemma bin_rsplit_len_le: "n \ 0 \ ws = bin_rsplit n (nw, w) \ length ws \ m \ nw \ m * n" by (auto simp: bin_rsplit_def bin_rsplit_aux_len_le) lemma bin_rsplit_aux_len: "n \ 0 \ length (bin_rsplit_aux n nw w cs) = (nw + n - 1) div n + length cs" apply (induct n nw w cs rule: bin_rsplit_aux.induct) apply (subst bin_rsplit_aux.simps) apply (clarsimp simp: Let_def split: prod.split) apply (erule thin_rl) apply (case_tac m) apply simp apply (case_tac "m \ n") apply (auto simp add: div_add_self2) done lemma bin_rsplit_len: "n \ 0 \ length (bin_rsplit n (nw, w)) = (nw + n - 1) div n" by (auto simp: bin_rsplit_def bin_rsplit_aux_len) lemma bin_rsplit_aux_len_indep: "n \ 0 \ length bs = length cs \ length (bin_rsplit_aux n nw v bs) = length (bin_rsplit_aux n nw w cs)" proof (induct n nw w cs arbitrary: v bs rule: bin_rsplit_aux.induct) case (1 n m w cs v bs) show ?case proof (cases "m = 0") case True with \length bs = length cs\ show ?thesis by simp next case False from "1.hyps" [of \bin_split n w\ \drop_bit n w\ \take_bit n w\] \m \ 0\ \n \ 0\ have hyp: "\v bs. length bs = Suc (length cs) \ length (bin_rsplit_aux n (m - n) v bs) = length (bin_rsplit_aux n (m - n) (drop_bit n w) (take_bit n w # cs))" using bin_rsplit_aux_len by fastforce from \length bs = length cs\ \n \ 0\ show ?thesis by (auto simp add: bin_rsplit_aux_simp_alt Let_def bin_rsplit_len split: prod.split) qed qed lemma bin_rsplit_len_indep: "n \ 0 \ length (bin_rsplit n (nw, v)) = length (bin_rsplit n (nw, w))" apply (unfold bin_rsplit_def) apply (simp (no_asm)) apply (erule bin_rsplit_aux_len_indep) apply (rule refl) done subsection \Logical operations\ primrec bin_sc :: "nat \ bool \ int \ int" where Z: "bin_sc 0 b w = of_bool b + 2 * (\k::int. k div 2) w" | Suc: "bin_sc (Suc n) b w = of_bool (odd w) + 2 * bin_sc n b (w div 2)" lemma bin_nth_sc [simp]: "bit (bin_sc n b w) n \ b" by (induction n arbitrary: w) (simp_all add: bit_Suc) lemma bin_sc_sc_same [simp]: "bin_sc n c (bin_sc n b w) = bin_sc n c w" by (induction n arbitrary: w) (simp_all add: bit_Suc) lemma bin_sc_sc_diff: "m \ n \ bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)" apply (induct n arbitrary: w m) apply (case_tac [!] m) apply auto done lemma bin_nth_sc_gen: "(bit :: int \ nat \ bool) (bin_sc n b w) m = (if m = n then b else (bit :: int \ nat \ bool) w m)" apply (induct n arbitrary: w m) apply (case_tac m; simp add: bit_Suc) apply (case_tac m; simp add: bit_Suc) done lemma bin_sc_eq: \bin_sc n False = unset_bit n\ \bin_sc n True = Bit_Operations.set_bit n\ by (simp_all add: fun_eq_iff bit_eq_iff) (simp_all add: bin_nth_sc_gen bit_set_bit_iff bit_unset_bit_iff) lemma bin_sc_nth [simp]: "bin_sc n ((bit :: int \ nat \ bool) w n) w = w" by (rule bit_eqI) (simp add: bin_nth_sc_gen) lemma bin_sign_sc [simp]: "bin_sign (bin_sc n b w) = bin_sign w" proof (induction n arbitrary: w) case 0 then show ?case by (auto simp add: bin_sign_def) (use bin_rest_ge_0 in fastforce) next case (Suc n) from Suc [of \w div 2\] show ?case by (auto simp add: bin_sign_def split: if_splits) qed lemma bin_sc_bintr [simp]: "(take_bit :: nat \ int \ int) m (bin_sc n x ((take_bit :: nat \ int \ int) m w)) = (take_bit :: nat \ int \ int) m (bin_sc n x w)" apply (cases x) apply (simp_all add: bin_sc_eq bit_eq_iff) apply (auto simp add: bit_take_bit_iff bit_set_bit_iff bit_unset_bit_iff) done lemma bin_clr_le: "bin_sc n False w \ w" by (simp add: bin_sc_eq unset_bit_less_eq) lemma bin_set_ge: "bin_sc n True w \ w" by (simp add: bin_sc_eq set_bit_greater_eq) lemma bintr_bin_clr_le: "(take_bit :: nat \ int \ int) n (bin_sc m False w) \ (take_bit :: nat \ int \ int) n w" by (simp add: bin_sc_eq take_bit_unset_bit_eq unset_bit_less_eq) lemma bintr_bin_set_ge: "(take_bit :: nat \ int \ int) n (bin_sc m True w) \ (take_bit :: nat \ int \ int) n w" by (simp add: bin_sc_eq take_bit_set_bit_eq set_bit_greater_eq) lemma bin_sc_FP [simp]: "bin_sc n False 0 = 0" by (induct n) auto lemma bin_sc_TM [simp]: "bin_sc n True (- 1) = - 1" by (induct n) auto lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP lemma bin_sc_minus: "0 < n \ bin_sc (Suc (n - 1)) b w = bin_sc n b w" by auto lemmas bin_sc_Suc_minus = trans [OF bin_sc_minus [symmetric] bin_sc.Suc] lemma bin_sc_numeral [simp]: "bin_sc (numeral k) b w = of_bool (odd w) + 2 * bin_sc (pred_numeral k) b (w div 2)" by (simp add: numeral_eq_Suc) lemmas bin_sc_minus_simps = bin_sc_simps (2,3,4) [THEN [2] trans, OF bin_sc_minus [THEN sym]] instance int :: semiring_bit_syntax .. -lemma test_bit_int_def [iff]: - "i !! n \ (bit :: int \ nat \ bool) i n" - by (simp add: test_bit_eq_bit) - lemma shiftl_int_def: "shiftl x n = x * 2 ^ n" for x :: int by (simp add: push_bit_int_def shiftl_eq_push_bit) lemma shiftr_int_def: "shiftr x n = x div 2 ^ n" for x :: int by (simp add: drop_bit_int_def shiftr_eq_drop_bit) subsubsection \Basic simplification rules\ lemmas int_not_def = not_int_def lemma int_not_simps [simp]: "NOT (0::int) = -1" "NOT (1::int) = -2" "NOT (- 1::int) = 0" "NOT (numeral w::int) = - numeral (w + Num.One)" "NOT (- numeral (Num.Bit0 w)::int) = numeral (Num.BitM w)" "NOT (- numeral (Num.Bit1 w)::int) = numeral (Num.Bit0 w)" by (simp_all add: not_int_def) lemma int_not_not: "NOT (NOT x) = x" for x :: int by (fact bit.double_compl) lemma int_and_0 [simp]: "0 AND x = 0" for x :: int by (fact bit.conj_zero_left) lemma int_and_m1 [simp]: "-1 AND x = x" for x :: int by (fact bit.conj_one_left) lemma int_or_zero [simp]: "0 OR x = x" for x :: int by (fact bit.disj_zero_left) lemma int_or_minus1 [simp]: "-1 OR x = -1" for x :: int by (fact bit.disj_one_left) lemma int_xor_zero [simp]: "0 XOR x = x" for x :: int by (fact bit.xor_zero_left) subsubsection \Binary destructors\ lemma bin_rest_NOT [simp]: "(\k::int. k div 2) (NOT x) = NOT ((\k::int. k div 2) x)" by (fact not_int_div_2) lemma bin_last_NOT [simp]: "(odd :: int \ bool) (NOT x) \ \ (odd :: int \ bool) x" by simp lemma bin_rest_AND [simp]: "(\k::int. k div 2) (x AND y) = (\k::int. k div 2) x AND (\k::int. k div 2) y" by (subst and_int_rec) auto lemma bin_last_AND [simp]: "(odd :: int \ bool) (x AND y) \ (odd :: int \ bool) x \ (odd :: int \ bool) y" by (subst and_int_rec) auto lemma bin_rest_OR [simp]: "(\k::int. k div 2) (x OR y) = (\k::int. k div 2) x OR (\k::int. k div 2) y" by (subst or_int_rec) auto lemma bin_last_OR [simp]: "(odd :: int \ bool) (x OR y) \ (odd :: int \ bool) x \ (odd :: int \ bool) y" by (subst or_int_rec) auto lemma bin_rest_XOR [simp]: "(\k::int. k div 2) (x XOR y) = (\k::int. k div 2) x XOR (\k::int. k div 2) y" by (subst xor_int_rec) auto lemma bin_last_XOR [simp]: "(odd :: int \ bool) (x XOR y) \ ((odd :: int \ bool) x \ (odd :: int \ bool) y) \ \ ((odd :: int \ bool) x \ (odd :: int \ bool) y)" by (subst xor_int_rec) auto lemma bin_nth_ops: "\x y. (bit :: int \ nat \ bool) (x AND y) n \ (bit :: int \ nat \ bool) x n \ (bit :: int \ nat \ bool) y n" "\x y. (bit :: int \ nat \ bool) (x OR y) n \ (bit :: int \ nat \ bool) x n \ (bit :: int \ nat \ bool) y n" "\x y. (bit :: int \ nat \ bool) (x XOR y) n \ (bit :: int \ nat \ bool) x n \ (bit :: int \ nat \ bool) y n" "\x. (bit :: int \ nat \ bool) (NOT x) n \ \ (bit :: int \ nat \ bool) x n" by (simp_all add: bit_and_iff bit_or_iff bit_xor_iff bit_not_iff) subsubsection \Derived properties\ lemma int_xor_minus1 [simp]: "-1 XOR x = NOT x" for x :: int by (fact bit.xor_one_left) lemma int_xor_extra_simps [simp]: "w XOR 0 = w" "w XOR -1 = NOT w" for w :: int by simp_all lemma int_or_extra_simps [simp]: "w OR 0 = w" "w OR -1 = -1" for w :: int by simp_all lemma int_and_extra_simps [simp]: "w AND 0 = 0" "w AND -1 = w" for w :: int by simp_all text \Commutativity of the above.\ lemma bin_ops_comm: fixes x y :: int shows int_and_comm: "x AND y = y AND x" and int_or_comm: "x OR y = y OR x" and int_xor_comm: "x XOR y = y XOR x" by (simp_all add: ac_simps) lemma bin_ops_same [simp]: "x AND x = x" "x OR x = x" "x XOR x = 0" for x :: int by simp_all lemmas bin_log_esimps = int_and_extra_simps int_or_extra_simps int_xor_extra_simps int_and_0 int_and_m1 int_or_zero int_or_minus1 int_xor_zero int_xor_minus1 subsubsection \Basic properties of logical (bit-wise) operations\ lemma bbw_ao_absorb: "x AND (y OR x) = x \ x OR (y AND x) = x" for x y :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_ao_absorbs_other: "x AND (x OR y) = x \ (y AND x) OR x = x" "(y OR x) AND x = x \ x OR (x AND y) = x" "(x OR y) AND x = x \ (x AND y) OR x = x" for x y :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other lemma int_xor_not: "(NOT x) XOR y = NOT (x XOR y) \ x XOR (NOT y) = NOT (x XOR y)" for x y :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma int_and_assoc: "(x AND y) AND z = x AND (y AND z)" for x y z :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma int_or_assoc: "(x OR y) OR z = x OR (y OR z)" for x y z :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma int_xor_assoc: "(x XOR y) XOR z = x XOR (y XOR z)" for x y z :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc (* BH: Why are these declared as simp rules??? *) lemma bbw_lcs [simp]: "y AND (x AND z) = x AND (y AND z)" "y OR (x OR z) = x OR (y OR z)" "y XOR (x XOR z) = x XOR (y XOR z)" for x y :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_not_dist: "NOT (x OR y) = (NOT x) AND (NOT y)" "NOT (x AND y) = (NOT x) OR (NOT y)" for x y :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_oa_dist: "(x AND y) OR z = (x OR z) AND (y OR z)" for x y z :: int by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_ao_dist: "(x OR y) AND z = (x AND z) OR (y AND z)" for x y z :: int by (auto simp add: bin_eq_iff bin_nth_ops) (* Why were these declared simp??? declare bin_ops_comm [simp] bbw_assocs [simp] *) subsubsection \Simplification with numerals\ text \Cases for \0\ and \-1\ are already covered by other simp rules.\ lemma bin_rest_neg_numeral_BitM [simp]: "(\k::int. k div 2) (- numeral (Num.BitM w)) = - numeral w" by simp lemma bin_last_neg_numeral_BitM [simp]: "(odd :: int \ bool) (- numeral (Num.BitM w))" by simp subsubsection \Interactions with arithmetic\ lemma le_int_or: "bin_sign y = 0 \ x \ x OR y" for x y :: int by (simp add: bin_sign_def or_greater_eq split: if_splits) lemmas int_and_le = xtrans(3) [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or] text \Interaction between bit-wise and arithmetic: good example of \bin_induction\.\ lemma bin_add_not: "x + NOT x = (-1::int)" by (simp add: not_int_def) lemma AND_mod: "x AND (2 ^ n - 1) = x mod 2 ^ n" for x :: int by (simp flip: take_bit_eq_mod add: take_bit_eq_mask mask_eq_exp_minus_1) subsubsection \Truncating results of bit-wise operations\ lemma bin_trunc_ao: "(take_bit :: nat \ int \ int) n x AND (take_bit :: nat \ int \ int) n y = (take_bit :: nat \ int \ int) n (x AND y)" "(take_bit :: nat \ int \ int) n x OR (take_bit :: nat \ int \ int) n y = (take_bit :: nat \ int \ int) n (x OR y)" by simp_all lemma bin_trunc_xor: "(take_bit :: nat \ int \ int) n ((take_bit :: nat \ int \ int) n x XOR (take_bit :: nat \ int \ int) n y) = (take_bit :: nat \ int \ int) n (x XOR y)" by simp lemma bin_trunc_not: "(take_bit :: nat \ int \ int) n (NOT ((take_bit :: nat \ int \ int) n x)) = (take_bit :: nat \ int \ int) n (NOT x)" by (fact take_bit_not_take_bit) text \Want theorems of the form of \bin_trunc_xor\.\ lemma bintr_bintr_i: "x = (take_bit :: nat \ int \ int) n y \ (take_bit :: nat \ int \ int) n x = (take_bit :: nat \ int \ int) n y" by auto lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i] lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i] subsubsection \More lemmas\ lemma not_int_cmp_0 [simp]: fixes i :: int shows "0 < NOT i \ i < -1" "0 \ NOT i \ i < 0" "NOT i < 0 \ i \ 0" "NOT i \ 0 \ i \ -1" by(simp_all add: int_not_def) arith+ lemma bbw_ao_dist2: "(x :: int) AND (y OR z) = x AND y OR x AND z" by (fact bit.conj_disj_distrib) lemmas int_and_ac = bbw_lcs(1) int_and_comm int_and_assoc lemma int_nand_same [simp]: fixes x :: int shows "x AND NOT x = 0" by simp lemma int_nand_same_middle: fixes x :: int shows "x AND y AND NOT x = 0" by (simp add: bit_eq_iff bit_and_iff bit_not_iff) lemma and_xor_dist: fixes x :: int shows "x AND (y XOR z) = (x AND y) XOR (x AND z)" by (fact bit.conj_xor_distrib) lemma int_and_lt0 [simp]: \x AND y < 0 \ x < 0 \ y < 0\ for x y :: int by (fact and_negative_int_iff) lemma int_and_ge0 [simp]: \x AND y \ 0 \ x \ 0 \ y \ 0\ for x y :: int by (fact and_nonnegative_int_iff) lemma int_and_1: fixes x :: int shows "x AND 1 = x mod 2" by (fact and_one_eq) lemma int_1_and: fixes x :: int shows "1 AND x = x mod 2" by (fact one_and_eq) lemma int_or_lt0 [simp]: \x OR y < 0 \ x < 0 \ y < 0\ for x y :: int by (fact or_negative_int_iff) lemma int_or_ge0 [simp]: \x OR y \ 0 \ x \ 0 \ y \ 0\ for x y :: int by (fact or_nonnegative_int_iff) lemma int_xor_lt0 [simp]: \x XOR y < 0 \ (x < 0) \ (y < 0)\ for x y :: int by (fact xor_negative_int_iff) lemma int_xor_ge0 [simp]: \x XOR y \ 0 \ (x \ 0 \ y \ 0)\ for x y :: int by (fact xor_nonnegative_int_iff) lemma even_conv_AND: \even i \ i AND 1 = 0\ for i :: int by (simp add: and_one_eq mod2_eq_if) lemma bin_last_conv_AND: "(odd :: int \ bool) i \ i AND 1 \ 0" by (simp add: and_one_eq mod2_eq_if) lemma bitval_bin_last: "of_bool ((odd :: int \ bool) i) = i AND 1" by (simp add: and_one_eq mod2_eq_if) lemma bin_sign_and: "bin_sign (i AND j) = - (bin_sign i * bin_sign j)" by(simp add: bin_sign_def) lemma int_not_neg_numeral: "NOT (- numeral n) = (Num.sub n num.One :: int)" by(simp add: int_not_def) lemma int_neg_numeral_pOne_conv_not: "- numeral (n + num.One) = (NOT (numeral n) :: int)" by(simp add: int_not_def) subsection \Setting and clearing bits\ lemma int_shiftl_BIT: fixes x :: int shows int_shiftl0 [simp]: "x << 0 = x" and int_shiftl_Suc [simp]: "x << Suc n = 2 * (x << n)" by (auto simp add: shiftl_int_def) lemma int_0_shiftl [simp]: "0 << n = (0 :: int)" by(induct n) simp_all lemma bin_last_shiftl: "(odd :: int \ bool) (x << n) \ n = 0 \ (odd :: int \ bool) x" by(cases n)(simp_all) lemma bin_rest_shiftl: "(\k::int. k div 2) (x << n) = (if n > 0 then x << (n - 1) else (\k::int. k div 2) x)" by(cases n)(simp_all) lemma bin_nth_shiftl [simp]: "(bit :: int \ nat \ bool) (x << n) m \ n \ m \ (bit :: int \ nat \ bool) x (m - n)" by (simp add: bit_push_bit_iff_int shiftl_eq_push_bit) -lemma bin_last_shiftr: "odd (x >> n) \ x !! n" for x :: int +lemma bin_last_shiftr: "odd (x >> n) \ bit x n" for x :: int by (simp add: shiftr_eq_drop_bit bit_iff_odd_drop_bit) lemma bin_rest_shiftr [simp]: "(\k::int. k div 2) (x >> n) = x >> Suc n" by (simp add: bit_eq_iff shiftr_eq_drop_bit drop_bit_Suc bit_drop_bit_eq drop_bit_half) lemma bin_nth_shiftr [simp]: "(bit :: int \ nat \ bool) (x >> n) m = (bit :: int \ nat \ bool) x (n + m)" by (simp add: shiftr_eq_drop_bit bit_drop_bit_eq) lemma bin_nth_conv_AND: fixes x :: int shows "(bit :: int \ nat \ bool) x n \ x AND (1 << n) \ 0" by (simp add: bit_eq_iff) (auto simp add: shiftl_eq_push_bit bit_and_iff bit_push_bit_iff bit_exp_iff) lemma int_shiftl_numeral [simp]: "(numeral w :: int) << numeral w' = numeral (num.Bit0 w) << pred_numeral w'" "(- numeral w :: int) << numeral w' = - numeral (num.Bit0 w) << pred_numeral w'" by(simp_all add: numeral_eq_Suc shiftl_int_def) (metis add_One mult_inc semiring_norm(11) semiring_norm(13) semiring_norm(2) semiring_norm(6) semiring_norm(87))+ lemma int_shiftl_One_numeral [simp]: "(1 :: int) << numeral w = 2 << pred_numeral w" using int_shiftl_numeral [of Num.One w] by simp lemma shiftl_ge_0 [simp]: fixes i :: int shows "i << n \ 0 \ i \ 0" by(induct n) simp_all lemma shiftl_lt_0 [simp]: fixes i :: int shows "i << n < 0 \ i < 0" by (metis not_le shiftl_ge_0) -lemma int_shiftl_test_bit: "(n << i :: int) !! m \ m \ i \ n !! (m - i)" +lemma int_shiftl_test_bit: "bit (n << i :: int) m \ m \ i \ bit n (m - i)" by simp lemma int_0shiftr [simp]: "(0 :: int) >> x = 0" by(simp add: shiftr_int_def) lemma int_minus1_shiftr [simp]: "(-1 :: int) >> x = -1" by(simp add: shiftr_int_def div_eq_minus1) lemma int_shiftr_ge_0 [simp]: fixes i :: int shows "i >> n \ 0 \ i \ 0" by (simp add: shiftr_eq_drop_bit) lemma int_shiftr_lt_0 [simp]: fixes i :: int shows "i >> n < 0 \ i < 0" by (metis int_shiftr_ge_0 not_less) lemma int_shiftr_numeral [simp]: "(1 :: int) >> numeral w' = 0" "(numeral num.One :: int) >> numeral w' = 0" "(numeral (num.Bit0 w) :: int) >> numeral w' = numeral w >> pred_numeral w'" "(numeral (num.Bit1 w) :: int) >> numeral w' = numeral w >> pred_numeral w'" "(- numeral (num.Bit0 w) :: int) >> numeral w' = - numeral w >> pred_numeral w'" "(- numeral (num.Bit1 w) :: int) >> numeral w' = - numeral (Num.inc w) >> pred_numeral w'" by (simp_all add: shiftr_eq_drop_bit numeral_eq_Suc add_One drop_bit_Suc) lemma int_shiftr_numeral_Suc0 [simp]: "(1 :: int) >> Suc 0 = 0" "(numeral num.One :: int) >> Suc 0 = 0" "(numeral (num.Bit0 w) :: int) >> Suc 0 = numeral w" "(numeral (num.Bit1 w) :: int) >> Suc 0 = numeral w" "(- numeral (num.Bit0 w) :: int) >> Suc 0 = - numeral w" "(- numeral (num.Bit1 w) :: int) >> Suc 0 = - numeral (Num.inc w)" by (simp_all add: shiftr_eq_drop_bit drop_bit_Suc add_One) lemma bin_nth_minus_p2: assumes sign: "bin_sign x = 0" and y: "y = 1 << n" and m: "m < n" and x: "x < y" shows "(bit :: int \ nat \ bool) (x - y) m = (bit :: int \ nat \ bool) x m" proof - from sign y x have \x \ 0\ and \y = 2 ^ n\ and \x < 2 ^ n\ by (simp_all add: bin_sign_def shiftl_eq_push_bit push_bit_eq_mult split: if_splits) from \0 \ x\ \x < 2 ^ n\ \m < n\ have \bit x m \ bit (x - 2 ^ n) m\ proof (induction m arbitrary: x n) case 0 then show ?case by simp next case (Suc m) moreover define q where \q = n - 1\ ultimately have n: \n = Suc q\ by simp have \(x - 2 ^ Suc q) div 2 = x div 2 - 2 ^ q\ by simp moreover from Suc.IH [of \x div 2\ q] Suc.prems have \bit (x div 2) m \ bit (x div 2 - 2 ^ q) m\ by (simp add: n) ultimately show ?case by (simp add: bit_Suc n) qed with \y = 2 ^ n\ show ?thesis by simp qed lemma bin_clr_conv_NAND: "bin_sc n False i = i AND NOT (1 << n)" by (induct n arbitrary: i) (rule bin_rl_eqI; simp)+ lemma bin_set_conv_OR: "bin_sc n True i = i OR (1 << n)" by (induct n arbitrary: i) (rule bin_rl_eqI; simp)+ subsection \More lemmas on words\ lemma word_rcat_eq: \word_rcat ws = word_of_int (bin_rcat (LENGTH('a::len)) (map uint ws))\ for ws :: \'a::len word list\ apply (simp add: word_rcat_def bin_rcat_def rev_map) apply transfer apply (simp add: horner_sum_foldr foldr_map comp_def) done lemma sign_uint_Pls [simp]: "bin_sign (uint x) = 0" by (simp add: sign_Pls_ge_0) lemmas bin_log_bintrs = bin_trunc_not bin_trunc_xor bin_trunc_and bin_trunc_or \ \following definitions require both arithmetic and bit-wise word operations\ \ \to get \word_no_log_defs\ from \word_log_defs\, using \bin_log_bintrs\\ lemmas wils1 = bin_log_bintrs [THEN word_of_int_eq_iff [THEN iffD2], folded uint_word_of_int_eq, THEN eq_reflection] \ \the binary operations only\ (* BH: why is this needed? *) lemmas word_log_binary_defs = word_and_def word_or_def word_xor_def lemma setBit_no [simp]: "setBit (numeral bin) n = word_of_int (bin_sc n True (numeral bin))" by transfer (simp add: bin_sc_eq) lemma clearBit_no [simp]: "clearBit (numeral bin) n = word_of_int (bin_sc n False (numeral bin))" by transfer (simp add: bin_sc_eq) lemma eq_mod_iff: "0 < n \ b = b mod n \ 0 \ b \ b < n" for b n :: int by auto (metis pos_mod_conj)+ lemma split_uint_lem: "bin_split n (uint w) = (a, b) \ a = take_bit (LENGTH('a) - n) a \ b = take_bit (LENGTH('a)) b" for w :: "'a::len word" by transfer (simp add: drop_bit_take_bit ac_simps) \ \limited hom result\ lemma word_cat_hom: "LENGTH('a::len) \ LENGTH('b::len) + LENGTH('c::len) \ (word_cat (word_of_int w :: 'b word) (b :: 'c word) :: 'a word) = word_of_int ((\k n l. concat_bit n l k) w (size b) (uint b))" by transfer (simp add: take_bit_concat_bit_eq) lemma bintrunc_shiftl: "take_bit n (m << i) = take_bit (n - i) m << i" for m :: int by (rule bit_eqI) (auto simp add: bit_take_bit_iff) lemma uint_shiftl: "uint (n << i) = take_bit (size n) (uint n << i)" by transfer (simp add: push_bit_take_bit shiftl_eq_push_bit) lemma bin_mask_conv_pow2: "mask n = 2 ^ n - (1 :: int)" by (fact mask_eq_exp_minus_1) lemma bin_mask_ge0: "mask n \ (0 :: int)" by (fact mask_nonnegative_int) lemma and_bin_mask_conv_mod: "x AND mask n = x mod 2 ^ n" for x :: int by (simp flip: take_bit_eq_mod add: take_bit_eq_mask) lemma bin_mask_numeral: "mask (numeral n) = (1 :: int) + 2 * mask (pred_numeral n)" by (fact mask_numeral) lemma bin_nth_mask [simp]: "bit (mask n :: int) i \ i < n" by (simp add: bit_mask_iff) lemma bin_sign_mask [simp]: "bin_sign (mask n) = 0" by (simp add: bin_sign_def bin_mask_conv_pow2) lemma bin_mask_p1_conv_shift: "mask n + 1 = (1 :: int) << n" by (simp add: bin_mask_conv_pow2 shiftl_int_def) lemma sbintrunc_eq_in_range: "((signed_take_bit :: nat \ int \ int) n x = x) = (x \ range ((signed_take_bit :: nat \ int \ int) n))" "(x = (signed_take_bit :: nat \ int \ int) n x) = (x \ range ((signed_take_bit :: nat \ int \ int) n))" apply (simp_all add: image_def) apply (metis sbintrunc_sbintrunc)+ done lemma sbintrunc_If: "- 3 * (2 ^ n) \ x \ x < 3 * (2 ^ n) \ (signed_take_bit :: nat \ int \ int) n x = (if x < - (2 ^ n) then x + 2 * (2 ^ n) else if x \ 2 ^ n then x - 2 * (2 ^ n) else x)" apply (simp add: no_sbintr_alt2, safe) apply (simp add: mod_pos_geq) apply (subst mod_add_self1[symmetric], simp) done lemma sint_range': \- (2 ^ (LENGTH('a) - Suc 0)) \ sint x \ sint x < 2 ^ (LENGTH('a) - Suc 0)\ for x :: \'a::len word\ apply transfer using sbintr_ge sbintr_lt apply auto done lemma signed_arith_eq_checks_to_ord: "(sint a + sint b = sint (a + b )) = ((a <=s a + b) = (0 <=s b))" "(sint a - sint b = sint (a - b )) = ((0 <=s a - b) = (b <=s a))" "(- sint a = sint (- a)) = (0 <=s (- a) = (a <=s 0))" using sint_range'[where x=a] sint_range'[where x=b] by (simp_all add: sint_word_ariths word_sle_eq word_sless_alt sbintrunc_If) lemma signed_mult_eq_checks_double_size: assumes mult_le: "(2 ^ (len_of TYPE ('a) - 1) + 1) ^ 2 \ (2 :: int) ^ (len_of TYPE ('b) - 1)" and le: "2 ^ (LENGTH('a) - 1) \ (2 :: int) ^ (len_of TYPE ('b) - 1)" shows "(sint (a :: 'a :: len word) * sint b = sint (a * b)) = (scast a * scast b = (scast (a * b) :: 'b :: len word))" proof - have P: "(signed_take_bit :: nat \ int \ int) (size a - 1) (sint a * sint b) \ range ((signed_take_bit :: nat \ int \ int) (size a - 1))" by simp have abs: "!! x :: 'a word. abs (sint x) < 2 ^ (size a - 1) + 1" apply (cut_tac x=x in sint_range') apply (simp add: abs_le_iff word_size) done have abs_ab: "abs (sint a * sint b) < 2 ^ (LENGTH('b) - 1)" using abs_mult_less[OF abs[where x=a] abs[where x=b]] mult_le by (simp add: abs_mult power2_eq_square word_size) define r s where \r = LENGTH('a) - 1\ \s = LENGTH('b) - 1\ then have \LENGTH('a) = Suc r\ \LENGTH('b) = Suc s\ \size a = Suc r\ \size b = Suc r\ by (simp_all add: word_size) then show ?thesis using P[unfolded range_sbintrunc] abs_ab le apply clarsimp apply (transfer fixing: r s) apply (auto simp add: signed_take_bit_int_eq_self simp flip: signed_take_bit_eq_iff_take_bit_eq) done qed code_identifier code_module Bits_Int \ (SML) Bit_Operations and (OCaml) Bit_Operations and (Haskell) Bit_Operations and (Scala) Bit_Operations end diff --git a/thys/Word_Lib/Bitwise.thy b/thys/Word_Lib/Bitwise.thy --- a/thys/Word_Lib/Bitwise.thy +++ b/thys/Word_Lib/Bitwise.thy @@ -1,506 +1,503 @@ (* * Copyright Thomas Sewell, NICTA and Sascha Boehme, TU Muenchen * * SPDX-License-Identifier: BSD-2-Clause *) theory Bitwise imports "HOL-Library.Word" More_Arithmetic Reversed_Bit_Lists begin text \Helper constants used in defining addition\ definition xor3 :: "bool \ bool \ bool \ bool" where "xor3 a b c = (a = (b = c))" definition carry :: "bool \ bool \ bool \ bool" where "carry a b c = ((a \ (b \ c)) \ (b \ c))" lemma carry_simps: "carry True a b = (a \ b)" "carry a True b = (a \ b)" "carry a b True = (a \ b)" "carry False a b = (a \ b)" "carry a False b = (a \ b)" "carry a b False = (a \ b)" by (auto simp add: carry_def) lemma xor3_simps: "xor3 True a b = (a = b)" "xor3 a True b = (a = b)" "xor3 a b True = (a = b)" "xor3 False a b = (a \ b)" "xor3 a False b = (a \ b)" "xor3 a b False = (a \ b)" by (simp_all add: xor3_def) text \Breaking up word equalities into equalities on their bit lists. Equalities are generated and manipulated in the reverse order to \<^const>\to_bl\.\ lemma bl_word_sub: "to_bl (x - y) = to_bl (x + (- y))" by simp lemma rbl_word_1: "rev (to_bl (1 :: 'a::len word)) = takefill False (LENGTH('a)) [True]" apply (rule_tac s="rev (to_bl (word_succ (0 :: 'a word)))" in trans) apply simp apply (simp only: rtb_rbl_ariths(1)[OF refl]) apply simp apply (case_tac "LENGTH('a)") apply simp apply (simp add: takefill_alt) done lemma rbl_word_if: "rev (to_bl (if P then x else y)) = map2 (If P) (rev (to_bl x)) (rev (to_bl y))" by (simp add: split_def) lemma rbl_add_carry_Cons: "(if car then rbl_succ else id) (rbl_add (x # xs) (y # ys)) = xor3 x y car # (if carry x y car then rbl_succ else id) (rbl_add xs ys)" by (simp add: carry_def xor3_def) lemma rbl_add_suc_carry_fold: "length xs = length ys \ \car. (if car then rbl_succ else id) (rbl_add xs ys) = (foldr (\(x, y) res car. xor3 x y car # res (carry x y car)) (zip xs ys) (\_. [])) car" apply (erule list_induct2) apply simp apply (simp only: rbl_add_carry_Cons) apply simp done lemma to_bl_plus_carry: "to_bl (x + y) = rev (foldr (\(x, y) res car. xor3 x y car # res (carry x y car)) (rev (zip (to_bl x) (to_bl y))) (\_. []) False)" using rbl_add_suc_carry_fold[where xs="rev (to_bl x)" and ys="rev (to_bl y)"] apply (simp add: word_add_rbl[OF refl refl]) apply (drule_tac x=False in spec) apply (simp add: zip_rev) done definition "rbl_plus cin xs ys = foldr (\(x, y) res car. xor3 x y car # res (carry x y car)) (zip xs ys) (\_. []) cin" lemma rbl_plus_simps: "rbl_plus cin (x # xs) (y # ys) = xor3 x y cin # rbl_plus (carry x y cin) xs ys" "rbl_plus cin [] ys = []" "rbl_plus cin xs [] = []" by (simp_all add: rbl_plus_def) lemma rbl_word_plus: "rev (to_bl (x + y)) = rbl_plus False (rev (to_bl x)) (rev (to_bl y))" by (simp add: rbl_plus_def to_bl_plus_carry zip_rev) definition "rbl_succ2 b xs = (if b then rbl_succ xs else xs)" lemma rbl_succ2_simps: "rbl_succ2 b [] = []" "rbl_succ2 b (x # xs) = (b \ x) # rbl_succ2 (x \ b) xs" by (simp_all add: rbl_succ2_def) lemma twos_complement: "- x = word_succ (NOT x)" using arg_cong[OF word_add_not[where x=x], where f="\a. a - x + 1"] by (simp add: word_succ_p1 word_sp_01[unfolded word_succ_p1] del: word_add_not) lemma rbl_word_neg: "rev (to_bl (- x)) = rbl_succ2 True (map Not (rev (to_bl x)))" for x :: \'a::len word\ by (simp add: twos_complement word_succ_rbl[OF refl] bl_word_not rev_map rbl_succ2_def) lemma rbl_word_cat: "rev (to_bl (word_cat x y :: 'a::len word)) = takefill False (LENGTH('a)) (rev (to_bl y) @ rev (to_bl x))" by (simp add: word_cat_bl word_rev_tf) lemma rbl_word_slice: "rev (to_bl (slice n w :: 'a::len word)) = takefill False (LENGTH('a)) (drop n (rev (to_bl w)))" apply (simp add: slice_take word_rev_tf rev_take) apply (cases "n < LENGTH('b)", simp_all) done lemma rbl_word_ucast: "rev (to_bl (ucast x :: 'a::len word)) = takefill False (LENGTH('a)) (rev (to_bl x))" apply (simp add: to_bl_ucast takefill_alt) apply (simp add: rev_drop) apply (cases "LENGTH('a) < LENGTH('b)") apply simp_all done lemma rbl_shiftl: "rev (to_bl (w << n)) = takefill False (size w) (replicate n False @ rev (to_bl w))" by (simp add: bl_shiftl takefill_alt word_size rev_drop) lemma rbl_shiftr: "rev (to_bl (w >> n)) = takefill False (size w) (drop n (rev (to_bl w)))" by (simp add: shiftr_slice rbl_word_slice word_size) definition "drop_nonempty v n xs = (if n < length xs then drop n xs else [last (v # xs)])" lemma drop_nonempty_simps: "drop_nonempty v (Suc n) (x # xs) = drop_nonempty x n xs" "drop_nonempty v 0 (x # xs) = (x # xs)" "drop_nonempty v n [] = [v]" by (simp_all add: drop_nonempty_def) definition "takefill_last x n xs = takefill (last (x # xs)) n xs" lemma takefill_last_simps: "takefill_last z (Suc n) (x # xs) = x # takefill_last x n xs" "takefill_last z 0 xs = []" "takefill_last z n [] = replicate n z" by (simp_all add: takefill_last_def) (simp_all add: takefill_alt) lemma rbl_sshiftr: "rev (to_bl (w >>> n)) = takefill_last False (size w) (drop_nonempty False n (rev (to_bl w)))" apply (cases "n < size w") apply (simp add: bl_sshiftr takefill_last_def word_size takefill_alt rev_take last_rev drop_nonempty_def) apply (subgoal_tac "(w >>> n) = of_bl (replicate (size w) (msb w))") apply (simp add: word_size takefill_last_def takefill_alt last_rev word_msb_alt word_rev_tf drop_nonempty_def take_Cons') apply (case_tac "LENGTH('a)", simp_all) apply (rule word_eqI) apply (simp add: nth_sshiftr word_size test_bit_of_bl msb_nth) done lemma nth_word_of_int: - "(word_of_int x :: 'a::len word) !! n = (n < LENGTH('a) \ bit x n)" + "bit (word_of_int x :: 'a::len word) n = (n < LENGTH('a) \ bit x n)" apply (simp add: test_bit_bl word_size to_bl_of_bin) apply (subst conj_cong[OF refl], erule bin_nth_bl) apply auto done lemma nth_scast: - "(scast (x :: 'a::len word) :: 'b::len word) !! n = + "bit (scast (x :: 'a::len word) :: 'b::len word) n = (n < LENGTH('b) \ - (if n < LENGTH('a) - 1 then x !! n - else x !! (LENGTH('a) - 1)))" + (if n < LENGTH('a) - 1 then bit x n + else bit x (LENGTH('a) - 1)))" apply transfer apply (auto simp add: bit_signed_take_bit_iff min_def) done lemma rbl_word_scast: "rev (to_bl (scast x :: 'a::len word)) = takefill_last False (LENGTH('a)) (rev (to_bl x))" apply (rule nth_equalityI) apply (simp add: word_size takefill_last_def) apply (clarsimp simp: nth_scast takefill_last_def nth_takefill word_size rev_nth to_bl_nth) apply (cases "LENGTH('b)") apply simp apply (clarsimp simp: less_Suc_eq_le linorder_not_less last_rev word_msb_alt[symmetric] msb_nth) done definition rbl_mul :: "bool list \ bool list \ bool list" where "rbl_mul xs ys = foldr (\x sm. rbl_plus False (map ((\) x) ys) (False # sm)) xs []" lemma rbl_mul_simps: "rbl_mul (x # xs) ys = rbl_plus False (map ((\) x) ys) (False # rbl_mul xs ys)" "rbl_mul [] ys = []" by (simp_all add: rbl_mul_def) lemma takefill_le2: "length xs \ n \ takefill x m (takefill x n xs) = takefill x m xs" by (simp add: takefill_alt replicate_add[symmetric]) lemma take_rbl_plus: "\n b. take n (rbl_plus b xs ys) = rbl_plus b (take n xs) (take n ys)" apply (simp add: rbl_plus_def take_zip[symmetric]) apply (rule_tac list="zip xs ys" in list.induct) apply simp apply (clarsimp simp: split_def) apply (case_tac n, simp_all) done lemma word_rbl_mul_induct: "length xs \ size y \ rbl_mul xs (rev (to_bl y)) = take (length xs) (rev (to_bl (of_bl (rev xs) * y)))" for y :: "'a::len word" proof (induct xs) case Nil show ?case by (simp add: rbl_mul_simps) next case (Cons z zs) have rbl_word_plus': "to_bl (x + y) = rev (rbl_plus False (rev (to_bl x)) (rev (to_bl y)))" for x y :: "'a word" by (simp add: rbl_word_plus[symmetric]) have mult_bit: "to_bl (of_bl [z] * y) = map ((\) z) (to_bl y)" by (cases z) (simp cong: map_cong, simp add: map_replicate_const cong: map_cong) have shiftl: "of_bl xs * 2 * y = (of_bl xs * y) << 1" for xs by (simp add: shiftl_t2n) have zip_take_triv: "\xs ys n. n = length ys \ zip (take n xs) ys = zip xs ys" by (rule nth_equalityI) simp_all from Cons show ?case apply (simp add: trans [OF of_bl_append add.commute] rbl_mul_simps rbl_word_plus' distrib_right mult_bit shiftl rbl_shiftl) apply (simp add: takefill_alt word_size rev_map take_rbl_plus min_def) apply (simp add: rbl_plus_def zip_take_triv) done qed lemma rbl_word_mul: "rev (to_bl (x * y)) = rbl_mul (rev (to_bl x)) (rev (to_bl y))" for x :: "'a::len word" using word_rbl_mul_induct[where xs="rev (to_bl x)" and y=y] by (simp add: word_size) text \Breaking up inequalities into bitlist properties.\ definition "rev_bl_order F xs ys = (length xs = length ys \ ((xs = ys \ F) \ (\n < length xs. drop (Suc n) xs = drop (Suc n) ys \ \ xs ! n \ ys ! n)))" lemma rev_bl_order_simps: "rev_bl_order F [] [] = F" "rev_bl_order F (x # xs) (y # ys) = rev_bl_order ((y \ \ x) \ ((y \ \ x) \ F)) xs ys" apply (simp_all add: rev_bl_order_def) apply (rule conj_cong[OF refl]) apply (cases "xs = ys") apply (simp add: nth_Cons') apply blast apply (simp add: nth_Cons') apply safe apply (rule_tac x="n - 1" in exI) apply simp apply (rule_tac x="Suc n" in exI) apply simp done lemma rev_bl_order_rev_simp: "length xs = length ys \ rev_bl_order F (xs @ [x]) (ys @ [y]) = ((y \ \ x) \ ((y \ \ x) \ rev_bl_order F xs ys))" by (induct arbitrary: F rule: list_induct2) (auto simp: rev_bl_order_simps) lemma rev_bl_order_bl_to_bin: "length xs = length ys \ rev_bl_order True xs ys = (bl_to_bin (rev xs) \ bl_to_bin (rev ys)) \ rev_bl_order False xs ys = (bl_to_bin (rev xs) < bl_to_bin (rev ys))" apply (induct xs ys rule: list_induct2) apply (simp_all add: rev_bl_order_simps bl_to_bin_app_cat concat_bit_Suc) apply (auto simp add: bl_to_bin_def add1_zle_eq) done lemma word_le_rbl: "x \ y \ rev_bl_order True (rev (to_bl x)) (rev (to_bl y))" for x y :: "'a::len word" by (simp add: rev_bl_order_bl_to_bin word_le_def) lemma word_less_rbl: "x < y \ rev_bl_order False (rev (to_bl x)) (rev (to_bl y))" for x y :: "'a::len word" by (simp add: word_less_alt rev_bl_order_bl_to_bin) definition "map_last f xs = (if xs = [] then [] else butlast xs @ [f (last xs)])" lemma map_last_simps: "map_last f [] = []" "map_last f [x] = [f x]" "map_last f (x # y # zs) = x # map_last f (y # zs)" by (simp_all add: map_last_def) lemma word_sle_rbl: "x <=s y \ rev_bl_order True (map_last Not (rev (to_bl x))) (map_last Not (rev (to_bl y)))" using word_msb_alt[where w=x] word_msb_alt[where w=y] apply (simp add: word_sle_msb_le word_le_rbl) apply (subgoal_tac "length (to_bl x) = length (to_bl y)") apply (cases "to_bl x", simp) apply (cases "to_bl y", simp) apply (clarsimp simp: map_last_def rev_bl_order_rev_simp) apply auto done lemma word_sless_rbl: "x rev_bl_order False (map_last Not (rev (to_bl x))) (map_last Not (rev (to_bl y)))" using word_msb_alt[where w=x] word_msb_alt[where w=y] apply (simp add: word_sless_msb_less word_less_rbl) apply (subgoal_tac "length (to_bl x) = length (to_bl y)") apply (cases "to_bl x", simp) apply (cases "to_bl y", simp) apply (clarsimp simp: map_last_def rev_bl_order_rev_simp) apply auto done text \Lemmas for unpacking \<^term>\rev (to_bl n)\ for numerals n and also for irreducible values and expressions.\ lemma rev_bin_to_bl_simps: "rev (bin_to_bl 0 x) = []" "rev (bin_to_bl (Suc n) (numeral (num.Bit0 nm))) = False # rev (bin_to_bl n (numeral nm))" "rev (bin_to_bl (Suc n) (numeral (num.Bit1 nm))) = True # rev (bin_to_bl n (numeral nm))" "rev (bin_to_bl (Suc n) (numeral (num.One))) = True # replicate n False" "rev (bin_to_bl (Suc n) (- numeral (num.Bit0 nm))) = False # rev (bin_to_bl n (- numeral nm))" "rev (bin_to_bl (Suc n) (- numeral (num.Bit1 nm))) = True # rev (bin_to_bl n (- numeral (nm + num.One)))" "rev (bin_to_bl (Suc n) (- numeral (num.One))) = True # replicate n True" "rev (bin_to_bl (Suc n) (- numeral (num.Bit0 nm + num.One))) = True # rev (bin_to_bl n (- numeral (nm + num.One)))" "rev (bin_to_bl (Suc n) (- numeral (num.Bit1 nm + num.One))) = False # rev (bin_to_bl n (- numeral (nm + num.One)))" "rev (bin_to_bl (Suc n) (- numeral (num.One + num.One))) = False # rev (bin_to_bl n (- numeral num.One))" by (simp_all add: bin_to_bl_aux_append bin_to_bl_zero_aux bin_to_bl_minus1_aux replicate_append_same) -lemma to_bl_upt: "to_bl x = rev (map ((!!) x) [0 ..< size x])" - apply (rule nth_equalityI) - apply (simp add: word_size) - apply (auto simp: to_bl_nth word_size rev_nth) - done +lemma to_bl_upt: "to_bl x = rev (map (bit x) [0 ..< size x])" + by (simp add: to_bl_eq_rev word_size rev_map) -lemma rev_to_bl_upt: "rev (to_bl x) = map ((!!) x) [0 ..< size x]" +lemma rev_to_bl_upt: "rev (to_bl x) = map (bit x) [0 ..< size x]" by (simp add: to_bl_upt) lemma upt_eq_list_intros: "j \ i \ [i ..< j] = []" "i = x \ x < j \ [x + 1 ..< j] = xs \ [i ..< j] = (x # xs)" by (simp_all add: upt_eq_Cons_conv) subsection \Tactic definition\ lemma if_bool_simps: "If p True y = (p \ y) \ If p False y = (\ p \ y) \ If p y True = (p \ y) \ If p y False = (p \ y)" by auto ML \ structure Word_Bitwise_Tac = struct val word_ss = simpset_of \<^theory_context>\Word\; fun mk_nat_clist ns = fold_rev (Thm.mk_binop \<^cterm>\Cons :: nat \ _\) ns \<^cterm>\[] :: nat list\; fun upt_conv ctxt ct = case Thm.term_of ct of (\<^const>\upt\ $ n $ m) => let val (i, j) = apply2 (snd o HOLogic.dest_number) (n, m); val ns = map (Numeral.mk_cnumber \<^ctyp>\nat\) (i upto (j - 1)) |> mk_nat_clist; val prop = Thm.mk_binop \<^cterm>\(=) :: nat list \ _\ ct ns |> Thm.apply \<^cterm>\Trueprop\; in try (fn () => Goal.prove_internal ctxt [] prop (K (REPEAT_DETERM (resolve_tac ctxt @{thms upt_eq_list_intros} 1 ORELSE simp_tac (put_simpset word_ss ctxt) 1))) |> mk_meta_eq) () end | _ => NONE; val expand_upt_simproc = Simplifier.make_simproc \<^context> "expand_upt" {lhss = [\<^term>\upt x y\], proc = K upt_conv}; fun word_len_simproc_fn ctxt ct = (case Thm.term_of ct of Const (\<^const_name>\len_of\, _) $ t => (let val T = fastype_of t |> dest_Type |> snd |> the_single val n = Numeral.mk_cnumber \<^ctyp>\nat\ (Word_Lib.dest_binT T); val prop = Thm.mk_binop \<^cterm>\(=) :: nat \ _\ ct n |> Thm.apply \<^cterm>\Trueprop\; in Goal.prove_internal ctxt [] prop (K (simp_tac (put_simpset word_ss ctxt) 1)) |> mk_meta_eq |> SOME end handle TERM _ => NONE | TYPE _ => NONE) | _ => NONE); val word_len_simproc = Simplifier.make_simproc \<^context> "word_len" {lhss = [\<^term>\len_of x\], proc = K word_len_simproc_fn}; (* convert 5 or nat 5 to Suc 4 when n_sucs = 1, Suc (Suc 4) when n_sucs = 2, or just 5 (discarding nat) when n_sucs = 0 *) fun nat_get_Suc_simproc_fn n_sucs ctxt ct = let val (f, arg) = dest_comb (Thm.term_of ct); val n = (case arg of \<^term>\nat\ $ n => n | n => n) |> HOLogic.dest_number |> snd; val (i, j) = if n > n_sucs then (n_sucs, n - n_sucs) else (n, 0); val arg' = funpow i HOLogic.mk_Suc (HOLogic.mk_number \<^typ>\nat\ j); val _ = if arg = arg' then raise TERM ("", []) else (); fun propfn g = HOLogic.mk_eq (g arg, g arg') |> HOLogic.mk_Trueprop |> Thm.cterm_of ctxt; val eq1 = Goal.prove_internal ctxt [] (propfn I) (K (simp_tac (put_simpset word_ss ctxt) 1)); in Goal.prove_internal ctxt [] (propfn (curry (op $) f)) (K (simp_tac (put_simpset HOL_ss ctxt addsimps [eq1]) 1)) |> mk_meta_eq |> SOME end handle TERM _ => NONE; fun nat_get_Suc_simproc n_sucs ts = Simplifier.make_simproc \<^context> "nat_get_Suc" {lhss = map (fn t => t $ \<^term>\n :: nat\) ts, proc = K (nat_get_Suc_simproc_fn n_sucs)}; val no_split_ss = simpset_of (put_simpset HOL_ss \<^context> |> Splitter.del_split @{thm if_split}); val expand_word_eq_sss = (simpset_of (put_simpset HOL_basic_ss \<^context> addsimps @{thms word_eq_rbl_eq word_le_rbl word_less_rbl word_sle_rbl word_sless_rbl}), map simpset_of [ put_simpset no_split_ss \<^context> addsimps @{thms rbl_word_plus rbl_word_and rbl_word_or rbl_word_not rbl_word_neg bl_word_sub rbl_word_xor rbl_word_cat rbl_word_slice rbl_word_scast rbl_word_ucast rbl_shiftl rbl_shiftr rbl_sshiftr rbl_word_if}, put_simpset no_split_ss \<^context> addsimps @{thms to_bl_numeral to_bl_neg_numeral to_bl_0 rbl_word_1}, put_simpset no_split_ss \<^context> addsimps @{thms rev_rev_ident rev_replicate rev_map to_bl_upt word_size} addsimprocs [word_len_simproc], put_simpset no_split_ss \<^context> addsimps @{thms list.simps split_conv replicate.simps list.map zip_Cons_Cons zip_Nil drop_Suc_Cons drop_0 drop_Nil foldr.simps list.map zip.simps(1) zip_Nil zip_Cons_Cons takefill_Suc_Cons takefill_Suc_Nil takefill.Z rbl_succ2_simps rbl_plus_simps rev_bin_to_bl_simps append.simps takefill_last_simps drop_nonempty_simps rev_bl_order_simps} addsimprocs [expand_upt_simproc, nat_get_Suc_simproc 4 [\<^term>\replicate\, \<^term>\takefill x\, \<^term>\drop\, \<^term>\bin_to_bl\, \<^term>\takefill_last x\, \<^term>\drop_nonempty x\]], put_simpset no_split_ss \<^context> addsimps @{thms xor3_simps carry_simps if_bool_simps} ]) fun tac ctxt = let val (ss, sss) = expand_word_eq_sss; in foldr1 (op THEN_ALL_NEW) ((CHANGED o safe_full_simp_tac (put_simpset ss ctxt)) :: map (fn ss => safe_full_simp_tac (put_simpset ss ctxt)) sss) end; end \ method_setup word_bitwise = \Scan.succeed (fn ctxt => Method.SIMPLE_METHOD (Word_Bitwise_Tac.tac ctxt 1))\ "decomposer for word equalities and inequalities into bit propositions" end diff --git a/thys/Word_Lib/Examples.thy b/thys/Word_Lib/Examples.thy --- a/thys/Word_Lib/Examples.thy +++ b/thys/Word_Lib/Examples.thy @@ -1,226 +1,226 @@ (* * Copyright Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) theory Examples imports Bitwise Next_and_Prev Generic_set_bit Word_Syntax Signed_Division_Word begin text "modulus" lemma "(27 :: 4 word) = -5" by simp lemma "(27 :: 4 word) = 11" by simp lemma "27 \ (11 :: 6 word)" by simp text "signed" lemma "(127 :: 6 word) = -1" by simp text "number ring simps" lemma "27 + 11 = (38::'a::len word)" "27 + 11 = (6::5 word)" "7 * 3 = (21::'a::len word)" "11 - 27 = (-16::'a::len word)" "- (- 11) = (11::'a::len word)" "-40 + 1 = (-39::'a::len word)" by simp_all lemma "word_pred 2 = 1" by simp lemma "word_succ (- 3) = -2" by simp lemma "23 < (27::8 word)" by simp lemma "23 \ (27::8 word)" by simp lemma "\ 23 < (27::2 word)" by simp lemma "0 < (4::3 word)" by simp lemma "1 < (4::3 word)" by simp lemma "0 < (1::3 word)" by simp text "ring operations" lemma "a + 2 * b + c - b = (b + c) + (a :: 32 word)" by simp text "casting" lemma "uint (234567 :: 10 word) = 71" by simp lemma "uint (-234567 :: 10 word) = 953" by simp lemma "sint (234567 :: 10 word) = 71" by simp lemma "sint (-234567 :: 10 word) = -71" by simp lemma "uint (1 :: 10 word) = 1" by simp lemma "unat (-234567 :: 10 word) = 953" by simp lemma "unat (1 :: 10 word) = 1" by simp lemma "ucast (0b1010 :: 4 word) = (0b10 :: 2 word)" by simp lemma "ucast (0b1010 :: 4 word) = (0b1010 :: 10 word)" by simp lemma "scast (0b1010 :: 4 word) = (0b111010 :: 6 word)" by simp lemma "ucast (1 :: 4 word) = (1 :: 2 word)" by simp text "reducing goals to nat or int and arith:" lemma "i < x \ i < i + 1" for i x :: "'a::len word" by unat_arith lemma "i < x \ i < i + 1" for i x :: "'a::len word" by unat_arith text "bool lists" lemma "of_bl [True, False, True, True] = (0b1011::'a::len word)" by simp lemma "to_bl (0b110::4 word) = [False, True, True, False]" by simp lemma "of_bl (replicate 32 True) = (0xFFFFFFFF::32 word)" by (simp add: numeral_eq_Suc) text "bit operations" lemma "0b110 AND 0b101 = (0b100 :: 32 word)" by simp lemma "0b110 OR 0b011 = (0b111 :: 8 word)" by simp lemma "0xF0 XOR 0xFF = (0x0F :: 8 word)" by simp lemma "NOT (0xF0 :: 16 word) = 0xFF0F" by simp lemma "0 AND 5 = (0 :: 8 word)" by simp lemma "1 AND 1 = (1 :: 8 word)" by simp lemma "1 AND 0 = (0 :: 8 word)" by simp lemma "1 AND 5 = (1 :: 8 word)" by simp lemma "1 OR 6 = (7 :: 8 word)" by simp lemma "1 OR 1 = (1 :: 8 word)" by simp lemma "1 XOR 7 = (6 :: 8 word)" by simp lemma "1 XOR 1 = (0 :: 8 word)" by simp lemma "NOT 1 = (254 :: 8 word)" by simp lemma "NOT 0 = (255 :: 8 word)" by simp lemma "(-1 :: 32 word) = 0xFFFFFFFF" by simp -lemma "(0b0010 :: 4 word) !! 1" by simp -lemma "\ (0b0010 :: 4 word) !! 0" by simp -lemma "\ (0b1000 :: 3 word) !! 4" by simp -lemma "\ (1 :: 3 word) !! 2" by simp +lemma "bit (0b0010 :: 4 word) 1" by simp +lemma "\ bit (0b0010 :: 4 word) 0" by simp +lemma "\ bit (0b1000 :: 3 word) 4" by simp +lemma "\ bit (1 :: 3 word) 2" by simp -lemma "(0b11000 :: 10 word) !! n = (n = 4 \ n = 3)" +lemma "bit (0b11000 :: 10 word) n = (n = 4 \ n = 3)" by (auto simp add: bin_nth_Bit0 bin_nth_Bit1) lemma "set_bit 55 7 True = (183::'a::len word)" by simp lemma "set_bit 0b0010 7 True = (0b10000010::'a::len word)" by simp lemma "set_bit 0b0010 1 False = (0::'a::len word)" by simp lemma "set_bit 1 3 True = (0b1001::'a::len word)" by simp lemma "set_bit 1 0 False = (0::'a::len word)" by simp lemma "set_bit 0 3 True = (0b1000::'a::len word)" by simp lemma "set_bit 0 3 False = (0::'a::len word)" by simp lemma "odd (0b0101::'a::len word)" by simp lemma "even (0b1000::'a::len word)" by simp lemma "odd (1::'a::len word)" by simp lemma "even (0::'a::len word)" by simp lemma "\ msb (0b0101::4 word)" by simp lemma "msb (0b1000::4 word)" by simp lemma "\ msb (1::4 word)" by simp lemma "\ msb (0::4 word)" by simp lemma "word_cat (27::4 word) (27::8 word) = (2843::'a::len word)" by simp lemma "word_cat (0b0011::4 word) (0b1111::6word) = (0b0011001111 :: 10 word)" by simp lemma "0b1011 << 2 = (0b101100::'a::len word)" by simp lemma "0b1011 >> 2 = (0b10::8 word)" by simp lemma "0b1011 >>> 2 = (0b10::8 word)" by simp lemma "1 << 2 = (0b100::'a::len word)" apply simp? oops lemma "slice 3 (0b101111::6 word) = (0b101::3 word)" by simp lemma "slice 3 (1::6 word) = (0::3 word)" apply simp? oops lemma "word_rotr 2 0b0110 = (0b1001::4 word)" by simp lemma "word_rotl 1 0b1110 = (0b1101::4 word)" by simp lemma "word_roti 2 0b1110 = (0b1011::4 word)" by simp lemma "word_roti (- 2) 0b0110 = (0b1001::4 word)" by simp lemma "word_rotr 2 0 = (0::4 word)" by simp lemma "word_rotr 2 1 = (0b0100::4 word)" apply simp? oops lemma "word_rotl 2 1 = (0b0100::4 word)" apply simp? oops lemma "word_roti (- 2) 1 = (0b0100::4 word)" apply simp? oops lemma "(x AND 0xff00) OR (x AND 0x00ff) = (x::16 word)" proof - have "(x AND 0xff00) OR (x AND 0x00ff) = x AND (0xff00 OR 0x00ff)" by (simp only: word_ao_dist2) also have "0xff00 OR 0x00ff = (-1::16 word)" by simp also have "x AND -1 = x" by simp finally show ?thesis . qed lemma "word_next (2:: 8 word) = 3" by eval lemma "word_next (255:: 8 word) = 255" by eval lemma "word_prev (2:: 8 word) = 1" by eval lemma "word_prev (0:: 8 word) = 0" by eval text "proofs using bitwise expansion" lemma "(x AND 0xff00) OR (x AND 0x00ff) = (x::16 word)" by word_bitwise lemma "(x AND NOT 3) >> 4 << 2 = ((x >> 2) AND NOT 3)" for x :: "10 word" by word_bitwise lemma "((x AND -8) >> 3) AND 7 = (x AND 56) >> 3" for x :: "12 word" by word_bitwise text "some problems require further reasoning after bit expansion" lemma "x \ 42 \ x \ 89" for x :: "8 word" apply word_bitwise apply blast done lemma "(x AND 1023) = 0 \ x \ -1024" for x :: \32 word\ apply word_bitwise apply clarsimp done text "operations like shifts by non-numerals will expose some internal list representations but may still be easy to solve" lemma shiftr_overflow: "32 \ a \ b >> a = 0" for b :: \32 word\ apply word_bitwise apply simp done (* testing for presence of word_bitwise *) lemma "((x :: 32 word) >> 3) AND 7 = (x AND 56) >> 3" by word_bitwise (* Tests *) lemma "( 4 :: 32 word) sdiv 4 = 1" "(-4 :: 32 word) sdiv 4 = -1" "(-3 :: 32 word) sdiv 4 = 0" "( 3 :: 32 word) sdiv -4 = 0" "(-3 :: 32 word) sdiv -4 = 0" "(-5 :: 32 word) sdiv -4 = 1" "( 5 :: 32 word) sdiv -4 = -1" by (simp_all add: sdiv_word_def signed_divide_int_def) lemma "( 4 :: 32 word) smod 4 = 0" "( 3 :: 32 word) smod 4 = 3" "(-3 :: 32 word) smod 4 = -3" "( 3 :: 32 word) smod -4 = 3" "(-3 :: 32 word) smod -4 = -3" "(-5 :: 32 word) smod -4 = -1" "( 5 :: 32 word) smod -4 = 1" by (simp_all add: smod_word_def signed_modulo_int_def signed_divide_int_def) lemma "1 < (1024::32 word) \ 1 \ (1024::32 word)" by simp end diff --git a/thys/Word_Lib/Generic_set_bit.thy b/thys/Word_Lib/Generic_set_bit.thy --- a/thys/Word_Lib/Generic_set_bit.thy +++ b/thys/Word_Lib/Generic_set_bit.thy @@ -1,190 +1,191 @@ (* * Copyright Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) (* Author: Jeremy Dawson, NICTA *) section \Operation variant for setting and unsetting bits\ theory Generic_set_bit imports "HOL-Library.Word" Bits_Int Most_significant_bit begin class set_bit = semiring_bits + fixes set_bit :: \'a \ nat \ bool \ 'a\ assumes bit_set_bit_iff [bit_simps]: \bit (set_bit a m b) n \ (if m = n then b else bit a n) \ 2 ^ n \ 0\ lemma set_bit_eq: \set_bit a n b = (if b then Bit_Operations.set_bit else unset_bit) n a\ for a :: \'a::{ring_bit_operations, set_bit}\ by (rule bit_eqI) (simp add: bit_simps) instantiation int :: set_bit begin definition set_bit_int :: \int \ nat \ bool \ int\ where \set_bit i n b = bin_sc n b i\ instance by standard (simp_all add: set_bit_int_def bin_nth_sc_gen bit_simps) end lemma int_set_bit_0 [simp]: fixes x :: int shows "set_bit x 0 b = of_bool b + 2 * (x div 2)" by (auto simp add: set_bit_int_def intro: bin_rl_eqI) lemma int_set_bit_Suc: fixes x :: int shows "set_bit x (Suc n) b = of_bool (odd x) + 2 * set_bit (x div 2) n b" by (auto simp add: set_bit_int_def intro: bin_rl_eqI) lemma bin_last_set_bit: "odd (set_bit x n b :: int) = (if n > 0 then odd x else b)" by (cases n) (simp_all add: int_set_bit_Suc) lemma bin_rest_set_bit: "(set_bit x n b :: int) div 2 = (if n > 0 then set_bit (x div 2) (n - 1) b else x div 2)" by (cases n) (simp_all add: int_set_bit_Suc) lemma int_set_bit_numeral: fixes x :: int shows "set_bit x (numeral w) b = of_bool (odd x) + 2 * set_bit (x div 2) (pred_numeral w) b" by (simp add: set_bit_int_def) lemmas int_set_bit_numerals [simp] = int_set_bit_numeral[where x="numeral w'"] int_set_bit_numeral[where x="- numeral w'"] int_set_bit_numeral[where x="Numeral1"] int_set_bit_numeral[where x="1"] int_set_bit_numeral[where x="0"] int_set_bit_Suc[where x="numeral w'"] int_set_bit_Suc[where x="- numeral w'"] int_set_bit_Suc[where x="Numeral1"] int_set_bit_Suc[where x="1"] int_set_bit_Suc[where x="0"] for w' lemma msb_set_bit [simp]: "msb (set_bit (x :: int) n b) \ msb x" by(simp add: msb_conv_bin_sign set_bit_int_def) instantiation word :: (len) set_bit begin definition set_bit_word :: \'a word \ nat \ bool \ 'a word\ where word_set_bit_def: \set_bit a n x = word_of_int (bin_sc n x (uint a))\ instance by standard (auto simp add: word_set_bit_def bin_nth_sc_gen bit_simps) end lemma set_bit_unfold: \set_bit w n b = (if b then Bit_Operations.set_bit n w else unset_bit n w)\ for w :: \'a::len word\ by (simp add: set_bit_eq) lemma bit_set_bit_word_iff [bit_simps]: \bit (set_bit w m b) n \ (if m = n then n < LENGTH('a) \ b else bit w n)\ for w :: \'a::len word\ by (auto simp add: bit_simps dest: bit_imp_le_length) -lemma word_set_nth [simp]: "set_bit w n (test_bit w n) = w" +lemma word_set_nth: "set_bit w n (bit w n) = w" for w :: "'a::len word" by (auto simp: word_test_bit_def word_set_bit_def) -lemma test_bit_set: "(set_bit w n x) !! n \ n < size w \ x" +lemma test_bit_set: "bit (set_bit w n x) n \ n < size w \ x" for w :: "'a::len word" by (auto simp: word_size word_test_bit_def word_set_bit_def nth_bintr) lemma test_bit_set_gen: - "test_bit (set_bit w n x) m = (if m = n then n < size w \ x else test_bit w m)" + "bit (set_bit w n x) m = (if m = n then n < size w \ x else bit w m)" for w :: "'a::len word" apply (unfold word_size word_test_bit_def word_set_bit_def) apply (clarsimp simp add: nth_bintr bin_nth_sc_gen) apply (auto elim!: test_bit_size [unfolded word_size] simp add: word_test_bit_def [symmetric]) done lemma word_set_set_same [simp]: "set_bit (set_bit w n x) n y = set_bit w n y" for w :: "'a::len word" by (rule word_eqI) (simp add : test_bit_set_gen word_size) lemma word_set_set_diff: fixes w :: "'a::len word" assumes "m \ n" shows "set_bit (set_bit w m x) n y = set_bit (set_bit w n y) m x" by (rule word_eqI) (auto simp: test_bit_set_gen word_size assms) lemma set_bit_word_of_int: "set_bit (word_of_int x) n b = word_of_int (bin_sc n b x)" unfolding word_set_bit_def - by (rule word_eqI)(simp add: word_size bin_nth_sc_gen nth_bintr) + by (rule word_eqI) (simp add: word_size bin_nth_sc_gen nth_bintr bit_simps) lemma word_set_numeral [simp]: "set_bit (numeral bin::'a::len word) n b = word_of_int (bin_sc n b (numeral bin))" unfolding word_numeral_alt by (rule set_bit_word_of_int) lemma word_set_neg_numeral [simp]: "set_bit (- numeral bin::'a::len word) n b = word_of_int (bin_sc n b (- numeral bin))" unfolding word_neg_numeral_alt by (rule set_bit_word_of_int) lemma word_set_bit_0 [simp]: "set_bit 0 n b = word_of_int (bin_sc n b 0)" unfolding word_0_wi by (rule set_bit_word_of_int) lemma word_set_bit_1 [simp]: "set_bit 1 n b = word_of_int (bin_sc n b 1)" unfolding word_1_wi by (rule set_bit_word_of_int) -lemma word_set_nth_iff: "set_bit w n b = w \ w !! n = b \ n \ size w" +lemma word_set_nth_iff: "set_bit w n b = w \ bit w n = b \ n \ size w" for w :: "'a::len word" apply (rule iffI) apply (rule disjCI) apply (drule word_eqD) apply (erule sym [THEN trans]) apply (simp add: test_bit_set) apply (erule disjE) apply clarsimp apply (rule word_eqI) - apply (clarsimp simp add : test_bit_set_gen) - apply (drule test_bit_size) - apply force + apply (clarsimp simp add : test_bit_set_gen) + apply (auto simp add: word_size) + apply (rule bit_eqI) + apply (simp add: bit_simps) done lemma word_clr_le: "w \ set_bit w n False" for w :: "'a::len word" apply (simp add: word_set_bit_def word_le_def) apply transfer apply (rule order_trans) apply (rule bintr_bin_clr_le) apply simp done lemma word_set_ge: "w \ set_bit w n True" for w :: "'a::len word" apply (simp add: word_set_bit_def word_le_def) apply transfer apply (rule order_trans [OF _ bintr_bin_set_ge]) apply simp done lemma set_bit_beyond: "size x \ n \ set_bit x n b = x" for x :: "'a :: len word" - by (auto intro: word_eqI simp add: test_bit_set_gen word_size) + by (simp add: word_set_nth_iff) lemma one_bit_shiftl: "set_bit 0 n True = (1 :: 'a :: len word) << n" apply (rule word_eqI) - apply (auto simp add: test_bit_set_gen nth_shiftl word_size + apply (auto simp add: nth_shiftl word_size bit_simps simp del: word_set_bit_0 shiftl_1) done lemmas one_bit_pow = trans [OF one_bit_shiftl shiftl_1] end diff --git a/thys/Word_Lib/Guide.thy b/thys/Word_Lib/Guide.thy --- a/thys/Word_Lib/Guide.thy +++ b/thys/Word_Lib/Guide.thy @@ -1,382 +1,383 @@ (* * Copyright Florian Haftmann * * SPDX-License-Identifier: BSD-2-Clause *) (*<*) theory Guide imports Word_Lib_Sumo Word_64 Ancient_Numeral begin hide_const (open) Generic_set_bit.set_bit (*>*) section \A short overview over bit operations and word types\ subsection \Basic theories and key ideas\ text \ When formalizing bit operations, it is tempting to represent bit values as explicit lists over a binary type. This however is a bad idea, mainly due to the inherent ambiguities in representation concerning repeating leading bits. Hence this approach avoids such explicit lists altogether following an algebraic path: \<^item> Bit values are represented by numeric types: idealized unbounded bit values can be represented by type \<^typ>\int\, bounded bit values by quotient types over \<^typ>\int\, aka \<^typ>\'a word\. \<^item> (A special case are idealized unbounded bit values ending in @{term [source] 0} which can be represented by type \<^typ>\nat\ but only support a restricted set of operations). The most fundamental ideas are developed in theory \<^theory>\HOL.Parity\ (which is part of \<^theory>\Main\): \<^item> Multiplication by \<^term>\2 :: int\ is a bit shift to the left and \<^item> Division by \<^term>\2 :: int\ is a bit shift to the right. \<^item> Concerning bounded bit values, iterated shifts to the left may result in eliminating all bits by shifting them all beyond the boundary. The property \<^prop>\(2 :: int) ^ n \ 0\ represents that \<^term>\n\ is \<^emph>\not\ beyond that boundary. \<^item> The projection on a single bit is then @{thm [mode=iff] bit_iff_odd [where ?'a = int, no_vars]}. \<^item> This leads to the most fundamental properties of bit values: \<^item> Equality rule: @{thm [display, mode=iff] bit_eq_iff [where ?'a = int, no_vars]} \<^item> Induction rule: @{thm [display, mode=iff] bits_induct [where ?'a = int, no_vars]} \<^item> Characteristic properties \<^prop>\bit (f x) n \ P x n\ are available in fact collection \<^text>\bit_simps\. On top of this, the following generic operations are provided after import of theory \<^theory>\HOL-Library.Bit_Operations\: \<^item> Singleton \<^term>\n\th bit: \<^term>\(2 :: int) ^ n\ \<^item> Bit mask upto bit \<^term>\n\: @{thm mask_eq_exp_minus_1 [where ?'a = int, no_vars]} \<^item> Left shift: @{thm push_bit_eq_mult [where ?'a = int, no_vars]} \<^item> Right shift: @{thm drop_bit_eq_div [where ?'a = int, no_vars]} \<^item> Truncation: @{thm take_bit_eq_mod [where ?'a = int, no_vars]} \<^item> Bitwise negation: @{thm [mode=iff] bit_not_iff [where ?'a = int, no_vars]} \<^item> Bitwise conjunction: @{thm [mode=iff] bit_and_iff [where ?'a = int, no_vars]} \<^item> Bitwise disjunction: @{thm [mode=iff] bit_or_iff [where ?'a = int, no_vars]} \<^item> Bitwise exclusive disjunction: @{thm [mode=iff] bit_xor_iff [where ?'a = int, no_vars]} \<^item> Setting a single bit: @{thm set_bit_def [where ?'a = int, no_vars]} \<^item> Unsetting a single bit: @{thm unset_bit_def [where ?'a = int, no_vars]} \<^item> Flipping a single bit: @{thm flip_bit_def [where ?'a = int, no_vars]} \<^item> Signed truncation, or modulus centered around \<^term>\0::int\: @{thm [display] signed_take_bit_def [where ?'a = int, no_vars]} \<^item> (Bounded) conversion from and to a list of bits: @{thm [display] horner_sum_bit_eq_take_bit [where ?'a = int, no_vars]} Bit concatenation on \<^typ>\int\ as given by @{thm [display] concat_bit_def [no_vars]} appears quite technical but is the logical foundation for the quite natural bit concatenation on \<^typ>\'a word\ (see below). Proper word types are introduced in theory \<^theory>\HOL-Library.Word\, with the following specific operations: \<^item> Standard arithmetic: @{term \(+) :: 'a::len word \ 'a word \ 'a word\}, @{term \uminus :: 'a::len word \ 'a word\}, @{term \(-) :: 'a::len word \ 'a word \ 'a word\}, @{term \(*) :: 'a::len word \ 'a word \ 'a word\}, @{term \0 :: 'a::len word\}, @{term \1 :: 'a::len word\}, numerals etc. \<^item> Standard bit operations: see above. \<^item> Conversion with unsigned interpretation of words: \<^item> @{term [source] \unsigned :: 'a::len word \ 'b::semiring_1\} \<^item> Important special cases as abbreviations: \<^item> @{term [source] \unat :: 'a::len word \ nat\} \<^item> @{term [source] \uint :: 'a::len word \ int\} \<^item> @{term [source] \ucast :: 'a::len word \ 'b::len word\} \<^item> Conversion with signed interpretation of words: \<^item> @{term [source] \signed :: 'a::len word \ 'b::ring_1\} \<^item> Important special cases as abbreviations: \<^item> @{term [source] \sint :: 'a::len word \ int\} \<^item> @{term [source] \scast :: 'a::len word \ 'b::len word\} \<^item> Operations with unsigned interpretation of words: \<^item> @{thm [mode=iff] word_le_nat_alt [no_vars]} \<^item> @{thm [mode=iff] word_less_nat_alt [no_vars]} \<^item> @{thm unat_div_distrib [no_vars]} \<^item> @{thm unat_drop_bit_eq [no_vars]} \<^item> @{thm unat_mod_distrib [no_vars]} \<^item> @{thm [mode=iff] udvd_iff_dvd [no_vars]} \<^item> Operations with signed interpretation of words: \<^item> @{thm [mode=iff] word_sle_eq [no_vars]} \<^item> @{thm [mode=iff] word_sless_alt [no_vars]} \<^item> @{thm sint_signed_drop_bit_eq [no_vars]} \<^item> Rotation and reversal: \<^item> @{term [source] \word_rotl :: nat \ 'a::len word \ 'a word\} \<^item> @{term [source] \word_rotr :: nat \ 'a::len word \ 'a word\} \<^item> @{term [source] \word_roti :: int \ 'a::len word \ 'a word\} \<^item> @{term [source] \word_reverse :: 'a::len word \ 'a word\} \<^item> Concatenation: @{term [source, display] \word_cat :: 'a::len word \ 'b::len word \ 'c::len word\} For proofs about words the following default strategies are applicable: \<^item> Using bit extensionality (facts \<^text>\bit_eq_iff\, \<^text>\bit_eqI\; fact collection \<^text>\bit_simps\). \<^item> Using the @{method transfer} method. \ subsection \More library theories\ text \ Note: currently, the theories listed here are hardly separate entities since they import each other in various ways. Always inspect them to understand what you pull in if you want to import one. \<^descr>[Syntax] + \<^descr>[\<^theory>\Word_Lib.Syntax_Bundles\] + Bundles to provide alternative syntax for various bit operations + \<^descr>[\<^theory>\Word_Lib.Hex_Words\] Printing word numerals as hexadecimal numerals. \<^descr>[\<^theory>\Word_Lib.Type_Syntax\] Pretty type-sensitive syntax for cast operations. \<^descr>[\<^theory>\Word_Lib.Word_Syntax\] Specific ASCII syntax for prominent bit operations on word. \<^descr>[Proof tools] \<^descr>[\<^theory>\Word_Lib.Norm_Words\] Rewriting word numerals to normal forms. \<^descr>[\<^theory>\Word_Lib.Bitwise\] Method @{method word_bitwise} decomposes word equalities and inequalities into bit propositions. \<^descr>[\<^theory>\Word_Lib.Word_EqI\] Method @{method word_eqI_solve} decomposes word equalities and inequalities into bit propositions. \<^descr>[Operations] \<^descr>[\<^theory>\Word_Lib.Signed_Division_Word\] Signed division on word: \<^item> @{term [source] \(sdiv) :: 'a::len word \ 'a word \ 'a word\} \<^item> @{term [source] \(smod) :: 'a::len word \ 'a word \ 'a word\} \<^descr>[\<^theory>\Word_Lib.Aligned\] \ \<^item> @{thm [mode=iff] is_aligned_iff_udvd [no_vars]} \<^descr>[\<^theory>\Word_Lib.Least_significant_bit\] The least significant bit as an alias: @{thm [mode=iff] lsb_odd [where ?'a = int, no_vars]} \<^descr>[\<^theory>\Word_Lib.Most_significant_bit\] The most significant bit: \<^item> @{thm [mode=iff] msb_int_def [of k]} \<^item> @{thm [mode=iff] word_msb_sint [no_vars]} \<^item> @{thm [mode=iff] msb_word_iff_sless_0 [no_vars]} \<^item> @{thm [mode=iff] msb_word_iff_bit [no_vars]} \<^descr>[\<^theory>\Word_Lib.Traditional_Infix_Syntax\] Clones of existing operations decorated with traditional syntax: - \<^item> @{thm test_bit_eq_bit [no_vars]} - \<^item> @{thm shiftl_eq_push_bit [no_vars]} \<^item> @{thm shiftr_eq_drop_bit [no_vars]} \<^item> @{thm sshiftr_eq [no_vars]} \<^descr>[\<^theory>\Word_Lib.Next_and_Prev\] \ \<^item> @{thm word_next_unfold [no_vars]} \<^item> @{thm word_prev_unfold [no_vars]} \<^descr>[\<^theory>\Word_Lib.Enumeration_Word\] More on explicit enumeration of word types. \<^descr>[\<^theory>\Word_Lib.More_Word_Operations\] Even more operations on word. \<^descr>[Types] \<^descr>[\<^theory>\Word_Lib.Signed_Words\] Formal tagging of word types with a \<^text>\signed\ marker. \<^descr>[Lemmas] \<^descr>[\<^theory>\Word_Lib.More_Word\] More lemmas on words. \<^descr>[\<^theory>\Word_Lib.Word_Lemmas\] More lemmas on words, covering many other theories mentioned here. \<^descr>[Words of popular lengths]. \<^descr>[\<^theory>\Word_Lib.Word_8\] for 8-bit words. \<^descr>[\<^theory>\Word_Lib.Word_16\] for 16-bit words. \<^descr>[\<^theory>\Word_Lib.Word_32\] for 32-bit words. \<^descr>[\<^theory>\Word_Lib.Word_64\] for 64-bit words. This theory is not part of \<^text>\Word_Lib_Sumo\, because it shadows names from \<^theory>\Word_Lib.Word_32\. They can be used together, but then require to use qualified names in applications. \ subsection \More library sessions\ text \ \<^descr>[\<^text>\Native_Word\] Makes machine words and machine arithmetic available for code generation. It provides a common abstraction that hides the differences between the different target languages. The code generator maps these operations to the APIs of the target languages. \ subsection \Legacy theories\ text \ The following theories contain material which has been factored out since it is not recommended to use it in new applications, mostly because matters can be expressed succinctly using already existing operations. This section gives some indication how to migrate away from those theories. However theorem coverage may still be terse in some cases. \<^descr>[\<^theory>\Word_Lib.Word_Lib_Sumo\] An entry point importing any relevant theory in that session. Intended for backward compatibility: start importing this theory when migrating applications to Isabelle2021, and later sort out what you really need. You may need to include \<^theory>\Word_Lib.Word_64\ separately. \<^descr>[\<^theory>\Word_Lib.Generic_set_bit\] Kind of an alias: @{thm set_bit_eq [no_vars]} \<^descr>[\<^theory>\Word_Lib.Typedef_Morphisms\] A low-level extension to HOL typedef providing conversions along type morphisms. The @{method transfer} method seems to be sufficient for most applications though. \<^descr>[\<^theory>\Word_Lib.Bit_Comprehension\] Comprehension syntax for bit values over predicates \<^typ>\nat \ bool\. For \<^typ>\'a::len word\, straightforward alternatives exist; difficult to handle for \<^typ>\int\. \<^descr>[\<^theory>\Word_Lib.Reversed_Bit_Lists\] Representation of bit values as explicit list in \<^emph>\reversed\ order. This should rarely be necessary: the \<^const>\bit\ projection should be sufficient in most cases. In case explicit lists are needed, existing operations can be used: @{thm [display] horner_sum_bit_eq_take_bit [where ?'a = int, no_vars]} \<^descr>[\<^theory>\Word_Lib.Many_More\] Collection of operations and theorems which are kept for backward compatibility and not used in other theories in session \<^text>\Word_Lib\. They are used in applications of \<^text>\Word_Lib\, but should be migrated to there. \ section \Changelog\ text \ \<^descr>[Changes since AFP 2021] ~ \<^item> Theory \<^theory>\Word_Lib.Ancient_Numeral\ is no part of \<^theory>\Word_Lib.Word_Lib_Sumo\ any longer. \<^item> Abbreviation \<^abbrev>\max_word\ moved from distribution into theory \<^theory>\Word_Lib.Legacy_Aliases\. \<^item> Abbreviations \<^abbrev>\bin_nth\, \<^abbrev>\bin_last\, \<^abbrev>\bin_rest\, \<^abbrev>\bintrunc\, \<^abbrev>\sbintrunc\, \<^abbrev>\norm_sint\, \<^abbrev>\bin_cat\ moved into theory \<^theory>\Word_Lib.Legacy_Aliases\. \<^item> Operation \<^const>\complement\ replaced by input abbreviation \<^abbrev>\complement\. \ (*<*) end (*>*) diff --git a/thys/Word_Lib/Least_significant_bit.thy b/thys/Word_Lib/Least_significant_bit.thy --- a/thys/Word_Lib/Least_significant_bit.thy +++ b/thys/Word_Lib/Least_significant_bit.thy @@ -1,94 +1,94 @@ (* * Copyright Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) (* Author: Jeremy Dawson, NICTA *) section \Operation variant for the least significant bit\ theory Least_significant_bit imports "HOL-Library.Word" Bits_Int begin class lsb = semiring_bits + fixes lsb :: \'a \ bool\ assumes lsb_odd: \lsb = odd\ instantiation int :: lsb begin definition lsb_int :: \int \ bool\ - where \lsb i = i !! 0\ for i :: int + where \lsb i = bit i 0\ for i :: int instance by standard (simp add: fun_eq_iff lsb_int_def) end lemma bin_last_conv_lsb: "odd = (lsb :: int \ bool)" by (simp add: lsb_odd) lemma int_lsb_numeral [simp]: "lsb (0 :: int) = False" "lsb (1 :: int) = True" "lsb (Numeral1 :: int) = True" "lsb (- 1 :: int) = True" "lsb (- Numeral1 :: int) = True" "lsb (numeral (num.Bit0 w) :: int) = False" "lsb (numeral (num.Bit1 w) :: int) = True" "lsb (- numeral (num.Bit0 w) :: int) = False" "lsb (- numeral (num.Bit1 w) :: int) = True" by (simp_all add: lsb_int_def) instantiation word :: (len) lsb begin definition lsb_word :: \'a word \ bool\ where word_lsb_def: \lsb a \ odd (uint a)\ for a :: \'a word\ instance apply standard apply (simp add: fun_eq_iff word_lsb_def) apply transfer apply simp done end lemma lsb_word_eq: \lsb = (odd :: 'a word \ bool)\ for w :: \'a::len word\ by (fact lsb_odd) -lemma word_lsb_alt: "lsb w = test_bit w 0" +lemma word_lsb_alt: "lsb w = bit w 0" for w :: "'a::len word" by (auto simp: word_test_bit_def word_lsb_def) lemma word_lsb_1_0 [simp]: "lsb (1::'a::len word) \ \ lsb (0::'b::len word)" unfolding word_lsb_def by simp lemma word_lsb_int: "lsb w \ uint w mod 2 = 1" apply (simp add: lsb_odd flip: odd_iff_mod_2_eq_one) apply transfer apply simp done lemmas word_ops_lsb = lsb0 [unfolded word_lsb_alt] lemma word_lsb_numeral [simp]: "lsb (numeral bin :: 'a::len word) \ odd (numeral bin :: int)" - unfolding word_lsb_alt test_bit_numeral by simp + by (simp only: lsb_odd, transfer) rule lemma word_lsb_neg_numeral [simp]: "lsb (- numeral bin :: 'a::len word) \ odd (- numeral bin :: int)" - by (simp add: word_lsb_alt) + by (simp only: lsb_odd, transfer) rule lemma word_lsb_nat:"lsb w = (unat w mod 2 = 1)" apply (simp add: word_lsb_def Groebner_Basis.algebra(31)) apply transfer apply (simp add: even_nat_iff) done end diff --git a/thys/Word_Lib/Legacy_Aliases.thy b/thys/Word_Lib/Legacy_Aliases.thy --- a/thys/Word_Lib/Legacy_Aliases.thy +++ b/thys/Word_Lib/Legacy_Aliases.thy @@ -1,47 +1,50 @@ (* * Copyright Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section \Legacy aliases\ theory Legacy_Aliases imports "HOL-Library.Word" begin +abbreviation (input) test_bit :: \'a::semiring_bits \ nat \ bool\ + where \test_bit \ bit\ + abbreviation (input) bin_nth :: \int \ nat \ bool\ where \bin_nth \ bit\ abbreviation (input) bin_last :: \int \ bool\ where \bin_last \ odd\ abbreviation (input) bin_rest :: \int \ int\ where \bin_rest w \ w div 2\ abbreviation (input) bintrunc :: \nat \ int \ int\ where \bintrunc \ take_bit\ abbreviation (input) sbintrunc :: \nat \ int \ int\ where \sbintrunc \ signed_take_bit\ abbreviation (input) bin_cat :: \int \ nat \ int \ int\ where \bin_cat k n l \ concat_bit n l k\ abbreviation (input) norm_sint :: \nat \ int \ int\ where \norm_sint n \ signed_take_bit (n - 1)\ abbreviation (input) max_word :: \'a::len word\ where \max_word \ - 1\ -abbreviation (input) complement :: \'a :: len word \ 'a word\ +abbreviation (input) complement :: \'a::len word \ 'a word\ where \complement \ not\ lemma complement_mask: "complement (2 ^ n - 1) = NOT (mask n)" unfolding mask_eq_decr_exp by simp lemmas less_def = less_eq [symmetric] lemmas le_def = not_less [symmetric, where ?'a = nat] end diff --git a/thys/Word_Lib/More_Word_Operations.thy b/thys/Word_Lib/More_Word_Operations.thy --- a/thys/Word_Lib/More_Word_Operations.thy +++ b/thys/Word_Lib/More_Word_Operations.thy @@ -1,1009 +1,1014 @@ (* * Copyright Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section \Misc word operations\ theory More_Word_Operations imports "HOL-Library.Word" Aligned Reversed_Bit_Lists More_Misc Signed_Words begin definition ptr_add :: "'a :: len word \ nat \ 'a word" where "ptr_add ptr n \ ptr + of_nat n" definition alignUp :: "'a::len word \ nat \ 'a word" where "alignUp x n \ x + 2 ^ n - 1 AND NOT (2 ^ n - 1)" lemma alignUp_unfold: \alignUp w n = (w + mask n) AND NOT (mask n)\ by (simp add: alignUp_def mask_eq_exp_minus_1 add_mask_fold) (* standard notation for blocks of 2^n-1 words, usually aligned; abbreviation so it simplifies directly *) abbreviation mask_range :: "'a::len word \ nat \ 'a word set" where "mask_range p n \ {p .. p + mask n}" definition w2byte :: "'a :: len word \ 8 word" where "w2byte \ ucast" (* Count leading zeros *) definition word_clz :: "'a::len word \ nat" where "word_clz w \ length (takeWhile Not (to_bl w))" (* Count trailing zeros *) definition word_ctz :: "'a::len word \ nat" where "word_ctz w \ length (takeWhile Not (rev (to_bl w)))" lemma word_ctz_le: "word_ctz (w :: ('a::len word)) \ LENGTH('a)" apply (clarsimp simp: word_ctz_def) using length_takeWhile_le apply (rule order_trans) apply simp done lemma word_ctz_less: "w \ 0 \ word_ctz (w :: ('a::len word)) < LENGTH('a)" apply (clarsimp simp: word_ctz_def eq_zero_set_bl) using length_takeWhile_less apply (rule less_le_trans) apply auto done lemma take_bit_word_ctz_eq [simp]: \take_bit LENGTH('a) (word_ctz w) = word_ctz w\ for w :: \'a::len word\ apply (simp add: take_bit_nat_eq_self_iff word_ctz_def to_bl_unfold) using length_takeWhile_le apply (rule le_less_trans) apply simp done lemma word_ctz_not_minus_1: \word_of_nat (word_ctz (w :: 'a :: len word)) \ (- 1 :: 'a::len word)\ if \1 < LENGTH('a)\ proof - note word_ctz_le also from that have \LENGTH('a) < mask LENGTH('a)\ by (simp add: less_mask) finally have \word_ctz w < mask LENGTH('a)\ . then have \word_of_nat (word_ctz w) < (word_of_nat (mask LENGTH('a)) :: 'a word)\ by (simp add: of_nat_word_less_iff) also have \\ = - 1\ by (rule bit_word_eqI) (simp add: bit_simps) finally show ?thesis by simp qed lemma unat_of_nat_ctz_mw: "unat (of_nat (word_ctz (w :: 'a :: len word)) :: 'a :: len word) = word_ctz w" by simp lemma unat_of_nat_ctz_smw: "unat (of_nat (word_ctz (w :: 'a :: len word)) :: 'a :: len signed word) = word_ctz w" by simp definition word_log2 :: "'a::len word \ nat" where "word_log2 (w::'a::len word) \ size w - 1 - word_clz w" (* Bit population count. Equivalent of __builtin_popcount. *) definition pop_count :: "('a::len) word \ nat" where "pop_count w \ length (filter id (to_bl w))" (* Sign extension from bit n *) definition sign_extend :: "nat \ 'a::len word \ 'a word" where - "sign_extend n w \ if w !! n then w OR NOT (mask n) else w AND mask n" + "sign_extend n w \ if bit w n then w OR NOT (mask n) else w AND mask n" lemma sign_extend_eq_signed_take_bit: \sign_extend = signed_take_bit\ proof (rule ext)+ fix n and w :: \'a::len word\ show \sign_extend n w = signed_take_bit n w\ proof (rule bit_word_eqI) fix q assume \q < LENGTH('a)\ then show \bit (sign_extend n w) q \ bit (signed_take_bit n w) q\ - by (auto simp add: test_bit_eq_bit bit_signed_take_bit_iff + by (auto simp add: bit_signed_take_bit_iff sign_extend_def bit_and_iff bit_or_iff bit_not_iff bit_mask_iff not_less exp_eq_0_imp_not_bit not_le min_def) qed qed definition sign_extended :: "nat \ 'a::len word \ bool" where - "sign_extended n w \ \i. n < i \ i < size w \ w !! i = w !! n" + "sign_extended n w \ \i. n < i \ i < size w \ bit w i = bit w n" lemma ptr_add_0 [simp]: "ptr_add ref 0 = ref " unfolding ptr_add_def by simp lemma pop_count_0[simp]: "pop_count 0 = 0" by (clarsimp simp:pop_count_def) lemma pop_count_1[simp]: "pop_count 1 = 1" by (clarsimp simp:pop_count_def to_bl_1) lemma pop_count_0_imp_0: "(pop_count w = 0) = (w = 0)" apply (rule iffI) apply (clarsimp simp:pop_count_def) apply (subst (asm) filter_empty_conv) apply (clarsimp simp:eq_zero_set_bl) apply fast apply simp done lemma word_log2_zero_eq [simp]: \word_log2 0 = 0\ by (simp add: word_log2_def word_clz_def word_size) lemma word_log2_unfold: \word_log2 w = (if w = 0 then 0 else Max {n. bit w n})\ for w :: \'a::len word\ proof (cases \w = 0\) case True then show ?thesis by simp next case False then obtain r where \bit w r\ by (auto simp add: bit_eq_iff) then have \Max {m. bit w m} = LENGTH('a) - Suc (length (takeWhile (Not \ bit w) (rev [0.. by (subst Max_eq_length_takeWhile [of _ \LENGTH('a)\]) (auto simp add: bit_imp_le_length) then have \word_log2 w = Max {x. bit w x}\ by (simp add: word_log2_def word_clz_def word_size to_bl_unfold rev_map takeWhile_map) with \w \ 0\ show ?thesis by simp qed lemma word_log2_eqI: \word_log2 w = n\ if \w \ 0\ \bit w n\ \\m. bit w m \ m \ n\ for w :: \'a::len word\ proof - from \w \ 0\ have \word_log2 w = Max {n. bit w n}\ by (simp add: word_log2_unfold) also have \Max {n. bit w n} = n\ using that by (auto intro: Max_eqI) finally show ?thesis . qed lemma bit_word_log2: \bit w (word_log2 w)\ if \w \ 0\ proof - from \w \ 0\ have \\r. bit w r\ by (simp add: bit_eq_iff) then obtain r where \bit w r\ .. from \w \ 0\ have \word_log2 w = Max {n. bit w n}\ by (simp add: word_log2_unfold) also have \Max {n. bit w n} \ {n. bit w n}\ using \bit w r\ by (subst Max_in) auto finally show ?thesis by simp qed lemma word_log2_maximum: \n \ word_log2 w\ if \bit w n\ proof - have \n \ Max {n. bit w n}\ using that by (auto intro: Max_ge) also from that have \w \ 0\ by force then have \Max {n. bit w n} = word_log2 w\ by (simp add: word_log2_unfold) finally show ?thesis . qed lemma word_log2_nth_same: - "w \ 0 \ w !! word_log2 w" - by (drule bit_word_log2) (simp add: test_bit_eq_bit) + "w \ 0 \ bit w (word_log2 w)" + by (drule bit_word_log2) simp lemma word_log2_nth_not_set: - "\ word_log2 w < i ; i < size w \ \ \ w !! i" - using word_log2_maximum [of w i] by (auto simp add: test_bit_eq_bit) + "\ word_log2 w < i ; i < size w \ \ \ bit w i" + using word_log2_maximum [of w i] by auto lemma word_log2_highest: - assumes a: "w !! i" + assumes a: "bit w i" shows "i \ word_log2 w" - using a by (simp add: test_bit_eq_bit word_log2_maximum) + using a by (simp add: word_log2_maximum) lemma word_log2_max: "word_log2 w < size w" apply (cases \w = 0\) apply (simp_all add: word_size) apply (drule bit_word_log2) apply (fact bit_imp_le_length) done lemma word_clz_0[simp]: "word_clz (0::'a::len word) = LENGTH('a)" unfolding word_clz_def by simp lemma word_clz_minus_one[simp]: "word_clz (-1::'a::len word) = 0" unfolding word_clz_def by simp lemma is_aligned_alignUp[simp]: "is_aligned (alignUp p n) n" by (simp add: alignUp_def is_aligned_mask mask_eq_decr_exp word_bw_assocs) lemma alignUp_le[simp]: "alignUp p n \ p + 2 ^ n - 1" unfolding alignUp_def by (rule word_and_le2) lemma alignUp_idem: fixes a :: "'a::len word" assumes "is_aligned a n" "n < LENGTH('a)" shows "alignUp a n = a" using assms unfolding alignUp_def by (metis add_cancel_right_right add_diff_eq and_mask_eq_iff_le_mask mask_eq_decr_exp mask_out_add_aligned order_refl word_plus_and_or_coroll2) lemma alignUp_not_aligned_eq: fixes a :: "'a :: len word" assumes al: "\ is_aligned a n" and sz: "n < LENGTH('a)" shows "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n" proof - have anz: "a mod 2 ^ n \ 0" by (rule not_aligned_mod_nz) fact+ then have um: "unat (a mod 2 ^ n - 1) div 2 ^ n = 0" using sz by (meson Euclidean_Division.div_eq_0_iff le_m1_iff_lt measure_unat order_less_trans unat_less_power word_less_sub_le word_mod_less_divisor) have "a + 2 ^ n - 1 = (a div 2 ^ n) * 2 ^ n + (a mod 2 ^ n) + 2 ^ n - 1" by (simp add: word_mod_div_equality) also have "\ = (a mod 2 ^ n - 1) + (a div 2 ^ n + 1) * 2 ^ n" by (simp add: field_simps) finally show "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n" using sz unfolding alignUp_def apply (subst mask_eq_decr_exp [symmetric]) apply (erule ssubst) apply (subst neg_mask_is_div) apply (simp add: word_arith_nat_div) apply (subst unat_word_ariths(1) unat_word_ariths(2))+ apply (subst uno_simps) apply (subst unat_1) apply (subst mod_add_right_eq) apply simp apply (subst power_mod_div) apply (subst div_mult_self1) apply simp apply (subst um) apply simp apply (subst mod_mod_power) apply simp apply (subst word_unat_power, subst Abs_fnat_hom_mult) apply (subst mult_mod_left) apply (subst power_add [symmetric]) apply simp apply (subst Abs_fnat_hom_1) apply (subst Abs_fnat_hom_add) apply (subst word_unat_power, subst Abs_fnat_hom_mult) apply (subst word_unat.Rep_inverse[symmetric], subst Abs_fnat_hom_mult) apply simp done qed lemma alignUp_ge: fixes a :: "'a :: len word" assumes sz: "n < LENGTH('a)" and nowrap: "alignUp a n \ 0" shows "a \ alignUp a n" proof (cases "is_aligned a n") case True then show ?thesis using sz by (subst alignUp_idem, simp_all) next case False have lt0: "unat a div 2 ^ n < 2 ^ (LENGTH('a) - n)" using sz by (metis shiftr_div_2n' word_shiftr_lt) have"2 ^ n * (unat a div 2 ^ n + 1) \ 2 ^ LENGTH('a)" using sz by (metis One_nat_def Suc_leI add.right_neutral add_Suc_right lt0 nat_le_power_trans nat_less_le) moreover have "2 ^ n * (unat a div 2 ^ n + 1) \ 2 ^ LENGTH('a)" using nowrap sz apply - apply (erule contrapos_nn) apply (subst alignUp_not_aligned_eq [OF False sz]) apply (subst unat_arith_simps) apply (subst unat_word_ariths) apply (subst unat_word_ariths) apply simp apply (subst mult_mod_left) apply (simp add: unat_div field_simps power_add[symmetric] mod_mod_power) done ultimately have lt: "2 ^ n * (unat a div 2 ^ n + 1) < 2 ^ LENGTH('a)" by simp have "a = a div 2 ^ n * 2 ^ n + a mod 2 ^ n" by (rule word_mod_div_equality [symmetric]) also have "\ < (a div 2 ^ n + 1) * 2 ^ n" using sz lt apply (simp add: field_simps) apply (rule word_add_less_mono1) apply (rule word_mod_less_divisor) apply (simp add: word_less_nat_alt) apply (subst unat_word_ariths) apply (simp add: unat_div) done also have "\ = alignUp a n" by (rule alignUp_not_aligned_eq [symmetric]) fact+ finally show ?thesis by (rule order_less_imp_le) qed lemma alignUp_le_greater_al: fixes x :: "'a :: len word" assumes le: "a \ x" and sz: "n < LENGTH('a)" and al: "is_aligned x n" shows "alignUp a n \ x" proof (cases "is_aligned a n") case True then show ?thesis using sz le by (simp add: alignUp_idem) next case False then have anz: "a mod 2 ^ n \ 0" by (rule not_aligned_mod_nz) from al obtain k where xk: "x = 2 ^ n * of_nat k" and kv: "k < 2 ^ (LENGTH('a) - n)" by (auto elim!: is_alignedE) then have kn: "unat (of_nat k :: 'a word) * unat ((2::'a word) ^ n) < 2 ^ LENGTH('a)" using sz apply (subst unat_of_nat_eq) apply (erule order_less_le_trans) apply simp apply (subst mult.commute) apply simp apply (rule nat_less_power_trans) apply simp apply simp done have au: "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n" by (rule alignUp_not_aligned_eq) fact+ also have "\ \ of_nat k * 2 ^ n" proof (rule word_mult_le_mono1 [OF inc_le _ kn]) show "a div 2 ^ n < of_nat k" using kv xk le sz anz by (simp add: alignUp_div_helper) show "(0:: 'a word) < 2 ^ n" using sz by (simp add: p2_gt_0 sz) qed finally show ?thesis using xk by (simp add: field_simps) qed lemma alignUp_is_aligned_nz: fixes a :: "'a :: len word" assumes al: "is_aligned x n" and sz: "n < LENGTH('a)" and ax: "a \ x" and az: "a \ 0" shows "alignUp (a::'a :: len word) n \ 0" proof (cases "is_aligned a n") case True then have "alignUp a n = a" using sz by (simp add: alignUp_idem) then show ?thesis using az by simp next case False then have anz: "a mod 2 ^ n \ 0" by (rule not_aligned_mod_nz) { assume asm: "alignUp a n = 0" have lt0: "unat a div 2 ^ n < 2 ^ (LENGTH('a) - n)" using sz by (metis shiftr_div_2n' word_shiftr_lt) have leq: "2 ^ n * (unat a div 2 ^ n + 1) \ 2 ^ LENGTH('a)" using sz by (metis One_nat_def Suc_leI add.right_neutral add_Suc_right lt0 nat_le_power_trans order_less_imp_le) from al obtain k where kv: "k < 2 ^ (LENGTH('a) - n)" and xk: "x = 2 ^ n * of_nat k" by (auto elim!: is_alignedE) then have "a div 2 ^ n < of_nat k" using ax sz anz by (rule alignUp_div_helper) then have r: "unat a div 2 ^ n < k" using sz by (simp flip: drop_bit_eq_div unat_drop_bit_eq) (metis leI le_unat_uoi unat_mono) have "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n" by (rule alignUp_not_aligned_eq) fact+ then have "\ = 0" using asm by simp then have "2 ^ LENGTH('a) dvd 2 ^ n * (unat a div 2 ^ n + 1)" using sz by (simp add: unat_arith_simps ac_simps) (simp add: unat_word_ariths mod_simps mod_eq_0_iff_dvd) with leq have "2 ^ n * (unat a div 2 ^ n + 1) = 2 ^ LENGTH('a)" by (force elim!: le_SucE) then have "unat a div 2 ^ n = 2 ^ LENGTH('a) div 2 ^ n - 1" by (metis (no_types, hide_lams) Groups.add_ac(2) add.right_neutral add_diff_cancel_left' div_le_dividend div_mult_self4 gr_implies_not0 le_neq_implies_less power_eq_0_iff zero_neq_numeral) then have "unat a div 2 ^ n = 2 ^ (LENGTH('a) - n) - 1" using sz by (simp add: power_sub) then have "2 ^ (LENGTH('a) - n) - 1 < k" using r by simp then have False using kv by simp } then show ?thesis by clarsimp qed lemma alignUp_ar_helper: fixes a :: "'a :: len word" assumes al: "is_aligned x n" and sz: "n < LENGTH('a)" and sub: "{x..x + 2 ^ n - 1} \ {a..b}" and anz: "a \ 0" shows "a \ alignUp a n \ alignUp a n + 2 ^ n - 1 \ b" proof from al have xl: "x \ x + 2 ^ n - 1" by (simp add: is_aligned_no_overflow) from xl sub have ax: "a \ x" by auto show "a \ alignUp a n" proof (rule alignUp_ge) show "alignUp a n \ 0" using al sz ax anz by (rule alignUp_is_aligned_nz) qed fact+ show "alignUp a n + 2 ^ n - 1 \ b" proof (rule order_trans) from xl show tp: "x + 2 ^ n - 1 \ b" using sub by auto from ax have "alignUp a n \ x" by (rule alignUp_le_greater_al) fact+ then have "alignUp a n + (2 ^ n - 1) \ x + (2 ^ n - 1)" using xl al is_aligned_no_overflow' olen_add_eqv word_plus_mcs_3 by blast then show "alignUp a n + 2 ^ n - 1 \ x + 2 ^ n - 1" by (simp add: field_simps) qed qed lemma alignUp_def2: "alignUp a sz = a + 2 ^ sz - 1 AND NOT (mask sz)" by (simp add: alignUp_def flip: mask_eq_decr_exp) lemma alignUp_def3: "alignUp a sz = 2^ sz + (a - 1 AND NOT (mask sz))" by (simp add: alignUp_def2 is_aligned_triv field_simps mask_out_add_aligned) lemma alignUp_plus: "is_aligned w us \ alignUp (w + a) us = w + alignUp a us" by (clarsimp simp: alignUp_def2 mask_out_add_aligned field_simps) lemma alignUp_distance: "alignUp (q :: 'a :: len word) sz - q \ mask sz" by (metis (no_types) add.commute add_diff_cancel_left alignUp_def2 diff_add_cancel mask_2pm1 subtract_mask(2) word_and_le1 word_sub_le_iff) lemma is_aligned_diff_neg_mask: "is_aligned p sz \ (p - q AND NOT (mask sz)) = (p - ((alignUp q sz) AND NOT (mask sz)))" apply (clarsimp simp only:word_and_le2 diff_conv_add_uminus) apply (subst mask_out_add_aligned[symmetric]; simp) apply (simp add: eq_neg_iff_add_eq_0) apply (subst add.commute) apply (simp add: alignUp_distance is_aligned_neg_mask_eq mask_out_add_aligned and_mask_eq_iff_le_mask flip: mask_eq_x_eq_0) done lemma word_clz_max: "word_clz w \ size (w::'a::len word)" unfolding word_clz_def by (metis length_takeWhile_le word_size_bl) lemma word_clz_nonzero_max: fixes w :: "'a::len word" assumes nz: "w \ 0" shows "word_clz w < size (w::'a::len word)" proof - { assume a: "word_clz w = size (w::'a::len word)" hence "length (takeWhile Not (to_bl w)) = length (to_bl w)" by (simp add: word_clz_def word_size) hence allj: "\j\set(to_bl w). \ j" by (metis a length_takeWhile_less less_irrefl_nat word_clz_def) hence "to_bl w = replicate (length (to_bl w)) False" using eq_zero_set_bl nz by fastforce hence "w = 0" by (metis to_bl_0 word_bl.Rep_eqD word_bl_Rep') with nz have False by simp } thus ?thesis using word_clz_max by (fastforce intro: le_neq_trans) qed (* Sign extension from bit n. *) +lemma bin_sign_extend_iff [bit_simps]: + \bit (sign_extend e w) i \ bit w (min e i)\ + if \i < LENGTH('a)\ for w :: \'a::len word\ + using that by (simp add: sign_extend_def bit_simps min_def) + lemma sign_extend_bitwise_if: - "i < size w \ sign_extend e w !! i \ (if i < e then w !! i else w !! e)" - by (simp add: sign_extend_def neg_mask_test_bit word_size) + "i < size w \ bit (sign_extend e w) i \ (if i < e then bit w i else bit w e)" + by (simp add: word_size bit_simps) lemma sign_extend_bitwise_if' [word_eqI_simps]: - \i < LENGTH('a) \ sign_extend e w !! i \ (if i < e then w !! i else w !! e)\ + \i < LENGTH('a) \ bit (sign_extend e w) i \ (if i < e then bit w i else bit w e)\ for w :: \'a::len word\ using sign_extend_bitwise_if [of i w e] by (simp add: word_size) lemma sign_extend_bitwise_disj: - "i < size w \ sign_extend e w !! i \ i \ e \ w !! i \ e \ i \ w !! e" + "i < size w \ bit (sign_extend e w) i \ i \ e \ bit w i \ e \ i \ bit w e" by (auto simp: sign_extend_bitwise_if) lemma sign_extend_bitwise_cases: - "i < size w \ sign_extend e w !! i \ (i \ e \ w !! i) \ (e \ i \ w !! e)" + "i < size w \ bit (sign_extend e w) i \ (i \ e \ bit w i) \ (e \ i \ bit w e)" by (auto simp: sign_extend_bitwise_if) lemmas sign_extend_bitwise_disj' = sign_extend_bitwise_disj[simplified word_size] lemmas sign_extend_bitwise_cases' = sign_extend_bitwise_cases[simplified word_size] (* Often, it is easier to reason about an operation which does not overwrite the bit which determines which mask operation to apply. *) lemma sign_extend_def': - "sign_extend n w = (if w !! n then w OR NOT (mask (Suc n)) else w AND mask (Suc n))" - by (rule bit_word_eqI) (auto simp add: bit_simps sign_extend_eq_signed_take_bit min_def test_bit_eq_bit less_Suc_eq_le) + "sign_extend n w = (if bit w n then w OR NOT (mask (Suc n)) else w AND mask (Suc n))" + by (rule bit_word_eqI) (auto simp add: bit_simps sign_extend_eq_signed_take_bit min_def less_Suc_eq_le) lemma sign_extended_sign_extend: "sign_extended n (sign_extend n w)" by (clarsimp simp: sign_extended_def word_size sign_extend_bitwise_if) lemma sign_extended_iff_sign_extend: "sign_extended n w \ sign_extend n w = w" apply auto apply (auto simp add: bit_eq_iff) - apply (simp_all add: bit_simps sign_extend_eq_signed_take_bit not_le min_def sign_extended_def test_bit_eq_bit word_size split: if_splits) + apply (simp_all add: bit_simps sign_extend_eq_signed_take_bit not_le min_def sign_extended_def word_size split: if_splits) using le_imp_less_or_eq apply auto[1] apply (metis bit_imp_le_length nat_less_le) apply (metis Suc_leI Suc_n_not_le_n le_trans nat_less_le) done lemma sign_extended_weaken: "sign_extended n w \ n \ m \ sign_extended m w" unfolding sign_extended_def by (cases "n < m") auto lemma sign_extend_sign_extend_eq: "sign_extend m (sign_extend n w) = sign_extend (min m n) w" by (rule bit_word_eqI) (simp add: sign_extend_eq_signed_take_bit bit_simps) lemma sign_extended_high_bits: - "\ sign_extended e p; j < size p; e \ i; i < j \ \ p !! i = p !! j" + "\ sign_extended e p; j < size p; e \ i; i < j \ \ bit p i = bit p j" by (drule (1) sign_extended_weaken; simp add: sign_extended_def) lemma sign_extend_eq: "w AND mask (Suc n) = v AND mask (Suc n) \ sign_extend n w = sign_extend n v" by (simp flip: take_bit_eq_mask add: sign_extend_eq_signed_take_bit signed_take_bit_eq_iff_take_bit_eq) lemma sign_extended_add: assumes p: "is_aligned p n" assumes f: "f < 2 ^ n" assumes e: "n \ e" assumes "sign_extended e p" shows "sign_extended e (p + f)" proof (cases "e < size p") case True note and_or = is_aligned_add_or[OF p f] - have "\ f !! e" + have "\ bit f e" using True e less_2p_is_upper_bits_unset[THEN iffD1, OF f] by (fastforce simp: word_size) - hence i: "(p + f) !! e = p !! e" - by (simp add: and_or) + hence i: "bit (p + f) e = bit p e" + by (simp add: and_or bit_simps) have fm: "f AND mask e = f" by (fastforce intro: subst[where P="\f. f AND mask e = f", OF less_mask_eq[OF f]] simp: mask_twice e) show ?thesis using assms apply (simp add: sign_extended_iff_sign_extend sign_extend_def i) apply (simp add: and_or word_bw_comms[of p f]) apply (clarsimp simp: word_ao_dist fm word_bw_assocs split: if_splits) done next case False thus ?thesis by (simp add: sign_extended_def word_size) qed lemma sign_extended_neq_mask: "\sign_extended n ptr; m \ n\ \ sign_extended n (ptr AND NOT (mask m))" - by (fastforce simp: sign_extended_def word_size neg_mask_test_bit) + by (fastforce simp: sign_extended_def word_size neg_mask_test_bit bit_simps) definition "limited_and (x :: 'a :: len word) y \ (x AND y = x)" lemma limited_and_eq_0: "\ limited_and x z; y AND NOT z = y \ \ x AND y = 0" unfolding limited_and_def apply (subst arg_cong2[where f="(AND)"]) apply (erule sym)+ apply (simp(no_asm) add: word_bw_assocs word_bw_comms word_bw_lcs) done lemma limited_and_eq_id: "\ limited_and x z; y AND z = z \ \ x AND y = x" unfolding limited_and_def by (erule subst, fastforce simp: word_bw_lcs word_bw_assocs word_bw_comms) lemma lshift_limited_and: "limited_and x z \ limited_and (x << n) (z << n)" unfolding limited_and_def by (simp add: shiftl_over_and_dist[symmetric]) lemma rshift_limited_and: "limited_and x z \ limited_and (x >> n) (z >> n)" unfolding limited_and_def by (simp add: shiftr_over_and_dist[symmetric]) lemmas limited_and_simps1 = limited_and_eq_0 limited_and_eq_id lemmas is_aligned_limited_and = is_aligned_neg_mask_eq[unfolded mask_eq_decr_exp, folded limited_and_def] lemmas limited_and_simps = limited_and_simps1 limited_and_simps1[OF is_aligned_limited_and] limited_and_simps1[OF lshift_limited_and] limited_and_simps1[OF rshift_limited_and] limited_and_simps1[OF rshift_limited_and, OF is_aligned_limited_and] not_one shiftl_shiftr1[unfolded word_size mask_eq_decr_exp] shiftl_shiftr2[unfolded word_size mask_eq_decr_exp] definition from_bool :: "bool \ 'a::len word" where "from_bool b \ case b of True \ of_nat 1 | False \ of_nat 0" lemma from_bool_eq: \from_bool = of_bool\ by (simp add: fun_eq_iff from_bool_def) lemma from_bool_0: "(from_bool x = 0) = (\ x)" by (simp add: from_bool_def split: bool.split) lemma from_bool_eq_if': "((if P then 1 else 0) = from_bool Q) = (P = Q)" by (cases Q) (simp_all add: from_bool_def) definition to_bool :: "'a::len word \ bool" where "to_bool \ (\) 0" lemma to_bool_and_1: - "to_bool (x AND 1) = (x !! 0)" - by (simp add: test_bit_word_eq to_bool_def and_one_eq mod_2_eq_odd) + "to_bool (x AND 1) \ bit x 0" + by (simp add: to_bool_def and_one_eq mod_2_eq_odd) lemma to_bool_from_bool [simp]: "to_bool (from_bool r) = r" unfolding from_bool_def to_bool_def by (simp split: bool.splits) lemma from_bool_neq_0 [simp]: "(from_bool b \ 0) = b" by (simp add: from_bool_def split: bool.splits) lemma from_bool_mask_simp [simp]: "(from_bool r :: 'a::len word) AND 1 = from_bool r" unfolding from_bool_def by (clarsimp split: bool.splits) lemma from_bool_1 [simp]: "(from_bool P = 1) = P" by (simp add: from_bool_def split: bool.splits) lemma ge_0_from_bool [simp]: "(0 < from_bool P) = P" by (simp add: from_bool_def split: bool.splits) lemma limited_and_from_bool: "limited_and (from_bool b) 1" by (simp add: from_bool_def limited_and_def split: bool.split) lemma to_bool_1 [simp]: "to_bool 1" by (simp add: to_bool_def) lemma to_bool_0 [simp]: "\to_bool 0" by (simp add: to_bool_def) lemma from_bool_eq_if: "(from_bool Q = (if P then 1 else 0)) = (P = Q)" by (cases Q) (simp_all add: from_bool_def) lemma to_bool_eq_0: "(\ to_bool x) = (x = 0)" by (simp add: to_bool_def) lemma to_bool_neq_0: "(to_bool x) = (x \ 0)" by (simp add: to_bool_def) lemma from_bool_all_helper: "(\bool. from_bool bool = val \ P bool) = ((\bool. from_bool bool = val) \ P (val \ 0))" by (auto simp: from_bool_0) lemma fold_eq_0_to_bool: "(v = 0) = (\ to_bool v)" by (simp add: to_bool_def) lemma from_bool_to_bool_iff: "w = from_bool b \ to_bool w = b \ (w = 0 \ w = 1)" by (cases b) (auto simp: from_bool_def to_bool_def) lemma from_bool_eqI: "from_bool x = from_bool y \ x = y" unfolding from_bool_def by (auto split: bool.splits) lemma neg_mask_in_mask_range: "is_aligned ptr bits \ (ptr' AND NOT(mask bits) = ptr) = (ptr' \ mask_range ptr bits)" apply (erule is_aligned_get_word_bits) apply (rule iffI) apply (drule sym) apply (simp add: word_and_le2) apply (subst word_plus_and_or_coroll, word_eqI_solve) apply (metis bit.disj_ac(2) bit.disj_conj_distrib2 le_word_or2 word_and_max word_or_not) apply clarsimp apply (smt add.right_neutral eq_iff is_aligned_neg_mask_eq mask_out_add_aligned neg_mask_mono_le word_and_not) apply (simp add: power_overflow mask_eq_decr_exp) done lemma aligned_offset_in_range: "\ is_aligned (x :: 'a :: len word) m; y < 2 ^ m; is_aligned p n; n \ m; n < LENGTH('a) \ \ (x + y \ {p .. p + mask n}) = (x \ mask_range p n)" apply (subst disjunctive_add) apply (simp add: bit_simps) apply (erule is_alignedE') apply (auto simp add: bit_simps not_le)[1] - apply (metis less_2p_is_upper_bits_unset test_bit_eq_bit) + apply (metis less_2p_is_upper_bits_unset) apply (simp only: is_aligned_add_or word_ao_dist flip: neg_mask_in_mask_range) apply (subgoal_tac \y AND NOT (mask n) = 0\) apply simp apply (metis (full_types) is_aligned_mask is_aligned_neg_mask less_mask_eq word_bw_comms(1) word_bw_lcs(1)) done lemma mask_range_to_bl': "\ is_aligned (ptr :: 'a :: len word) bits; bits < LENGTH('a) \ \ mask_range ptr bits = {x. take (LENGTH('a) - bits) (to_bl x) = take (LENGTH('a) - bits) (to_bl ptr)}" apply (rule set_eqI, rule iffI) apply clarsimp apply (subgoal_tac "\y. x = ptr + y \ y < 2 ^ bits") apply clarsimp apply (subst is_aligned_add_conv) apply assumption apply simp apply simp apply (rule_tac x="x - ptr" in exI) apply (simp add: add_diff_eq[symmetric]) apply (simp only: word_less_sub_le[symmetric]) apply (rule word_diff_ls') apply (simp add: field_simps mask_eq_decr_exp) apply assumption apply simp apply (subgoal_tac "\y. y < 2 ^ bits \ to_bl (ptr + y) = to_bl x") apply clarsimp apply (rule conjI) apply (erule(1) is_aligned_no_wrap') apply (simp only: add_diff_eq[symmetric] mask_eq_decr_exp) apply (rule word_plus_mono_right) apply simp apply (erule is_aligned_no_wrap') apply simp apply (rule_tac x="of_bl (drop (LENGTH('a) - bits) (to_bl x))" in exI) apply (rule context_conjI) apply (rule order_less_le_trans [OF of_bl_length]) apply simp apply simp apply (subst is_aligned_add_conv) apply assumption apply simp apply (drule sym) apply (simp add: word_rep_drop) done lemma mask_range_to_bl: "is_aligned (ptr :: 'a :: len word) bits \ mask_range ptr bits = {x. take (LENGTH('a) - bits) (to_bl x) = take (LENGTH('a) - bits) (to_bl ptr)}" apply (erule is_aligned_get_word_bits) apply (erule(1) mask_range_to_bl') apply (rule set_eqI) apply (simp add: power_overflow mask_eq_decr_exp) done lemma aligned_mask_range_cases: "\ is_aligned (p :: 'a :: len word) n; is_aligned (p' :: 'a :: len word) n' \ \ mask_range p n \ mask_range p' n' = {} \ mask_range p n \ mask_range p' n' \ mask_range p n \ mask_range p' n'" apply (simp add: mask_range_to_bl) apply (rule Meson.disj_comm, rule disjCI) apply auto apply (subgoal_tac "(\n''. LENGTH('a) - n = (LENGTH('a) - n') + n'') \ (\n''. LENGTH('a) - n' = (LENGTH('a) - n) + n'')") apply (fastforce simp: take_add) apply arith done lemma aligned_mask_range_offset_subset: assumes al: "is_aligned (ptr :: 'a :: len word) sz" and al': "is_aligned x sz'" and szv: "sz' \ sz" and xsz: "x < 2 ^ sz" shows "mask_range (ptr+x) sz' \ mask_range ptr sz" using al proof (rule is_aligned_get_word_bits) assume p0: "ptr = 0" and szv': "LENGTH ('a) \ sz" then have "(2 ::'a word) ^ sz = 0" by simp show ?thesis using p0 by (simp add: \2 ^ sz = 0\ mask_eq_decr_exp) next assume szv': "sz < LENGTH('a)" hence blah: "2 ^ (sz - sz') < (2 :: nat) ^ LENGTH('a)" using szv by auto show ?thesis using szv szv' apply auto using al assms(4) is_aligned_no_wrap' apply blast apply (simp only: flip: add_diff_eq add_mask_fold) apply (subst add.assoc, rule word_plus_mono_right) using al' is_aligned_add_less_t2n xsz apply fastforce apply (simp add: field_simps szv al is_aligned_no_overflow) done qed lemma aligned_mask_ranges_disjoint: "\ is_aligned (p :: 'a :: len word) n; is_aligned (p' :: 'a :: len word) n'; p AND NOT(mask n') \ p'; p' AND NOT(mask n) \ p \ \ mask_range p n \ mask_range p' n' = {}" using aligned_mask_range_cases by (auto simp: neg_mask_in_mask_range) lemma aligned_mask_ranges_disjoint2: "\ is_aligned p n; is_aligned ptr bits; n \ m; n < size p; m \ bits; (\y < 2 ^ (n - m). p + (y << m) \ mask_range ptr bits) \ \ mask_range p n \ mask_range ptr bits = {}" apply safe apply (simp only: flip: neg_mask_in_mask_range) apply (drule_tac x="x AND mask n >> m" in spec) apply (clarsimp simp: and_mask_less_size wsst_TYs shiftr_less_t2n multiple_mask_trivia neg_mask_twice word_bw_assocs max_absorb2 shiftr_shiftl1) done lemma word_clz_sint_upper[simp]: "LENGTH('a) \ 3 \ sint (of_nat (word_clz (w :: 'a :: len word)) :: 'a sword) \ int (LENGTH('a))" using word_clz_max [of w] apply (simp add: word_size) apply (subst signed_take_bit_int_eq_self) apply simp_all apply (metis negative_zle of_nat_numeral semiring_1_class.of_nat_power) apply (drule small_powers_of_2) apply (erule le_less_trans) apply simp done lemma word_clz_sint_lower[simp]: "LENGTH('a) \ 3 \ - sint (of_nat (word_clz (w :: 'a :: len word)) :: 'a signed word) \ int (LENGTH('a))" apply (subst sint_eq_uint) using word_clz_max [of w] apply (simp_all add: word_size) apply (rule not_msb_from_less) apply (simp add: word_less_nat_alt) apply (subst take_bit_nat_eq_self) apply (simp add: le_less_trans) apply (drule small_powers_of_2) apply (erule le_less_trans) apply simp done lemma mask_range_subsetD: "\ p' \ mask_range p n; x' \ mask_range p' n'; n' \ n; is_aligned p n; is_aligned p' n' \ \ x' \ mask_range p n" using aligned_mask_step by fastforce lemma nasty_split_lt: "\ (x :: 'a:: len word) < 2 ^ (m - n); n \ m; m < LENGTH('a::len) \ \ x * 2 ^ n + (2 ^ n - 1) \ 2 ^ m - 1" apply (simp only: add_diff_eq) apply (subst mult_1[symmetric], subst distrib_right[symmetric]) apply (rule word_sub_mono) apply (rule order_trans) apply (rule word_mult_le_mono1) apply (rule inc_le) apply assumption apply (subst word_neq_0_conv[symmetric]) apply (rule power_not_zero) apply simp apply (subst unat_power_lower, simp)+ apply (subst power_add[symmetric]) apply (rule power_strict_increasing) apply simp apply simp apply (subst power_add[symmetric]) apply simp apply simp apply (rule word_sub_1_le) apply (subst mult.commute) apply (subst shiftl_t2n[symmetric]) apply (rule word_shift_nonzero) apply (erule inc_le) apply simp apply (unat_arith) apply (drule word_power_less_1) apply simp done lemma nasty_split_less: "\m \ n; n \ nm; nm < LENGTH('a::len); x < 2 ^ (nm - n)\ \ (x :: 'a word) * 2 ^ n + (2 ^ m - 1) < 2 ^ nm" apply (simp only: word_less_sub_le[symmetric]) apply (rule order_trans [OF _ nasty_split_lt]) apply (rule word_plus_mono_right) apply (rule word_sub_mono) apply (simp add: word_le_nat_alt) apply simp apply (simp add: word_sub_1_le[OF power_not_zero]) apply (simp add: word_sub_1_le[OF power_not_zero]) apply (rule is_aligned_no_wrap') apply (rule is_aligned_mult_triv2) apply simp apply (erule order_le_less_trans, simp) apply simp+ done lemma add_mult_in_mask_range: "\ is_aligned (base :: 'a :: len word) n; n < LENGTH('a); bits \ n; x < 2 ^ (n - bits) \ \ base + x * 2^bits \ mask_range base n" by (simp add: is_aligned_no_wrap' mask_2pm1 nasty_split_lt word_less_power_trans2 word_plus_mono_right) lemma from_to_bool_last_bit: "from_bool (to_bool (x AND 1)) = x AND 1" by (metis from_bool_to_bool_iff word_and_1) lemma sint_ctz: "LENGTH('a) > 2 \ 0 \ sint (of_nat (word_ctz (x :: 'a :: len word)) :: 'a signed word) \ sint (of_nat (word_ctz x) :: 'a signed word) \ int (LENGTH('a))" apply (subgoal_tac "LENGTH('a) < 2 ^ (LENGTH('a) - 1)") apply (rule conjI) apply (metis len_signed order_le_less_trans sint_of_nat_ge_zero word_ctz_le) apply (metis int_eq_sint len_signed sint_of_nat_le word_ctz_le) using small_powers_of_2 [of \LENGTH('a)\] by simp lemma unat_of_nat_word_log2: "LENGTH('a) < 2 ^ LENGTH('b) \ unat (of_nat (word_log2 (n :: 'a :: len word)) :: 'b :: len word) = word_log2 n" by (metis less_trans unat_of_nat_eq word_log2_max word_size) lemma aligned_mask_diff: "\ is_aligned (dest :: 'a :: len word) bits; is_aligned (ptr :: 'a :: len word) sz; bits \ sz; sz < LENGTH('a); dest < ptr \ \ mask bits + dest < ptr" apply (frule_tac p' = ptr in aligned_mask_range_cases, assumption) apply (elim disjE) apply (drule_tac is_aligned_no_overflow_mask, simp)+ apply (simp add: algebra_split_simps word_le_not_less) apply (drule is_aligned_no_overflow_mask; fastforce) apply (simp add: is_aligned_weaken algebra_split_simps) apply (auto simp add: not_le) using is_aligned_no_overflow_mask leD apply blast apply (meson aligned_add_mask_less_eq is_aligned_weaken le_less_trans) done end \ No newline at end of file diff --git a/thys/Word_Lib/Most_significant_bit.thy b/thys/Word_Lib/Most_significant_bit.thy --- a/thys/Word_Lib/Most_significant_bit.thy +++ b/thys/Word_Lib/Most_significant_bit.thy @@ -1,203 +1,203 @@ (* * Copyright Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) (* Author: Jeremy Dawson, NICTA *) section \Dedicated operation for the most significant bit\ theory Most_significant_bit imports "HOL-Library.Word" Bits_Int Traditional_Infix_Syntax More_Arithmetic begin class msb = fixes msb :: \'a \ bool\ instantiation int :: msb begin definition \msb x \ x < 0\ for x :: int instance .. end lemma msb_conv_bin_sign: "msb x \ bin_sign x = -1" by(simp add: bin_sign_def not_le msb_int_def) lemma msb_bin_rest [simp]: "msb (x div 2) = msb x" for x :: int by (simp add: msb_int_def) lemma int_msb_and [simp]: "msb ((x :: int) AND y) \ msb x \ msb y" by(simp add: msb_int_def) lemma int_msb_or [simp]: "msb ((x :: int) OR y) \ msb x \ msb y" by(simp add: msb_int_def) lemma int_msb_xor [simp]: "msb ((x :: int) XOR y) \ msb x \ msb y" by(simp add: msb_int_def) lemma int_msb_not [simp]: "msb (NOT (x :: int)) \ \ msb x" by(simp add: msb_int_def not_less) lemma msb_shiftl [simp]: "msb ((x :: int) << n) \ msb x" by(simp add: msb_int_def) lemma msb_shiftr [simp]: "msb ((x :: int) >> r) \ msb x" by(simp add: msb_int_def) lemma msb_bin_sc [simp]: "msb (bin_sc n b x) \ msb x" by(simp add: msb_conv_bin_sign) lemma msb_0 [simp]: "msb (0 :: int) = False" by(simp add: msb_int_def) lemma msb_1 [simp]: "msb (1 :: int) = False" by(simp add: msb_int_def) lemma msb_numeral [simp]: "msb (numeral n :: int) = False" "msb (- numeral n :: int) = True" by(simp_all add: msb_int_def) instantiation word :: (len) msb begin definition msb_word :: \'a word \ bool\ where \msb a \ bin_sign (signed_take_bit (LENGTH('a) - 1) (uint a)) = - 1\ lemma msb_word_eq: \msb w \ bit w (LENGTH('a) - 1)\ for w :: \'a::len word\ by (simp add: msb_word_def bin_sign_lem bit_uint_iff) instance .. end lemma msb_word_iff_bit: \msb w \ bit w (LENGTH('a) - Suc 0)\ for w :: \'a::len word\ by (simp add: msb_word_def bin_sign_def bit_uint_iff) lemma word_msb_def: "msb a \ bin_sign (sint a) = - 1" by (simp add: msb_word_def sint_uint) lemma word_msb_sint: "msb w \ sint w < 0" by (simp add: msb_word_eq bit_last_iff) lemma msb_word_iff_sless_0: \msb w \ w by (simp add: word_msb_sint word_sless_alt) lemma msb_word_of_int: "msb (word_of_int x::'a::len word) = bit x (LENGTH('a) - 1)" by (simp add: word_msb_def bin_sign_lem) lemma word_msb_numeral [simp]: "msb (numeral w::'a::len word) = bit (numeral w :: int) (LENGTH('a) - 1)" unfolding word_numeral_alt by (rule msb_word_of_int) lemma word_msb_neg_numeral [simp]: "msb (- numeral w::'a::len word) = bit (- numeral w :: int) (LENGTH('a) - 1)" unfolding word_neg_numeral_alt by (rule msb_word_of_int) lemma word_msb_0 [simp]: "\ msb (0::'a::len word)" by (simp add: word_msb_def bin_sign_def sint_uint sbintrunc_eq_take_bit) lemma word_msb_1 [simp]: "msb (1::'a::len word) \ LENGTH('a) = 1" unfolding word_1_wi msb_word_of_int eq_iff [where 'a=nat] by (simp add: Suc_le_eq) lemma word_msb_nth: "msb w = bit (uint w) (LENGTH('a) - 1)" for w :: "'a::len word" by (simp add: word_msb_def sint_uint bin_sign_lem) -lemma msb_nth: "msb w = w !! (LENGTH('a) - 1)" +lemma msb_nth: "msb w = bit w (LENGTH('a) - 1)" for w :: "'a::len word" by (simp add: word_msb_nth word_test_bit_def) lemma word_msb_n1 [simp]: "msb (-1::'a::len word)" by (simp add: msb_word_eq not_le) lemma msb_shift: "msb w \ w >> (LENGTH('a) - 1) \ 0" for w :: "'a::len word" by (simp add: msb_word_eq shiftr_word_eq bit_iff_odd_drop_bit drop_bit_eq_zero_iff_not_bit_last) lemmas word_ops_msb = msb1 [unfolded msb_nth [symmetric, unfolded One_nat_def]] lemma word_sint_msb_eq: "sint x = uint x - (if msb x then 2 ^ size x else 0)" apply (cases \LENGTH('a)\) apply (simp_all add: msb_word_def bin_sign_def bit_simps word_size) apply transfer apply (auto simp add: take_bit_Suc_from_most signed_take_bit_eq_if_positive signed_take_bit_eq_if_negative minus_exp_eq_not_mask ac_simps) apply (subst disjunctive_add) apply (simp_all add: bit_simps) done lemma word_sle_msb_le: "x <=s y \ (msb y \ msb x) \ ((msb x \ \ msb y) \ x \ y)" apply (simp add: word_sle_eq word_sint_msb_eq word_size word_le_def) apply safe apply (rule order_trans[OF _ uint_ge_0]) apply (simp add: order_less_imp_le) apply (erule notE[OF leD]) apply (rule order_less_le_trans[OF _ uint_ge_0]) apply simp done lemma word_sless_msb_less: "x (msb y \ msb x) \ ((msb x \ \ msb y) \ x < y)" by (auto simp add: word_sless_eq word_sle_msb_le) lemma not_msb_from_less: "(v :: 'a word) < 2 ^ (LENGTH('a :: len) - 1) \ \ msb v" apply (clarsimp simp add: msb_nth) apply (drule less_mask_eq) apply (drule word_eqD, drule(1) iffD2) - apply simp + apply (simp add: bit_simps) done lemma sint_eq_uint: "\ msb x \ sint x = uint x" apply (simp add: msb_word_eq) apply transfer apply auto apply (smt One_nat_def bintrunc_bintrunc_l bintrunc_sbintrunc' diff_le_self len_gt_0 signed_take_bit_eq_if_positive) done lemma scast_eq_ucast: "\ msb x \ scast x = ucast x" apply (cases \LENGTH('a)\) apply simp apply (rule bit_word_eqI) apply (auto simp add: bit_signed_iff bit_unsigned_iff min_def msb_word_eq) apply (erule notE) - apply (metis le_less_Suc_eq test_bit_bin test_bit_word_eq) + apply (metis le_less_Suc_eq test_bit_bin) done lemma msb_ucast_eq: "LENGTH('a) = LENGTH('b) \ msb (ucast x :: ('a::len) word) = msb (x :: ('b::len) word)" by (simp add: msb_word_eq bit_simps) lemma msb_big: "msb (a :: ('a::len) word) = (a \ 2 ^ (LENGTH('a) - Suc 0))" apply (rule iffI) apply (clarsimp simp: msb_nth) apply (drule bang_is_le) apply simp apply (rule ccontr) apply (subgoal_tac "a = a AND mask (LENGTH('a) - Suc 0)") apply (cut_tac and_mask_less' [where w=a and n="LENGTH('a) - Suc 0"]) apply (clarsimp simp: word_not_le [symmetric]) apply clarsimp apply (rule sym, subst and_mask_eq_iff_shiftr_0) apply (clarsimp simp: msb_shift) done end diff --git a/thys/Word_Lib/Reversed_Bit_Lists.thy b/thys/Word_Lib/Reversed_Bit_Lists.thy --- a/thys/Word_Lib/Reversed_Bit_Lists.thy +++ b/thys/Word_Lib/Reversed_Bit_Lists.thy @@ -1,2318 +1,2286 @@ (* * Copyright Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) (* Author: Jeremy Dawson, NICTA *) section \Bit values as reversed lists of bools\ theory Reversed_Bit_Lists imports "HOL-Library.Word" Typedef_Morphisms Least_significant_bit Most_significant_bit Even_More_List "HOL-Library.Sublist" Aligned begin lemma horner_sum_of_bool_2_concat: \horner_sum of_bool 2 (concat (map (\x. map (bit x) [0.. for ws :: \'a::len word list\ proof (induction ws) case Nil then show ?case by simp next case (Cons w ws) moreover have \horner_sum of_bool 2 (map (bit w) [0.. proof transfer fix k :: int have \map (\n. n < LENGTH('a) \ bit k n) [0.. by simp then show \horner_sum of_bool 2 (map (\n. n < LENGTH('a) \ bit k n) [0.. by (simp only: horner_sum_bit_eq_take_bit) qed ultimately show ?case by (simp add: horner_sum_append) qed subsection \Implicit augmentation of list prefixes\ primrec takefill :: "'a \ nat \ 'a list \ 'a list" where Z: "takefill fill 0 xs = []" | Suc: "takefill fill (Suc n) xs = (case xs of [] \ fill # takefill fill n xs | y # ys \ y # takefill fill n ys)" lemma nth_takefill: "m < n \ takefill fill n l ! m = (if m < length l then l ! m else fill)" apply (induct n arbitrary: m l) apply clarsimp apply clarsimp apply (case_tac m) apply (simp split: list.split) apply (simp split: list.split) done lemma takefill_alt: "takefill fill n l = take n l @ replicate (n - length l) fill" by (induct n arbitrary: l) (auto split: list.split) lemma takefill_replicate [simp]: "takefill fill n (replicate m fill) = replicate n fill" by (simp add: takefill_alt replicate_add [symmetric]) lemma takefill_le': "n = m + k \ takefill x m (takefill x n l) = takefill x m l" by (induct m arbitrary: l n) (auto split: list.split) lemma length_takefill [simp]: "length (takefill fill n l) = n" by (simp add: takefill_alt) lemma take_takefill': "n = k + m \ take k (takefill fill n w) = takefill fill k w" by (induct k arbitrary: w n) (auto split: list.split) lemma drop_takefill: "drop k (takefill fill (m + k) w) = takefill fill m (drop k w)" by (induct k arbitrary: w) (auto split: list.split) lemma takefill_le [simp]: "m \ n \ takefill x m (takefill x n l) = takefill x m l" by (auto simp: le_iff_add takefill_le') lemma take_takefill [simp]: "m \ n \ take m (takefill fill n w) = takefill fill m w" by (auto simp: le_iff_add take_takefill') lemma takefill_append: "takefill fill (m + length xs) (xs @ w) = xs @ (takefill fill m w)" by (induct xs) auto lemma takefill_same': "l = length xs \ takefill fill l xs = xs" by (induct xs arbitrary: l) auto lemmas takefill_same [simp] = takefill_same' [OF refl] lemma tf_rev: "n + k = m + length bl \ takefill x m (rev (takefill y n bl)) = rev (takefill y m (rev (takefill x k (rev bl))))" apply (rule nth_equalityI) apply (auto simp add: nth_takefill rev_nth) apply (rule_tac f = "\n. bl ! n" in arg_cong) apply arith done lemma takefill_minus: "0 < n \ takefill fill (Suc (n - 1)) w = takefill fill n w" by auto lemmas takefill_Suc_cases = list.cases [THEN takefill.Suc [THEN trans]] lemmas takefill_Suc_Nil = takefill_Suc_cases (1) lemmas takefill_Suc_Cons = takefill_Suc_cases (2) lemmas takefill_minus_simps = takefill_Suc_cases [THEN [2] takefill_minus [symmetric, THEN trans]] lemma takefill_numeral_Nil [simp]: "takefill fill (numeral k) [] = fill # takefill fill (pred_numeral k) []" by (simp add: numeral_eq_Suc) lemma takefill_numeral_Cons [simp]: "takefill fill (numeral k) (x # xs) = x # takefill fill (pred_numeral k) xs" by (simp add: numeral_eq_Suc) subsection \Range projection\ definition bl_of_nth :: "nat \ (nat \ 'a) \ 'a list" where "bl_of_nth n f = map f (rev [0.. rev (bl_of_nth n f) ! m = f m" by (simp add: bl_of_nth_def rev_map) lemma bl_of_nth_inj: "(\k. k < n \ f k = g k) \ bl_of_nth n f = bl_of_nth n g" by (simp add: bl_of_nth_def) lemma bl_of_nth_nth_le: "n \ length xs \ bl_of_nth n (nth (rev xs)) = drop (length xs - n) xs" apply (induct n arbitrary: xs) apply clarsimp apply clarsimp apply (rule trans [OF _ hd_Cons_tl]) apply (frule Suc_le_lessD) apply (simp add: rev_nth trans [OF drop_Suc drop_tl, symmetric]) apply (subst hd_drop_conv_nth) apply force apply simp_all apply (rule_tac f = "\n. drop n xs" in arg_cong) apply simp done lemma bl_of_nth_nth [simp]: "bl_of_nth (length xs) ((!) (rev xs)) = xs" by (simp add: bl_of_nth_nth_le) subsection \More\ definition rotater1 :: "'a list \ 'a list" where "rotater1 ys = (case ys of [] \ [] | x # xs \ last ys # butlast ys)" definition rotater :: "nat \ 'a list \ 'a list" where "rotater n = rotater1 ^^ n" lemmas rotater_0' [simp] = rotater_def [where n = "0", simplified] lemma rotate1_rl': "rotater1 (l @ [a]) = a # l" by (cases l) (auto simp: rotater1_def) lemma rotate1_rl [simp] : "rotater1 (rotate1 l) = l" apply (unfold rotater1_def) apply (cases "l") apply (case_tac [2] "list") apply auto done lemma rotate1_lr [simp] : "rotate1 (rotater1 l) = l" by (cases l) (auto simp: rotater1_def) lemma rotater1_rev': "rotater1 (rev xs) = rev (rotate1 xs)" by (cases "xs") (simp add: rotater1_def, simp add: rotate1_rl') lemma rotater_rev': "rotater n (rev xs) = rev (rotate n xs)" by (induct n) (auto simp: rotater_def intro: rotater1_rev') lemma rotater_rev: "rotater n ys = rev (rotate n (rev ys))" using rotater_rev' [where xs = "rev ys"] by simp lemma rotater_drop_take: "rotater n xs = drop (length xs - n mod length xs) xs @ take (length xs - n mod length xs) xs" by (auto simp: rotater_rev rotate_drop_take rev_take rev_drop) lemma rotater_Suc [simp]: "rotater (Suc n) xs = rotater1 (rotater n xs)" unfolding rotater_def by auto lemma nth_rotater: \rotater m xs ! n = xs ! ((n + (length xs - m mod length xs)) mod length xs)\ if \n < length xs\ using that by (simp add: rotater_drop_take nth_append not_less less_diff_conv ac_simps le_mod_geq) lemma nth_rotater1: \rotater1 xs ! n = xs ! ((n + (length xs - 1)) mod length xs)\ if \n < length xs\ using that nth_rotater [of n xs 1] by simp lemma rotate_inv_plus [rule_format]: "\k. k = m + n \ rotater k (rotate n xs) = rotater m xs \ rotate k (rotater n xs) = rotate m xs \ rotater n (rotate k xs) = rotate m xs \ rotate n (rotater k xs) = rotater m xs" by (induct n) (auto simp: rotater_def rotate_def intro: funpow_swap1 [THEN trans]) lemmas rotate_inv_rel = le_add_diff_inverse2 [symmetric, THEN rotate_inv_plus] lemmas rotate_inv_eq = order_refl [THEN rotate_inv_rel, simplified] lemmas rotate_lr [simp] = rotate_inv_eq [THEN conjunct1] lemmas rotate_rl [simp] = rotate_inv_eq [THEN conjunct2, THEN conjunct1] lemma rotate_gal: "rotater n xs = ys \ rotate n ys = xs" by auto lemma rotate_gal': "ys = rotater n xs \ xs = rotate n ys" by auto lemma length_rotater [simp]: "length (rotater n xs) = length xs" by (simp add : rotater_rev) lemma rotate_eq_mod: "m mod length xs = n mod length xs \ rotate m xs = rotate n xs" apply (rule box_equals) defer apply (rule rotate_conv_mod [symmetric])+ apply simp done lemma restrict_to_left: "x = y \ x = z \ y = z" by simp lemmas rotate_eqs = trans [OF rotate0 [THEN fun_cong] id_apply] rotate_rotate [symmetric] rotate_id rotate_conv_mod rotate_eq_mod lemmas rrs0 = rotate_eqs [THEN restrict_to_left, simplified rotate_gal [symmetric] rotate_gal' [symmetric]] lemmas rrs1 = rrs0 [THEN refl [THEN rev_iffD1]] lemmas rotater_eqs = rrs1 [simplified length_rotater] lemmas rotater_0 = rotater_eqs (1) lemmas rotater_add = rotater_eqs (2) lemma butlast_map: "xs \ [] \ butlast (map f xs) = map f (butlast xs)" by (induct xs) auto lemma rotater1_map: "rotater1 (map f xs) = map f (rotater1 xs)" by (cases xs) (auto simp: rotater1_def last_map butlast_map) lemma rotater_map: "rotater n (map f xs) = map f (rotater n xs)" by (induct n) (auto simp: rotater_def rotater1_map) lemma but_last_zip [rule_format] : "\ys. length xs = length ys \ xs \ [] \ last (zip xs ys) = (last xs, last ys) \ butlast (zip xs ys) = zip (butlast xs) (butlast ys)" apply (induct xs) apply auto apply ((case_tac ys, auto simp: neq_Nil_conv)[1])+ done lemma but_last_map2 [rule_format] : "\ys. length xs = length ys \ xs \ [] \ last (map2 f xs ys) = f (last xs) (last ys) \ butlast (map2 f xs ys) = map2 f (butlast xs) (butlast ys)" apply (induct xs) apply auto apply ((case_tac ys, auto simp: neq_Nil_conv)[1])+ done lemma rotater1_zip: "length xs = length ys \ rotater1 (zip xs ys) = zip (rotater1 xs) (rotater1 ys)" apply (unfold rotater1_def) apply (cases xs) apply auto apply ((case_tac ys, auto simp: neq_Nil_conv but_last_zip)[1])+ done lemma rotater1_map2: "length xs = length ys \ rotater1 (map2 f xs ys) = map2 f (rotater1 xs) (rotater1 ys)" by (simp add: rotater1_map rotater1_zip) lemmas lrth = box_equals [OF asm_rl length_rotater [symmetric] length_rotater [symmetric], THEN rotater1_map2] lemma rotater_map2: "length xs = length ys \ rotater n (map2 f xs ys) = map2 f (rotater n xs) (rotater n ys)" by (induct n) (auto intro!: lrth) lemma rotate1_map2: "length xs = length ys \ rotate1 (map2 f xs ys) = map2 f (rotate1 xs) (rotate1 ys)" by (cases xs; cases ys) auto lemmas lth = box_equals [OF asm_rl length_rotate [symmetric] length_rotate [symmetric], THEN rotate1_map2] lemma rotate_map2: "length xs = length ys \ rotate n (map2 f xs ys) = map2 f (rotate n xs) (rotate n ys)" by (induct n) (auto intro!: lth) subsection \Explicit bit representation of \<^typ>\int\\ primrec bl_to_bin_aux :: "bool list \ int \ int" where Nil: "bl_to_bin_aux [] w = w" | Cons: "bl_to_bin_aux (b # bs) w = bl_to_bin_aux bs (of_bool b + 2 * w)" definition bl_to_bin :: "bool list \ int" where "bl_to_bin bs = bl_to_bin_aux bs 0" primrec bin_to_bl_aux :: "nat \ int \ bool list \ bool list" where Z: "bin_to_bl_aux 0 w bl = bl" | Suc: "bin_to_bl_aux (Suc n) w bl = bin_to_bl_aux n (w div 2) (odd w # bl)" definition bin_to_bl :: "nat \ int \ bool list" where "bin_to_bl n w = bin_to_bl_aux n w []" lemma bin_to_bl_aux_zero_minus_simp [simp]: "0 < n \ bin_to_bl_aux n 0 bl = bin_to_bl_aux (n - 1) 0 (False # bl)" by (cases n) auto lemma bin_to_bl_aux_minus1_minus_simp [simp]: "0 < n \ bin_to_bl_aux n (- 1) bl = bin_to_bl_aux (n - 1) (- 1) (True # bl)" by (cases n) auto lemma bin_to_bl_aux_one_minus_simp [simp]: "0 < n \ bin_to_bl_aux n 1 bl = bin_to_bl_aux (n - 1) 0 (True # bl)" by (cases n) auto lemma bin_to_bl_aux_Bit0_minus_simp [simp]: "0 < n \ bin_to_bl_aux n (numeral (Num.Bit0 w)) bl = bin_to_bl_aux (n - 1) (numeral w) (False # bl)" by (cases n) simp_all lemma bin_to_bl_aux_Bit1_minus_simp [simp]: "0 < n \ bin_to_bl_aux n (numeral (Num.Bit1 w)) bl = bin_to_bl_aux (n - 1) (numeral w) (True # bl)" by (cases n) simp_all lemma bl_to_bin_aux_append: "bl_to_bin_aux (bs @ cs) w = bl_to_bin_aux cs (bl_to_bin_aux bs w)" by (induct bs arbitrary: w) auto lemma bin_to_bl_aux_append: "bin_to_bl_aux n w bs @ cs = bin_to_bl_aux n w (bs @ cs)" by (induct n arbitrary: w bs) auto lemma bl_to_bin_append: "bl_to_bin (bs @ cs) = bl_to_bin_aux cs (bl_to_bin bs)" unfolding bl_to_bin_def by (rule bl_to_bin_aux_append) lemma bin_to_bl_aux_alt: "bin_to_bl_aux n w bs = bin_to_bl n w @ bs" by (simp add: bin_to_bl_def bin_to_bl_aux_append) lemma bin_to_bl_0 [simp]: "bin_to_bl 0 bs = []" by (auto simp: bin_to_bl_def) lemma size_bin_to_bl_aux: "length (bin_to_bl_aux n w bs) = n + length bs" by (induct n arbitrary: w bs) auto lemma size_bin_to_bl [simp]: "length (bin_to_bl n w) = n" by (simp add: bin_to_bl_def size_bin_to_bl_aux) lemma bl_bin_bl': "bin_to_bl (n + length bs) (bl_to_bin_aux bs w) = bin_to_bl_aux n w bs" apply (induct bs arbitrary: w n) apply auto apply (simp_all only: add_Suc [symmetric]) apply (auto simp add: bin_to_bl_def) done lemma bl_bin_bl [simp]: "bin_to_bl (length bs) (bl_to_bin bs) = bs" unfolding bl_to_bin_def apply (rule box_equals) apply (rule bl_bin_bl') prefer 2 apply (rule bin_to_bl_aux.Z) apply simp done lemma bl_to_bin_inj: "bl_to_bin bs = bl_to_bin cs \ length bs = length cs \ bs = cs" apply (rule_tac box_equals) defer apply (rule bl_bin_bl) apply (rule bl_bin_bl) apply simp done lemma bl_to_bin_False [simp]: "bl_to_bin (False # bl) = bl_to_bin bl" by (auto simp: bl_to_bin_def) lemma bl_to_bin_Nil [simp]: "bl_to_bin [] = 0" by (auto simp: bl_to_bin_def) lemma bin_to_bl_zero_aux: "bin_to_bl_aux n 0 bl = replicate n False @ bl" by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same) lemma bin_to_bl_zero: "bin_to_bl n 0 = replicate n False" by (simp add: bin_to_bl_def bin_to_bl_zero_aux) lemma bin_to_bl_minus1_aux: "bin_to_bl_aux n (- 1) bl = replicate n True @ bl" by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same) lemma bin_to_bl_minus1: "bin_to_bl n (- 1) = replicate n True" by (simp add: bin_to_bl_def bin_to_bl_minus1_aux) subsection \Semantic interpretation of \<^typ>\bool list\ as \<^typ>\int\\ lemma bin_bl_bin': "bl_to_bin (bin_to_bl_aux n w bs) = bl_to_bin_aux bs (take_bit n w)" by (induct n arbitrary: w bs) (auto simp: bl_to_bin_def take_bit_Suc ac_simps mod_2_eq_odd) lemma bin_bl_bin [simp]: "bl_to_bin (bin_to_bl n w) = take_bit n w" by (auto simp: bin_to_bl_def bin_bl_bin') lemma bl_to_bin_rep_F: "bl_to_bin (replicate n False @ bl) = bl_to_bin bl" by (simp add: bin_to_bl_zero_aux [symmetric] bin_bl_bin') (simp add: bl_to_bin_def) lemma bin_to_bl_trunc [simp]: "n \ m \ bin_to_bl n (take_bit m w) = bin_to_bl n w" by (auto intro: bl_to_bin_inj) lemma bin_to_bl_aux_bintr: "bin_to_bl_aux n (take_bit m bin) bl = replicate (n - m) False @ bin_to_bl_aux (min n m) bin bl" apply (induct n arbitrary: m bin bl) apply clarsimp apply clarsimp apply (case_tac "m") apply (clarsimp simp: bin_to_bl_zero_aux) apply (erule thin_rl) apply (induct_tac n) apply (auto simp add: take_bit_Suc) done lemma bin_to_bl_bintr: "bin_to_bl n (take_bit m bin) = replicate (n - m) False @ bin_to_bl (min n m) bin" unfolding bin_to_bl_def by (rule bin_to_bl_aux_bintr) lemma bl_to_bin_rep_False: "bl_to_bin (replicate n False) = 0" by (induct n) auto lemma len_bin_to_bl_aux: "length (bin_to_bl_aux n w bs) = n + length bs" by (fact size_bin_to_bl_aux) lemma len_bin_to_bl: "length (bin_to_bl n w) = n" by (fact size_bin_to_bl) (* FIXME: duplicate *) lemma sign_bl_bin': "bin_sign (bl_to_bin_aux bs w) = bin_sign w" by (induction bs arbitrary: w) (simp_all add: bin_sign_def) lemma sign_bl_bin: "bin_sign (bl_to_bin bs) = 0" by (simp add: bl_to_bin_def sign_bl_bin') lemma bl_sbin_sign_aux: "hd (bin_to_bl_aux (Suc n) w bs) = (bin_sign (signed_take_bit n w) = -1)" by (induction n arbitrary: w bs) (auto simp add: bin_sign_def even_iff_mod_2_eq_zero bit_Suc) lemma bl_sbin_sign: "hd (bin_to_bl (Suc n) w) = (bin_sign (signed_take_bit n w) = -1)" unfolding bin_to_bl_def by (rule bl_sbin_sign_aux) lemma bin_nth_of_bl_aux: "bit (bl_to_bin_aux bl w) n = (n < size bl \ rev bl ! n \ n \ length bl \ bit w (n - size bl))" apply (induction bl arbitrary: w) apply simp_all apply safe apply (simp_all add: not_le nth_append bit_double_iff even_bit_succ_iff split: if_splits) done lemma bin_nth_of_bl: "bit (bl_to_bin bl) n = (n < length bl \ rev bl ! n)" by (simp add: bl_to_bin_def bin_nth_of_bl_aux) lemma bin_nth_bl: "n < m \ bit w n = nth (rev (bin_to_bl m w)) n" apply (induct n arbitrary: m w) apply clarsimp apply (case_tac m, clarsimp) apply (clarsimp simp: bin_to_bl_def) apply (simp add: bin_to_bl_aux_alt) apply (case_tac m, clarsimp) apply (clarsimp simp: bin_to_bl_def) apply (simp add: bin_to_bl_aux_alt bit_Suc) done lemma nth_bin_to_bl_aux: "n < m + length bl \ (bin_to_bl_aux m w bl) ! n = (if n < m then bit w (m - 1 - n) else bl ! (n - m))" apply (induction bl arbitrary: w) apply simp_all apply (simp add: bin_nth_bl [of \m - Suc n\ m] rev_nth flip: bin_to_bl_def) apply (metis One_nat_def Suc_pred add_diff_cancel_left' add_diff_cancel_right' bin_to_bl_aux_alt bin_to_bl_def diff_Suc_Suc diff_is_0_eq diff_zero less_Suc_eq_0_disj less_antisym less_imp_Suc_add list.size(3) nat_less_le nth_append size_bin_to_bl_aux) done lemma nth_bin_to_bl: "n < m \ (bin_to_bl m w) ! n = bit w (m - Suc n)" by (simp add: bin_to_bl_def nth_bin_to_bl_aux) lemma takefill_bintrunc: "takefill False n bl = rev (bin_to_bl n (bl_to_bin (rev bl)))" apply (rule nth_equalityI) apply simp apply (clarsimp simp: nth_takefill rev_nth nth_bin_to_bl bin_nth_of_bl) done lemma bl_bin_bl_rtf: "bin_to_bl n (bl_to_bin bl) = rev (takefill False n (rev bl))" by (simp add: takefill_bintrunc) lemma bl_to_bin_lt2p_aux: "bl_to_bin_aux bs w < (w + 1) * (2 ^ length bs)" proof (induction bs arbitrary: w) case Nil then show ?case by simp next case (Cons b bs) from Cons.IH [of \1 + 2 * w\] Cons.IH [of \2 * w\] show ?case apply (auto simp add: algebra_simps) apply (subst mult_2 [of \2 ^ length bs\]) apply (simp only: add.assoc) apply (rule pos_add_strict) apply simp_all done qed lemma bl_to_bin_lt2p_drop: "bl_to_bin bs < 2 ^ length (dropWhile Not bs)" proof (induct bs) case Nil then show ?case by simp next case (Cons b bs) with bl_to_bin_lt2p_aux[where w=1] show ?case by (simp add: bl_to_bin_def) qed lemma bl_to_bin_lt2p: "bl_to_bin bs < 2 ^ length bs" by (metis bin_bl_bin bintr_lt2p bl_bin_bl) lemma bl_to_bin_ge2p_aux: "bl_to_bin_aux bs w \ w * (2 ^ length bs)" proof (induction bs arbitrary: w) case Nil then show ?case by simp next case (Cons b bs) from Cons.IH [of \1 + 2 * w\] Cons.IH [of \2 * w\] show ?case apply (auto simp add: algebra_simps) apply (rule add_le_imp_le_left [of \2 ^ length bs\]) apply (rule add_increasing) apply simp_all done qed lemma bl_to_bin_ge0: "bl_to_bin bs \ 0" apply (unfold bl_to_bin_def) apply (rule xtrans(4)) apply (rule bl_to_bin_ge2p_aux) apply simp done lemma butlast_rest_bin: "butlast (bin_to_bl n w) = bin_to_bl (n - 1) (w div 2)" apply (unfold bin_to_bl_def) apply (cases n, clarsimp) apply clarsimp apply (auto simp add: bin_to_bl_aux_alt) done lemma butlast_bin_rest: "butlast bl = bin_to_bl (length bl - Suc 0) (bl_to_bin bl div 2)" using butlast_rest_bin [where w="bl_to_bin bl" and n="length bl"] by simp lemma butlast_rest_bl2bin_aux: "bl \ [] \ bl_to_bin_aux (butlast bl) w = bl_to_bin_aux bl w div 2" by (induct bl arbitrary: w) auto lemma butlast_rest_bl2bin: "bl_to_bin (butlast bl) = bl_to_bin bl div 2" by (cases bl) (auto simp: bl_to_bin_def butlast_rest_bl2bin_aux) lemma trunc_bl2bin_aux: "take_bit m (bl_to_bin_aux bl w) = bl_to_bin_aux (drop (length bl - m) bl) (take_bit (m - length bl) w)" proof (induct bl arbitrary: w) case Nil show ?case by simp next case (Cons b bl) show ?case proof (cases "m - length bl") case 0 then have "Suc (length bl) - m = Suc (length bl - m)" by simp with Cons show ?thesis by simp next case (Suc n) then have "m - Suc (length bl) = n" by simp with Cons Suc show ?thesis by (simp add: take_bit_Suc ac_simps) qed qed lemma trunc_bl2bin: "take_bit m (bl_to_bin bl) = bl_to_bin (drop (length bl - m) bl)" by (simp add: bl_to_bin_def trunc_bl2bin_aux) lemma trunc_bl2bin_len [simp]: "take_bit (length bl) (bl_to_bin bl) = bl_to_bin bl" by (simp add: trunc_bl2bin) lemma bl2bin_drop: "bl_to_bin (drop k bl) = take_bit (length bl - k) (bl_to_bin bl)" apply (rule trans) prefer 2 apply (rule trunc_bl2bin [symmetric]) apply (cases "k \ length bl") apply auto done lemma take_rest_power_bin: "m \ n \ take m (bin_to_bl n w) = bin_to_bl m (((\w. w div 2) ^^ (n - m)) w)" apply (rule nth_equalityI) apply simp apply (clarsimp simp add: nth_bin_to_bl nth_rest_power_bin) done lemma last_bin_last': "size xs > 0 \ last xs \ odd (bl_to_bin_aux xs w)" by (induct xs arbitrary: w) auto lemma last_bin_last: "size xs > 0 \ last xs \ odd (bl_to_bin xs)" unfolding bl_to_bin_def by (erule last_bin_last') lemma bin_last_last: "odd w \ last (bin_to_bl (Suc n) w)" by (simp add: bin_to_bl_def) (auto simp: bin_to_bl_aux_alt) lemma drop_bin2bl_aux: "drop m (bin_to_bl_aux n bin bs) = bin_to_bl_aux (n - m) bin (drop (m - n) bs)" apply (induction n arbitrary: m bin bs) apply auto apply (case_tac "m \ n") apply (auto simp add: not_le Suc_diff_le) apply (case_tac "m - n") apply auto apply (use Suc_diff_Suc in fastforce) done lemma drop_bin2bl: "drop m (bin_to_bl n bin) = bin_to_bl (n - m) bin" by (simp add: bin_to_bl_def drop_bin2bl_aux) lemma take_bin2bl_lem1: "take m (bin_to_bl_aux m w bs) = bin_to_bl m w" apply (induct m arbitrary: w bs) apply clarsimp apply clarsimp apply (simp add: bin_to_bl_aux_alt) apply (simp add: bin_to_bl_def) apply (simp add: bin_to_bl_aux_alt) done lemma take_bin2bl_lem: "take m (bin_to_bl_aux (m + n) w bs) = take m (bin_to_bl (m + n) w)" by (induct n arbitrary: w bs) (simp_all (no_asm) add: bin_to_bl_def take_bin2bl_lem1, simp) lemma bin_split_take: "bin_split n c = (a, b) \ bin_to_bl m a = take m (bin_to_bl (m + n) c)" apply (induct n arbitrary: b c) apply clarsimp apply (clarsimp simp: Let_def split: prod.split_asm) apply (simp add: bin_to_bl_def) apply (simp add: take_bin2bl_lem drop_bit_Suc) done lemma bin_to_bl_drop_bit: "k = m + n \ bin_to_bl m (drop_bit n c) = take m (bin_to_bl k c)" using bin_split_take by simp lemma bin_split_take1: "k = m + n \ bin_split n c = (a, b) \ bin_to_bl m a = take m (bin_to_bl k c)" using bin_split_take by simp lemma bl_bin_bl_rep_drop: "bin_to_bl n (bl_to_bin bl) = replicate (n - length bl) False @ drop (length bl - n) bl" by (simp add: bl_to_bin_inj bl_to_bin_rep_F trunc_bl2bin) lemma bl_to_bin_aux_cat: "bl_to_bin_aux bs (concat_bit nv v w) = concat_bit (nv + length bs) (bl_to_bin_aux bs v) w" by (rule bit_eqI) (auto simp add: bin_nth_of_bl_aux bin_nth_cat algebra_simps) lemma bin_to_bl_aux_cat: "bin_to_bl_aux (nv + nw) (concat_bit nw w v) bs = bin_to_bl_aux nv v (bin_to_bl_aux nw w bs)" by (induction nw arbitrary: w bs) (simp_all add: concat_bit_Suc) lemma bl_to_bin_aux_alt: "bl_to_bin_aux bs w = concat_bit (length bs) (bl_to_bin bs) w" using bl_to_bin_aux_cat [where nv = "0" and v = "0"] by (simp add: bl_to_bin_def [symmetric]) lemma bin_to_bl_cat: "bin_to_bl (nv + nw) (concat_bit nw w v) = bin_to_bl_aux nv v (bin_to_bl nw w)" by (simp add: bin_to_bl_def bin_to_bl_aux_cat) lemmas bl_to_bin_aux_app_cat = trans [OF bl_to_bin_aux_append bl_to_bin_aux_alt] lemmas bin_to_bl_aux_cat_app = trans [OF bin_to_bl_aux_cat bin_to_bl_aux_alt] lemma bl_to_bin_app_cat: "bl_to_bin (bsa @ bs) = concat_bit (length bs) (bl_to_bin bs) (bl_to_bin bsa)" by (simp only: bl_to_bin_aux_app_cat bl_to_bin_def) lemma bin_to_bl_cat_app: "bin_to_bl (n + nw) (concat_bit nw wa w) = bin_to_bl n w @ bin_to_bl nw wa" by (simp only: bin_to_bl_def bin_to_bl_aux_cat_app) text \\bl_to_bin_app_cat_alt\ and \bl_to_bin_app_cat\ are easily interderivable.\ lemma bl_to_bin_app_cat_alt: "concat_bit n w (bl_to_bin cs) = bl_to_bin (cs @ bin_to_bl n w)" by (simp add: bl_to_bin_app_cat) lemma mask_lem: "(bl_to_bin (True # replicate n False)) = bl_to_bin (replicate n True) + 1" apply (unfold bl_to_bin_def) apply (induct n) apply simp apply (simp only: Suc_eq_plus1 replicate_add append_Cons [symmetric] bl_to_bin_aux_append) apply simp done lemma bin_exhaust: "(\x b. bin = of_bool b + 2 * x \ Q) \ Q" for bin :: int apply (cases \even bin\) apply (auto elim!: evenE oddE) apply fastforce apply fastforce done primrec rbl_succ :: "bool list \ bool list" where Nil: "rbl_succ Nil = Nil" | Cons: "rbl_succ (x # xs) = (if x then False # rbl_succ xs else True # xs)" primrec rbl_pred :: "bool list \ bool list" where Nil: "rbl_pred Nil = Nil" | Cons: "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)" primrec rbl_add :: "bool list \ bool list \ bool list" where \ \result is length of first arg, second arg may be longer\ Nil: "rbl_add Nil x = Nil" | Cons: "rbl_add (y # ys) x = (let ws = rbl_add ys (tl x) in (y \ hd x) # (if hd x \ y then rbl_succ ws else ws))" primrec rbl_mult :: "bool list \ bool list \ bool list" where \ \result is length of first arg, second arg may be longer\ Nil: "rbl_mult Nil x = Nil" | Cons: "rbl_mult (y # ys) x = (let ws = False # rbl_mult ys x in if y then rbl_add ws x else ws)" lemma size_rbl_pred: "length (rbl_pred bl) = length bl" by (induct bl) auto lemma size_rbl_succ: "length (rbl_succ bl) = length bl" by (induct bl) auto lemma size_rbl_add: "length (rbl_add bl cl) = length bl" by (induct bl arbitrary: cl) (auto simp: Let_def size_rbl_succ) lemma size_rbl_mult: "length (rbl_mult bl cl) = length bl" by (induct bl arbitrary: cl) (auto simp add: Let_def size_rbl_add) lemmas rbl_sizes [simp] = size_rbl_pred size_rbl_succ size_rbl_add size_rbl_mult lemmas rbl_Nils = rbl_pred.Nil rbl_succ.Nil rbl_add.Nil rbl_mult.Nil lemma rbl_add_app2: "length blb \ length bla \ rbl_add bla (blb @ blc) = rbl_add bla blb" apply (induct bla arbitrary: blb) apply simp apply clarsimp apply (case_tac blb, clarsimp) apply (clarsimp simp: Let_def) done lemma rbl_add_take2: "length blb \ length bla \ rbl_add bla (take (length bla) blb) = rbl_add bla blb" apply (induct bla arbitrary: blb) apply simp apply clarsimp apply (case_tac blb, clarsimp) apply (clarsimp simp: Let_def) done lemma rbl_mult_app2: "length blb \ length bla \ rbl_mult bla (blb @ blc) = rbl_mult bla blb" apply (induct bla arbitrary: blb) apply simp apply clarsimp apply (case_tac blb, clarsimp) apply (clarsimp simp: Let_def rbl_add_app2) done lemma rbl_mult_take2: "length blb \ length bla \ rbl_mult bla (take (length bla) blb) = rbl_mult bla blb" apply (rule trans) apply (rule rbl_mult_app2 [symmetric]) apply simp apply (rule_tac f = "rbl_mult bla" in arg_cong) apply (rule append_take_drop_id) done lemma rbl_add_split: "P (rbl_add (y # ys) (x # xs)) = (\ws. length ws = length ys \ ws = rbl_add ys xs \ (y \ ((x \ P (False # rbl_succ ws)) \ (\ x \ P (True # ws)))) \ (\ y \ P (x # ws)))" by (cases y) (auto simp: Let_def) lemma rbl_mult_split: "P (rbl_mult (y # ys) xs) = (\ws. length ws = Suc (length ys) \ ws = False # rbl_mult ys xs \ (y \ P (rbl_add ws xs)) \ (\ y \ P ws))" by (auto simp: Let_def) lemma rbl_pred: "rbl_pred (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin - 1))" proof (unfold bin_to_bl_def, induction n arbitrary: bin) case 0 then show ?case by simp next case (Suc n) obtain b k where \bin = of_bool b + 2 * k\ using bin_exhaust by blast moreover have \(2 * k - 1) div 2 = k - 1\ using even_succ_div_2 [of \2 * (k - 1)\] by simp ultimately show ?case using Suc [of \bin div 2\] by simp (auto simp add: bin_to_bl_aux_alt) qed lemma rbl_succ: "rbl_succ (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin + 1))" apply (unfold bin_to_bl_def) apply (induction n arbitrary: bin) apply simp_all apply (case_tac bin rule: bin_exhaust) apply (simp_all add: bin_to_bl_aux_alt ac_simps) done lemma rbl_add: "\bina binb. rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = rev (bin_to_bl n (bina + binb))" apply (unfold bin_to_bl_def) apply (induct n) apply simp apply clarsimp apply (case_tac bina rule: bin_exhaust) apply (case_tac binb rule: bin_exhaust) apply (case_tac b) apply (case_tac [!] "ba") apply (auto simp: rbl_succ bin_to_bl_aux_alt Let_def ac_simps) done lemma rbl_add_long: "m \ n \ rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = rev (bin_to_bl n (bina + binb))" apply (rule box_equals [OF _ rbl_add_take2 rbl_add]) apply (rule_tac f = "rbl_add (rev (bin_to_bl n bina))" in arg_cong) apply (rule rev_swap [THEN iffD1]) apply (simp add: rev_take drop_bin2bl) apply simp done lemma rbl_mult_gt1: "m \ length bl \ rbl_mult bl (rev (bin_to_bl m binb)) = rbl_mult bl (rev (bin_to_bl (length bl) binb))" apply (rule trans) apply (rule rbl_mult_take2 [symmetric]) apply simp_all apply (rule_tac f = "rbl_mult bl" in arg_cong) apply (rule rev_swap [THEN iffD1]) apply (simp add: rev_take drop_bin2bl) done lemma rbl_mult_gt: "m > n \ rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb))" by (auto intro: trans [OF rbl_mult_gt1]) lemmas rbl_mult_Suc = lessI [THEN rbl_mult_gt] lemma rbbl_Cons: "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (of_bool b + 2 * x))" by (simp add: bin_to_bl_def) (simp add: bin_to_bl_aux_alt) lemma rbl_mult: "rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = rev (bin_to_bl n (bina * binb))" apply (induct n arbitrary: bina binb) apply simp_all apply (unfold bin_to_bl_def) apply clarsimp apply (case_tac bina rule: bin_exhaust) apply (case_tac binb rule: bin_exhaust) apply (simp_all add: bin_to_bl_aux_alt) apply (simp_all add: rbbl_Cons rbl_mult_Suc rbl_add algebra_simps) done lemma sclem: "size (concat (map (bin_to_bl n) xs)) = length xs * n" by (simp add: length_concat comp_def sum_list_triv) lemma bin_cat_foldl_lem: "foldl (\u k. concat_bit n k u) x xs = concat_bit (size xs * n) (foldl (\u k. concat_bit n k u) y xs) x" apply (induct xs arbitrary: x) apply simp apply (simp (no_asm)) apply (frule asm_rl) apply (drule meta_spec) apply (erule trans) apply (drule_tac x = "concat_bit n a y" in meta_spec) apply (simp add: bin_cat_assoc_sym) done lemma bin_rcat_bl: "bin_rcat n wl = bl_to_bin (concat (map (bin_to_bl n) wl))" apply (unfold bin_rcat_eq_foldl) apply (rule sym) apply (induct wl) apply (auto simp add: bl_to_bin_append) apply (simp add: bl_to_bin_aux_alt sclem) apply (simp add: bin_cat_foldl_lem [symmetric]) done lemma bin_last_bl_to_bin: "odd (bl_to_bin bs) \ bs \ [] \ last bs" by(cases "bs = []")(auto simp add: bl_to_bin_def last_bin_last'[where w=0]) lemma bin_rest_bl_to_bin: "bl_to_bin bs div 2 = bl_to_bin (butlast bs)" by(cases "bs = []")(simp_all add: bl_to_bin_def butlast_rest_bl2bin_aux) lemma bl_xor_aux_bin: "map2 (\x y. x \ y) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = bin_to_bl_aux n (v XOR w) (map2 (\x y. x \ y) bs cs)" apply (induction n arbitrary: v w bs cs) apply auto apply (case_tac v rule: bin_exhaust) apply (case_tac w rule: bin_exhaust) apply clarsimp done lemma bl_or_aux_bin: "map2 (\) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = bin_to_bl_aux n (v OR w) (map2 (\) bs cs)" by (induct n arbitrary: v w bs cs) simp_all lemma bl_and_aux_bin: "map2 (\) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = bin_to_bl_aux n (v AND w) (map2 (\) bs cs)" by (induction n arbitrary: v w bs cs) simp_all lemma bl_not_aux_bin: "map Not (bin_to_bl_aux n w cs) = bin_to_bl_aux n (NOT w) (map Not cs)" by (induct n arbitrary: w cs) auto lemma bl_not_bin: "map Not (bin_to_bl n w) = bin_to_bl n (NOT w)" by (simp add: bin_to_bl_def bl_not_aux_bin) lemma bl_and_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v AND w)" by (simp add: bin_to_bl_def bl_and_aux_bin) lemma bl_or_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v OR w)" by (simp add: bin_to_bl_def bl_or_aux_bin) lemma bl_xor_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v XOR w)" using bl_xor_aux_bin by (simp add: bin_to_bl_def) subsection \Type \<^typ>\'a word\\ lift_definition of_bl :: \bool list \ 'a::len word\ is bl_to_bin . lift_definition to_bl :: \'a::len word \ bool list\ is \bin_to_bl LENGTH('a)\ by (simp add: bl_to_bin_inj) lemma to_bl_eq: \to_bl w = bin_to_bl (LENGTH('a)) (uint w)\ for w :: \'a::len word\ by transfer simp lemma bit_of_bl_iff [bit_simps]: \bit (of_bl bs :: 'a word) n \ rev bs ! n \ n < LENGTH('a::len) \ n < length bs\ by transfer (simp add: bin_nth_of_bl ac_simps) lemma rev_to_bl_eq: \rev (to_bl w) = map (bit w) [0.. for w :: \'a::len word\ apply (rule nth_equalityI) apply (simp add: to_bl.rep_eq) apply (simp add: bin_nth_bl bit_word.rep_eq to_bl.rep_eq) done lemma to_bl_eq_rev: \to_bl w = map (bit w) (rev [0.. for w :: \'a::len word\ using rev_to_bl_eq [of w] apply (subst rev_is_rev_conv [symmetric]) apply (simp add: rev_map) done lemma of_bl_rev_eq: \of_bl (rev bs) = horner_sum of_bool 2 bs\ apply (rule bit_word_eqI) apply (simp add: bit_of_bl_iff) apply transfer apply (simp add: bit_horner_sum_bit_iff ac_simps) done lemma of_bl_eq: \of_bl bs = horner_sum of_bool 2 (rev bs)\ using of_bl_rev_eq [of \rev bs\] by simp lemma bshiftr1_eq: \bshiftr1 b w = of_bl (b # butlast (to_bl w))\ apply transfer apply auto apply (subst bl_to_bin_app_cat [of \[True]\, simplified]) apply simp apply (metis One_nat_def add.commute bin_bl_bin bin_last_bl_to_bin bin_rest_bl_to_bin butlast_bin_rest concat_bit_eq last.simps list.distinct(1) list.size(3) list.size(4) odd_iff_mod_2_eq_one plus_1_eq_Suc power_Suc0_right push_bit_of_1 size_bin_to_bl take_bit_eq_mod trunc_bl2bin_len) apply (simp add: butlast_rest_bl2bin) done lemma length_to_bl_eq: \length (to_bl w) = LENGTH('a)\ for w :: \'a::len word\ by transfer simp lemma word_rotr_eq: \word_rotr n w = of_bl (rotater n (to_bl w))\ apply (rule bit_word_eqI) subgoal for n apply (cases \n < LENGTH('a)\) apply (simp_all add: bit_word_rotr_iff bit_of_bl_iff rotater_rev length_to_bl_eq nth_rotate rev_to_bl_eq ac_simps) done done lemma word_rotl_eq: \word_rotl n w = of_bl (rotate n (to_bl w))\ proof - have \rotate n (to_bl w) = rev (rotater n (rev (to_bl w)))\ by (simp add: rotater_rev') then show ?thesis apply (simp add: word_rotl_eq_word_rotr bit_of_bl_iff length_to_bl_eq rev_to_bl_eq) apply (rule bit_word_eqI) subgoal for n apply (cases \n < LENGTH('a)\) apply (simp_all add: bit_word_rotr_iff bit_of_bl_iff nth_rotater) done done qed lemma to_bl_def': "(to_bl :: 'a::len word \ bool list) = bin_to_bl (LENGTH('a)) \ uint" by transfer (simp add: fun_eq_iff) \ \type definitions theorem for in terms of equivalent bool list\ lemma td_bl: "type_definition (to_bl :: 'a::len word \ bool list) of_bl {bl. length bl = LENGTH('a)}" apply (standard; transfer) apply (auto dest: sym) done interpretation word_bl: type_definition "to_bl :: 'a::len word \ bool list" of_bl "{bl. length bl = LENGTH('a::len)}" by (fact td_bl) lemmas word_bl_Rep' = word_bl.Rep [unfolded mem_Collect_eq, iff] lemma word_size_bl: "size w = size (to_bl w)" by (auto simp: word_size) lemma to_bl_use_of_bl: "to_bl w = bl \ w = of_bl bl \ length bl = length (to_bl w)" by (fastforce elim!: word_bl.Abs_inverse [unfolded mem_Collect_eq]) lemma length_bl_gt_0 [iff]: "0 < length (to_bl x)" for x :: "'a::len word" unfolding word_bl_Rep' by (rule len_gt_0) lemma bl_not_Nil [iff]: "to_bl x \ []" for x :: "'a::len word" by (fact length_bl_gt_0 [unfolded length_greater_0_conv]) lemma length_bl_neq_0 [iff]: "length (to_bl x) \ 0" for x :: "'a::len word" by (fact length_bl_gt_0 [THEN gr_implies_not0]) lemma hd_bl_sign_sint: "hd (to_bl w) = (bin_sign (sint w) = -1)" apply transfer apply (auto simp add: bin_sign_def) using bin_sign_lem bl_sbin_sign apply fastforce using bin_sign_lem bl_sbin_sign apply force done lemma of_bl_drop': "lend = length bl - LENGTH('a::len) \ of_bl (drop lend bl) = (of_bl bl :: 'a word)" by transfer (simp flip: trunc_bl2bin) lemma test_bit_of_bl: - "(of_bl bl::'a::len word) !! n = (rev bl ! n \ n < LENGTH('a) \ n < length bl)" + "bit (of_bl bl::'a::len word) n = (rev bl ! n \ n < LENGTH('a) \ n < length bl)" by transfer (simp add: bin_nth_of_bl ac_simps) lemma no_of_bl: "(numeral bin ::'a::len word) = of_bl (bin_to_bl (LENGTH('a)) (numeral bin))" by transfer simp lemma uint_bl: "to_bl w = bin_to_bl (size w) (uint w)" by transfer simp lemma to_bl_bin: "bl_to_bin (to_bl w) = uint w" by (simp add: uint_bl word_size) lemma to_bl_of_bin: "to_bl (word_of_int bin::'a::len word) = bin_to_bl (LENGTH('a)) bin" by (auto simp: uint_bl word_ubin.eq_norm word_size) lemma to_bl_numeral [simp]: "to_bl (numeral bin::'a::len word) = bin_to_bl (LENGTH('a)) (numeral bin)" unfolding word_numeral_alt by (rule to_bl_of_bin) lemma to_bl_neg_numeral [simp]: "to_bl (- numeral bin::'a::len word) = bin_to_bl (LENGTH('a)) (- numeral bin)" unfolding word_neg_numeral_alt by (rule to_bl_of_bin) lemma to_bl_to_bin [simp] : "bl_to_bin (to_bl w) = uint w" by (simp add: uint_bl word_size) lemma uint_bl_bin: "bl_to_bin (bin_to_bl (LENGTH('a)) (uint x)) = uint x" for x :: "'a::len word" by (rule trans [OF bin_bl_bin word_ubin.norm_Rep]) lemma ucast_bl: "ucast w = of_bl (to_bl w)" by transfer simp lemma ucast_down_bl: \(ucast :: 'a::len word \ 'b::len word) (of_bl bl) = of_bl bl\ if \is_down (ucast :: 'a::len word \ 'b::len word)\ using that by transfer simp lemma of_bl_append_same: "of_bl (X @ to_bl w) = w" by transfer (simp add: bl_to_bin_app_cat) lemma ucast_of_bl_up: \ucast (of_bl bl :: 'a::len word) = of_bl bl\ if \size bl \ size (of_bl bl :: 'a::len word)\ using that apply transfer apply (rule bit_eqI) apply (auto simp add: bit_take_bit_iff) apply (subst (asm) trunc_bl2bin_len [symmetric]) apply (auto simp only: bit_take_bit_iff) done lemma word_rev_tf: "to_bl (of_bl bl::'a::len word) = rev (takefill False (LENGTH('a)) (rev bl))" by transfer (simp add: bl_bin_bl_rtf) lemma word_rep_drop: "to_bl (of_bl bl::'a::len word) = replicate (LENGTH('a) - length bl) False @ drop (length bl - LENGTH('a)) bl" by (simp add: word_rev_tf takefill_alt rev_take) lemma to_bl_ucast: "to_bl (ucast (w::'b::len word) ::'a::len word) = replicate (LENGTH('a) - LENGTH('b)) False @ drop (LENGTH('b) - LENGTH('a)) (to_bl w)" apply (unfold ucast_bl) apply (rule trans) apply (rule word_rep_drop) apply simp done lemma ucast_up_app: \to_bl (ucast w :: 'b::len word) = replicate n False @ (to_bl w)\ if \source_size (ucast :: 'a word \ 'b word) + n = target_size (ucast :: 'a word \ 'b word)\ for w :: \'a::len word\ using that by (auto simp add : source_size target_size to_bl_ucast) lemma ucast_down_drop [OF refl]: "uc = ucast \ source_size uc = target_size uc + n \ to_bl (uc w) = drop n (to_bl w)" by (auto simp add : source_size target_size to_bl_ucast) lemma scast_down_drop [OF refl]: "sc = scast \ source_size sc = target_size sc + n \ to_bl (sc w) = drop n (to_bl w)" apply (subgoal_tac "sc = ucast") apply safe apply simp apply (erule ucast_down_drop) apply (rule down_cast_same [symmetric]) apply (simp add : source_size target_size is_down) done lemma word_0_bl [simp]: "of_bl [] = 0" by transfer simp lemma word_1_bl: "of_bl [True] = 1" by transfer (simp add: bl_to_bin_def) lemma of_bl_0 [simp]: "of_bl (replicate n False) = 0" by transfer (simp add: bl_to_bin_rep_False) lemma to_bl_0 [simp]: "to_bl (0::'a::len word) = replicate (LENGTH('a)) False" by (simp add: uint_bl word_size bin_to_bl_zero) \ \links with \rbl\ operations\ lemma word_succ_rbl: "to_bl w = bl \ to_bl (word_succ w) = rev (rbl_succ (rev bl))" by transfer (simp add: rbl_succ) lemma word_pred_rbl: "to_bl w = bl \ to_bl (word_pred w) = rev (rbl_pred (rev bl))" by transfer (simp add: rbl_pred) lemma word_add_rbl: "to_bl v = vbl \ to_bl w = wbl \ to_bl (v + w) = rev (rbl_add (rev vbl) (rev wbl))" apply transfer apply (drule sym) apply (drule sym) apply (simp add: rbl_add) done lemma word_mult_rbl: "to_bl v = vbl \ to_bl w = wbl \ to_bl (v * w) = rev (rbl_mult (rev vbl) (rev wbl))" apply transfer apply (drule sym) apply (drule sym) apply (simp add: rbl_mult) done lemma rtb_rbl_ariths: "rev (to_bl w) = ys \ rev (to_bl (word_succ w)) = rbl_succ ys" "rev (to_bl w) = ys \ rev (to_bl (word_pred w)) = rbl_pred ys" "rev (to_bl v) = ys \ rev (to_bl w) = xs \ rev (to_bl (v * w)) = rbl_mult ys xs" "rev (to_bl v) = ys \ rev (to_bl w) = xs \ rev (to_bl (v + w)) = rbl_add ys xs" by (auto simp: rev_swap [symmetric] word_succ_rbl word_pred_rbl word_mult_rbl word_add_rbl) lemma of_bl_length_less: \(of_bl x :: 'a::len word) < 2 ^ k\ if \length x = k\ \k < LENGTH('a)\ proof - from that have \length x < LENGTH('a)\ by simp then have \(of_bl x :: 'a::len word) < 2 ^ length x\ apply (simp add: of_bl_eq) apply transfer apply (simp add: take_bit_horner_sum_bit_eq) apply (subst length_rev [symmetric]) apply (simp only: horner_sum_of_bool_2_less) done with that show ?thesis by simp qed lemma word_eq_rbl_eq: "x = y \ rev (to_bl x) = rev (to_bl y)" by simp lemma bl_word_not: "to_bl (NOT w) = map Not (to_bl w)" by transfer (simp add: bl_not_bin) lemma bl_word_xor: "to_bl (v XOR w) = map2 (\) (to_bl v) (to_bl w)" by transfer (simp flip: bl_xor_bin) lemma bl_word_or: "to_bl (v OR w) = map2 (\) (to_bl v) (to_bl w)" by transfer (simp flip: bl_or_bin) lemma bl_word_and: "to_bl (v AND w) = map2 (\) (to_bl v) (to_bl w)" by transfer (simp flip: bl_and_bin) lemma bin_nth_uint': "bit (uint w) n \ rev (bin_to_bl (size w) (uint w)) ! n \ n < size w" apply (unfold word_size) apply (safe elim!: bin_nth_uint_imp) apply (frule bin_nth_uint_imp) apply (fast dest!: bin_nth_bl)+ done lemmas bin_nth_uint = bin_nth_uint' [unfolded word_size] -lemma test_bit_bl: "w !! n \ rev (to_bl w) ! n \ n < size w" +lemma test_bit_bl: "bit w n \ rev (to_bl w) ! n \ n < size w" by transfer (auto simp add: bin_nth_bl) -lemma to_bl_nth: "n < size w \ to_bl w ! n = w !! (size w - Suc n)" +lemma to_bl_nth: "n < size w \ to_bl w ! n = bit w (size w - Suc n)" by (simp add: word_size rev_nth test_bit_bl) lemma map_bit_interval_eq: \map (bit w) [0.. for w :: \'a::len word\ proof (rule nth_equalityI) show \length (map (bit w) [0.. by simp fix m assume \m < length (map (bit w) [0.. then have \m < n\ by simp then have \bit w m \ takefill False n (rev (to_bl w)) ! m\ - by (auto simp add: nth_takefill not_less rev_nth to_bl_nth word_size test_bit_word_eq dest: bit_imp_le_length) + by (auto simp add: nth_takefill not_less rev_nth to_bl_nth word_size dest: bit_imp_le_length) with \m < n \show \map (bit w) [0.. takefill False n (rev (to_bl w)) ! m\ by simp qed lemma to_bl_unfold: \to_bl w = rev (map (bit w) [0.. for w :: \'a::len word\ by (simp add: map_bit_interval_eq takefill_bintrunc to_bl_def flip: bin_to_bl_def) lemma nth_rev_to_bl: \rev (to_bl w) ! n \ bit w n\ if \n < LENGTH('a)\ for w :: \'a::len word\ using that by (simp add: to_bl_unfold) lemma nth_to_bl: \to_bl w ! n \ bit w (LENGTH('a) - Suc n)\ if \n < LENGTH('a)\ for w :: \'a::len word\ using that by (simp add: to_bl_unfold rev_nth) lemma of_bl_rep_False: "of_bl (replicate n False @ bs) = of_bl bs" by (auto simp: of_bl_def bl_to_bin_rep_F) lemma [code abstract]: \Word.the_int (of_bl bs :: 'a word) = horner_sum of_bool 2 (take LENGTH('a::len) (rev bs))\ apply (simp add: of_bl_eq flip: take_bit_horner_sum_bit_eq) apply transfer apply simp done lemma [code]: \to_bl w = map (bit w) (rev [0.. for w :: \'a::len word\ by (fact to_bl_eq_rev) lemma word_reverse_eq_of_bl_rev_to_bl: \word_reverse w = of_bl (rev (to_bl w))\ by (rule bit_word_eqI) (auto simp add: bit_word_reverse_iff bit_of_bl_iff nth_to_bl) lemmas word_reverse_no_def [simp] = word_reverse_eq_of_bl_rev_to_bl [of "numeral w"] for w lemma to_bl_word_rev: "to_bl (word_reverse w) = rev (to_bl w)" by (rule nth_equalityI) (simp_all add: nth_rev_to_bl word_reverse_def word_rep_drop flip: of_bl_eq) lemma to_bl_n1 [simp]: "to_bl (-1::'a::len word) = replicate (LENGTH('a)) True" apply (rule word_bl.Abs_inverse') apply simp apply (rule word_eqI) apply (clarsimp simp add: word_size) apply (auto simp add: word_bl.Abs_inverse test_bit_bl word_size) done lemma rbl_word_or: "rev (to_bl (x OR y)) = map2 (\) (rev (to_bl x)) (rev (to_bl y))" by (simp add: zip_rev bl_word_or rev_map) lemma rbl_word_and: "rev (to_bl (x AND y)) = map2 (\) (rev (to_bl x)) (rev (to_bl y))" by (simp add: zip_rev bl_word_and rev_map) lemma rbl_word_xor: "rev (to_bl (x XOR y)) = map2 (\) (rev (to_bl x)) (rev (to_bl y))" by (simp add: zip_rev bl_word_xor rev_map) lemma rbl_word_not: "rev (to_bl (NOT x)) = map Not (rev (to_bl x))" by (simp add: bl_word_not rev_map) lemma bshiftr1_numeral [simp]: \bshiftr1 b (numeral w :: 'a word) = of_bl (b # butlast (bin_to_bl LENGTH('a::len) (numeral w)))\ by (simp add: bshiftr1_eq) lemma bshiftr1_bl: "to_bl (bshiftr1 b w) = b # butlast (to_bl w)" unfolding bshiftr1_eq by (rule word_bl.Abs_inverse) simp lemma shiftl1_of_bl: "shiftl1 (of_bl bl) = of_bl (bl @ [False])" by transfer (simp add: bl_to_bin_append) lemma shiftl1_bl: "shiftl1 w = of_bl (to_bl w @ [False])" for w :: "'a::len word" proof - have "shiftl1 w = shiftl1 (of_bl (to_bl w))" by simp also have "\ = of_bl (to_bl w @ [False])" by (rule shiftl1_of_bl) finally show ?thesis . qed lemma bl_shiftl1: "to_bl (shiftl1 w) = tl (to_bl w) @ [False]" for w :: "'a::len word" by (simp add: shiftl1_bl word_rep_drop drop_Suc drop_Cons') (fast intro!: Suc_leI) \ \Generalized version of \bl_shiftl1\. Maybe this one should replace it?\ lemma bl_shiftl1': "to_bl (shiftl1 w) = tl (to_bl w @ [False])" by (simp add: shiftl1_bl word_rep_drop drop_Suc del: drop_append) lemma shiftr1_bl: \shiftr1 w = of_bl (butlast (to_bl w))\ proof (rule bit_word_eqI) fix n assume \n < LENGTH('a)\ show \bit (shiftr1 w) n \ bit (of_bl (butlast (to_bl w)) :: 'a word) n\ proof (cases \n = LENGTH('a) - 1\) case True then show ?thesis by (simp add: bit_shiftr1_iff bit_of_bl_iff) next case False with \n < LENGTH('a)\ have \n < LENGTH('a) - 1\ by simp with \n < LENGTH('a)\ show ?thesis by (simp add: bit_shiftr1_iff bit_of_bl_iff rev_nth nth_butlast - word_size test_bit_word_eq to_bl_nth) + word_size to_bl_nth) qed qed lemma bl_shiftr1: "to_bl (shiftr1 w) = False # butlast (to_bl w)" for w :: "'a::len word" by (simp add: shiftr1_bl word_rep_drop len_gt_0 [THEN Suc_leI]) \ \Generalized version of \bl_shiftr1\. Maybe this one should replace it?\ lemma bl_shiftr1': "to_bl (shiftr1 w) = butlast (False # to_bl w)" apply (rule word_bl.Abs_inverse') apply (simp del: butlast.simps) apply (simp add: shiftr1_bl of_bl_def) done lemma bl_sshiftr1: "to_bl (sshiftr1 w) = hd (to_bl w) # butlast (to_bl w)" for w :: "'a::len word" proof (rule nth_equalityI) fix n assume \n < length (to_bl (sshiftr1 w))\ then have \n < LENGTH('a)\ by simp then show \to_bl (sshiftr1 w) ! n \ (hd (to_bl w) # butlast (to_bl w)) ! n\ apply (cases n) - apply (simp_all add: to_bl_nth word_size hd_conv_nth test_bit_eq_bit bit_sshiftr1_iff nth_butlast Suc_diff_Suc nth_to_bl) + apply (simp_all add: to_bl_nth word_size hd_conv_nth bit_sshiftr1_iff nth_butlast Suc_diff_Suc nth_to_bl) done qed simp lemma drop_shiftr: "drop n (to_bl (w >> n)) = take (size w - n) (to_bl w)" for w :: "'a::len word" apply (unfold shiftr_def) apply (induct n) prefer 2 apply (simp add: drop_Suc bl_shiftr1 butlast_drop [symmetric]) apply (rule butlast_take [THEN trans]) apply (auto simp: word_size) done lemma drop_sshiftr: "drop n (to_bl (w >>> n)) = take (size w - n) (to_bl w)" for w :: "'a::len word" apply (simp_all add: word_size sshiftr_eq) apply (rule nth_equalityI) apply (simp_all add: word_size nth_to_bl bit_signed_drop_bit_iff) done lemma take_shiftr: "n \ size w \ take n (to_bl (w >> n)) = replicate n False" apply (unfold shiftr_def) apply (induct n) prefer 2 apply (simp add: bl_shiftr1' length_0_conv [symmetric] word_size) apply (rule take_butlast [THEN trans]) apply (auto simp: word_size) done lemma take_sshiftr': "n \ size w \ hd (to_bl (w >>> n)) = hd (to_bl w) \ take n (to_bl (w >>> n)) = replicate n (hd (to_bl w))" for w :: "'a::len word" apply (auto simp add: sshiftr_eq hd_bl_sign_sint bin_sign_def not_le word_size sint_signed_drop_bit_eq) apply (rule nth_equalityI) apply (auto simp add: nth_to_bl bit_signed_drop_bit_iff bit_last_iff) apply (rule nth_equalityI) apply (auto simp add: nth_to_bl bit_signed_drop_bit_iff bit_last_iff) done lemmas hd_sshiftr = take_sshiftr' [THEN conjunct1] lemmas take_sshiftr = take_sshiftr' [THEN conjunct2] lemma atd_lem: "take n xs = t \ drop n xs = d \ xs = t @ d" by (auto intro: append_take_drop_id [symmetric]) lemmas bl_shiftr = atd_lem [OF take_shiftr drop_shiftr] lemmas bl_sshiftr = atd_lem [OF take_sshiftr drop_sshiftr] lemma shiftl_of_bl: "of_bl bl << n = of_bl (bl @ replicate n False)" by (induct n) (auto simp: shiftl_def shiftl1_of_bl replicate_app_Cons_same) lemma shiftl_bl: "w << n = of_bl (to_bl w @ replicate n False)" for w :: "'a::len word" proof - have "w << n = of_bl (to_bl w) << n" by simp also have "\ = of_bl (to_bl w @ replicate n False)" by (rule shiftl_of_bl) finally show ?thesis . qed lemma bl_shiftl: "to_bl (w << n) = drop n (to_bl w) @ replicate (min (size w) n) False" by (simp add: shiftl_bl word_rep_drop word_size) lemma shiftr1_bl_of: "length bl \ LENGTH('a) \ shiftr1 (of_bl bl::'a::len word) = of_bl (butlast bl)" by transfer (simp add: butlast_rest_bl2bin trunc_bl2bin) lemma shiftr_bl_of: "length bl \ LENGTH('a) \ (of_bl bl::'a::len word) >> n = of_bl (take (length bl - n) bl)" apply (unfold shiftr_def) apply (induct n) apply clarsimp apply clarsimp apply (subst shiftr1_bl_of) apply simp apply (simp add: butlast_take) done lemma shiftr_bl: "x >> n \ of_bl (take (LENGTH('a) - n) (to_bl x))" for x :: "'a::len word" using shiftr_bl_of [where 'a='a, of "to_bl x"] by simp lemma aligned_bl_add_size [OF refl]: "size x - n = m \ n \ size x \ drop m (to_bl x) = replicate n False \ take m (to_bl y) = replicate m False \ to_bl (x + y) = take m (to_bl x) @ drop m (to_bl y)" for x :: \'a::len word\ apply (subgoal_tac "x AND y = 0") prefer 2 apply (rule word_bl.Rep_eqD) apply (simp add: bl_word_and) apply (rule align_lem_and [THEN trans]) apply (simp_all add: word_size)[5] apply simp apply (subst word_plus_and_or [symmetric]) apply (simp add : bl_word_or) apply (rule align_lem_or) apply (simp_all add: word_size) done lemma mask_bl: "mask n = of_bl (replicate n True)" - by (auto simp add : test_bit_of_bl word_size intro: word_eqI) + by (auto simp add: bit_simps intro!: word_eqI) lemma bl_and_mask': "to_bl (w AND mask n :: 'a::len word) = replicate (LENGTH('a) - n) False @ drop (LENGTH('a) - n) (to_bl w)" apply (rule nth_equalityI) apply simp - apply (clarsimp simp add: to_bl_nth word_size) + apply (clarsimp simp add: to_bl_nth word_size bit_simps) apply (auto simp add: word_size test_bit_bl nth_append rev_nth) done lemma slice1_eq_of_bl: \(slice1 n w :: 'b::len word) = of_bl (takefill False n (to_bl w))\ for w :: \'a::len word\ proof (rule bit_word_eqI) fix m assume \m < LENGTH('b)\ show \bit (slice1 n w :: 'b::len word) m \ bit (of_bl (takefill False n (to_bl w)) :: 'b word) m\ by (cases \m \ n\; cases \LENGTH('a) \ n\) (auto simp add: bit_slice1_iff bit_of_bl_iff not_less rev_nth not_le nth_takefill nth_to_bl algebra_simps) qed lemma slice1_no_bin [simp]: "slice1 n (numeral w :: 'b word) = of_bl (takefill False n (bin_to_bl (LENGTH('b::len)) (numeral w)))" by (simp add: slice1_eq_of_bl) (* TODO: neg_numeral *) lemma slice_no_bin [simp]: "slice n (numeral w :: 'b word) = of_bl (takefill False (LENGTH('b::len) - n) (bin_to_bl (LENGTH('b::len)) (numeral w)))" by (simp add: slice_def) (* TODO: neg_numeral *) lemma slice_take': "slice n w = of_bl (take (size w - n) (to_bl w))" by (simp add: slice_def word_size slice1_eq_of_bl takefill_alt) lemmas slice_take = slice_take' [unfolded word_size] \ \shiftr to a word of the same size is just slice, slice is just shiftr then ucast\ lemmas shiftr_slice = trans [OF shiftr_bl [THEN meta_eq_to_obj_eq] slice_take [symmetric]] lemma slice1_down_alt': "sl = slice1 n w \ fs = size sl \ fs + k = n \ to_bl sl = takefill False fs (drop k (to_bl w))" apply (simp add: slice1_eq_of_bl) apply transfer apply (simp add: bl_bin_bl_rep_drop) using drop_takefill apply force done lemma slice1_up_alt': "sl = slice1 n w \ fs = size sl \ fs = n + k \ to_bl sl = takefill False fs (replicate k False @ (to_bl w))" apply (simp add: slice1_eq_of_bl) apply transfer apply (simp add: bl_bin_bl_rep_drop flip: takefill_append) apply (metis diff_add_inverse) done lemmas sd1 = slice1_down_alt' [OF refl refl, unfolded word_size] lemmas su1 = slice1_up_alt' [OF refl refl, unfolded word_size] lemmas slice1_down_alt = le_add_diff_inverse [THEN sd1] lemmas slice1_up_alts = le_add_diff_inverse [symmetric, THEN su1] le_add_diff_inverse2 [symmetric, THEN su1] lemma slice1_tf_tf': "to_bl (slice1 n w :: 'a::len word) = rev (takefill False (LENGTH('a)) (rev (takefill False n (to_bl w))))" unfolding slice1_eq_of_bl by (rule word_rev_tf) lemmas slice1_tf_tf = slice1_tf_tf' [THEN word_bl.Rep_inverse', symmetric] lemma revcast_eq_of_bl: \(revcast w :: 'b::len word) = of_bl (takefill False (LENGTH('b)) (to_bl w))\ for w :: \'a::len word\ by (simp add: revcast_def slice1_eq_of_bl) lemmas revcast_no_def [simp] = revcast_eq_of_bl [where w="numeral w", unfolded word_size] for w lemma to_bl_revcast: "to_bl (revcast w :: 'a::len word) = takefill False (LENGTH('a)) (to_bl w)" apply (rule nth_equalityI) apply simp apply (cases \LENGTH('a) \ LENGTH('b)\) apply (auto simp add: nth_to_bl nth_takefill bit_revcast_iff) done lemma word_cat_bl: "word_cat a b = of_bl (to_bl a @ to_bl b)" apply (rule bit_word_eqI) apply (simp add: bit_word_cat_iff bit_of_bl_iff nth_append not_less nth_rev_to_bl) apply (meson bit_word.rep_eq less_diff_conv2 nth_rev_to_bl) done lemma of_bl_append: "(of_bl (xs @ ys) :: 'a::len word) = of_bl xs * 2^(length ys) + of_bl ys" apply transfer apply (simp add: bl_to_bin_app_cat bin_cat_num) done lemma of_bl_False [simp]: "of_bl (False#xs) = of_bl xs" by (rule word_eqI) (auto simp: test_bit_of_bl nth_append) lemma of_bl_True [simp]: "(of_bl (True # xs) :: 'a::len word) = 2^length xs + of_bl xs" by (subst of_bl_append [where xs="[True]", simplified]) (simp add: word_1_bl) lemma of_bl_Cons: "of_bl (x#xs) = of_bool x * 2^length xs + of_bl xs" by (cases x) simp_all lemma word_split_bl': "std = size c - size b \ (word_split c = (a, b)) \ (a = of_bl (take std (to_bl c)) \ b = of_bl (drop std (to_bl c)))" apply (simp add: word_split_def) apply transfer apply (cases \LENGTH('b) \ LENGTH('a)\) apply (auto simp add: drop_bit_take_bit drop_bin2bl bin_to_bl_drop_bit [symmetric, of \LENGTH('a)\ \LENGTH('a) - LENGTH('b)\ \LENGTH('b)\] min_absorb2) done lemma word_split_bl: "std = size c - size b \ (a = of_bl (take std (to_bl c)) \ b = of_bl (drop std (to_bl c))) \ word_split c = (a, b)" apply (rule iffI) defer apply (erule (1) word_split_bl') apply (case_tac "word_split c") apply (auto simp add: word_size) apply (frule word_split_bl' [rotated]) apply (auto simp add: word_size) done lemma word_split_bl_eq: "(word_split c :: ('c::len word \ 'd::len word)) = (of_bl (take (LENGTH('a::len) - LENGTH('d::len)) (to_bl c)), of_bl (drop (LENGTH('a) - LENGTH('d)) (to_bl c)))" for c :: "'a::len word" apply (rule word_split_bl [THEN iffD1]) apply (unfold word_size) apply (rule refl conjI)+ done lemma word_rcat_bl: \word_rcat wl = of_bl (concat (map to_bl wl))\ proof - define ws where \ws = rev wl\ moreover have \word_rcat (rev ws) = of_bl (concat (map to_bl (rev ws)))\ apply (simp add: word_rcat_def of_bl_eq rev_concat rev_map comp_def rev_to_bl_eq flip: horner_sum_of_bool_2_concat) apply transfer apply simp done ultimately show ?thesis by simp qed lemma size_rcat_lem': "size (concat (map to_bl wl)) = length wl * size (hd wl)" by (induct wl) (auto simp: word_size) lemmas size_rcat_lem = size_rcat_lem' [unfolded word_size] lemma nth_rcat_lem: "n < length (wl::'a word list) * LENGTH('a::len) \ rev (concat (map to_bl wl)) ! n = rev (to_bl (rev wl ! (n div LENGTH('a)))) ! (n mod LENGTH('a))" apply (induct wl) apply clarsimp apply (clarsimp simp add : nth_append size_rcat_lem) apply (simp flip: mult_Suc minus_div_mult_eq_mod add: less_Suc_eq_le not_less) apply (metis (no_types, lifting) diff_is_0_eq div_le_mono len_not_eq_0 less_Suc_eq less_mult_imp_div_less nonzero_mult_div_cancel_right not_le nth_Cons_0) done lemma foldl_eq_foldr: "foldl (+) x xs = foldr (+) (x # xs) 0" for x :: "'a::comm_monoid_add" by (induct xs arbitrary: x) (auto simp: add.assoc) lemmas word_cat_bl_no_bin [simp] = word_cat_bl [where a="numeral a" and b="numeral b", unfolded to_bl_numeral] for a b (* FIXME: negative numerals, 0 and 1 *) lemmas word_split_bl_no_bin [simp] = word_split_bl_eq [where c="numeral c", unfolded to_bl_numeral] for c lemmas word_rot_defs = word_roti_eq_word_rotr_word_rotl word_rotr_eq word_rotl_eq lemma to_bl_rotl: "to_bl (word_rotl n w) = rotate n (to_bl w)" by (simp add: word_rotl_eq to_bl_use_of_bl) lemmas blrs0 = rotate_eqs [THEN to_bl_rotl [THEN trans]] lemmas word_rotl_eqs = blrs0 [simplified word_bl_Rep' word_bl.Rep_inject to_bl_rotl [symmetric]] lemma to_bl_rotr: "to_bl (word_rotr n w) = rotater n (to_bl w)" by (simp add: word_rotr_eq to_bl_use_of_bl) lemmas brrs0 = rotater_eqs [THEN to_bl_rotr [THEN trans]] lemmas word_rotr_eqs = brrs0 [simplified word_bl_Rep' word_bl.Rep_inject to_bl_rotr [symmetric]] declare word_rotr_eqs (1) [simp] declare word_rotl_eqs (1) [simp] lemmas abl_cong = arg_cong [where f = "of_bl"] locale word_rotate begin lemmas word_rot_defs' = to_bl_rotl to_bl_rotr lemmas blwl_syms [symmetric] = bl_word_not bl_word_and bl_word_or bl_word_xor lemmas lbl_lbl = trans [OF word_bl_Rep' word_bl_Rep' [symmetric]] lemmas ths_map2 [OF lbl_lbl] = rotate_map2 rotater_map2 lemmas ths_map [where xs = "to_bl v"] = rotate_map rotater_map for v lemmas th1s [simplified word_rot_defs' [symmetric]] = ths_map2 ths_map end lemmas bl_word_rotl_dt = trans [OF to_bl_rotl rotate_drop_take, simplified word_bl_Rep'] lemmas bl_word_rotr_dt = trans [OF to_bl_rotr rotater_drop_take, simplified word_bl_Rep'] lemma bl_word_roti_dt': "n = nat ((- i) mod int (size (w :: 'a::len word))) \ to_bl (word_roti i w) = drop n (to_bl w) @ take n (to_bl w)" apply (unfold word_roti_eq_word_rotr_word_rotl) apply (simp add: bl_word_rotl_dt bl_word_rotr_dt word_size) apply safe apply (simp add: zmod_zminus1_eq_if) apply safe apply (simp add: nat_mult_distrib) apply (simp add: nat_diff_distrib [OF pos_mod_sign pos_mod_conj [THEN conjunct2, THEN order_less_imp_le]] nat_mod_distrib) apply (simp add: nat_mod_distrib) done lemmas bl_word_roti_dt = bl_word_roti_dt' [unfolded word_size] lemmas word_rotl_dt = bl_word_rotl_dt [THEN word_bl.Rep_inverse' [symmetric]] lemmas word_rotr_dt = bl_word_rotr_dt [THEN word_bl.Rep_inverse' [symmetric]] lemmas word_roti_dt = bl_word_roti_dt [THEN word_bl.Rep_inverse' [symmetric]] lemmas word_rotr_dt_no_bin' [simp] = word_rotr_dt [where w="numeral w", unfolded to_bl_numeral] for w (* FIXME: negative numerals, 0 and 1 *) lemmas word_rotl_dt_no_bin' [simp] = word_rotl_dt [where w="numeral w", unfolded to_bl_numeral] for w (* FIXME: negative numerals, 0 and 1 *) lemma max_word_bl: "to_bl (- 1::'a::len word) = replicate LENGTH('a) True" by (fact to_bl_n1) lemma to_bl_mask: "to_bl (mask n :: 'a::len word) = replicate (LENGTH('a) - n) False @ replicate (min (LENGTH('a)) n) True" by (simp add: mask_bl word_rep_drop min_def) lemma map_replicate_True: "n = length xs \ map (\(x,y). x \ y) (zip xs (replicate n True)) = xs" by (induct xs arbitrary: n) auto lemma map_replicate_False: "n = length xs \ map (\(x,y). x \ y) (zip xs (replicate n False)) = replicate n False" by (induct xs arbitrary: n) auto lemma bl_and_mask: fixes w :: "'a::len word" and n :: nat defines "n' \ LENGTH('a) - n" shows "to_bl (w AND mask n) = replicate n' False @ drop n' (to_bl w)" proof - note [simp] = map_replicate_True map_replicate_False have "to_bl (w AND mask n) = map2 (\) (to_bl w) (to_bl (mask n::'a::len word))" by (simp add: bl_word_and) also have "to_bl w = take n' (to_bl w) @ drop n' (to_bl w)" by simp also have "map2 (\) \ (to_bl (mask n::'a::len word)) = replicate n' False @ drop n' (to_bl w)" unfolding to_bl_mask n'_def by (subst zip_append) auto finally show ?thesis . qed lemma drop_rev_takefill: "length xs \ n \ drop (n - length xs) (rev (takefill False n (rev xs))) = xs" by (simp add: takefill_alt rev_take) declare bin_to_bl_def [simp] lemmas of_bl_reasoning = to_bl_use_of_bl of_bl_append lemma uint_of_bl_is_bl_to_bin_drop: "length (dropWhile Not l) \ LENGTH('a) \ uint (of_bl l :: 'a::len word) = bl_to_bin l" apply transfer apply (simp add: take_bit_eq_mod) apply (rule Divides.mod_less) apply (rule bl_to_bin_ge0) using bl_to_bin_lt2p_drop apply (rule order.strict_trans2) apply simp done corollary uint_of_bl_is_bl_to_bin: "length l\LENGTH('a) \ uint ((of_bl::bool list\ ('a :: len) word) l) = bl_to_bin l" apply(rule uint_of_bl_is_bl_to_bin_drop) using le_trans length_dropWhile_le by blast lemma bin_to_bl_or: "bin_to_bl n (a OR b) = map2 (\) (bin_to_bl n a) (bin_to_bl n b)" using bl_or_aux_bin[where n=n and v=a and w=b and bs="[]" and cs="[]"] by simp lemma word_and_1_bl: fixes x::"'a::len word" - shows "(x AND 1) = of_bl [x !! 0]" - by (simp add: mod_2_eq_odd test_bit_word_eq and_one_eq) + shows "(x AND 1) = of_bl [bit x 0]" + by (simp add: mod_2_eq_odd and_one_eq) lemma word_1_and_bl: fixes x::"'a::len word" - shows "(1 AND x) = of_bl [x !! 0]" - by (simp add: mod_2_eq_odd test_bit_word_eq one_and_eq) + shows "(1 AND x) = of_bl [bit x 0]" + by (simp add: mod_2_eq_odd one_and_eq) lemma of_bl_drop: "of_bl (drop n xs) = (of_bl xs AND mask (length xs - n))" - apply (clarsimp simp: bang_eq test_bit_of_bl rev_nth cong: rev_conj_cong) - apply (safe; simp add: word_size to_bl_nth) + apply (rule bit_word_eqI) + apply (auto simp: rev_nth bit_simps cong: rev_conj_cong) done lemma to_bl_1: "to_bl (1::'a::len word) = replicate (LENGTH('a) - 1) False @ [True]" by (rule nth_equalityI) (auto simp add: to_bl_unfold nth_append rev_nth bit_1_iff not_less not_le) lemma eq_zero_set_bl: "(w = 0) = (True \ set (to_bl w))" apply (auto simp add: to_bl_unfold) apply (rule bit_word_eqI) apply auto done lemma of_drop_to_bl: "of_bl (drop n (to_bl x)) = (x AND mask (size x - n))" by (simp add: of_bl_drop word_size_bl) lemma unat_of_bl_length: "unat (of_bl xs :: 'a::len word) < 2 ^ (length xs)" proof (cases "length xs < LENGTH('a)") case True then have "(of_bl xs::'a::len word) < 2 ^ length xs" by (simp add: of_bl_length_less) with True show ?thesis by (simp add: word_less_nat_alt unat_of_nat) next case False have "unat (of_bl xs::'a::len word) < 2 ^ LENGTH('a)" by (simp split: unat_split) also from False have "LENGTH('a) \ length xs" by simp then have "2 ^ LENGTH('a) \ (2::nat) ^ length xs" by (rule power_increasing) simp finally show ?thesis . qed lemma word_msb_alt: "msb w \ hd (to_bl w)" for w :: "'a::len word" apply (simp add: msb_word_eq) apply (subst hd_conv_nth) apply simp apply (subst nth_to_bl) apply simp apply simp done lemma word_lsb_last: \lsb w \ last (to_bl w)\ for w :: \'a::len word\ using nth_to_bl [of \LENGTH('a) - Suc 0\ w] by (simp add: lsb_odd last_conv_nth) lemma is_aligned_to_bl: "is_aligned (w :: 'a :: len word) n = (True \ set (drop (size w - n) (to_bl w)))" - apply (simp add: is_aligned_mask eq_zero_set_bl) - apply (clarsimp simp: in_set_conv_nth word_size) - apply (simp add: to_bl_nth word_size cong: conj_cong) - apply (simp add: diff_diff_less) - apply safe - apply (case_tac "n \ LENGTH('a)") - prefer 2 - apply (rule_tac x=i in exI) - apply clarsimp - apply (subgoal_tac "\j < LENGTH('a). j < n \ LENGTH('a) - n + j = i") - apply (erule exE) - apply (rule_tac x=j in exI) - apply clarsimp - apply (thin_tac "w !! t" for t) - apply (rule_tac x="i + n - LENGTH('a)" in exI) - apply clarsimp - apply arith - apply (rule_tac x="LENGTH('a) - n + i" in exI) - apply clarsimp - apply arith - done + by (simp add: is_aligned_mask eq_zero_set_bl bl_and_mask word_size) lemma is_aligned_replicate: fixes w::"'a::len word" assumes aligned: "is_aligned w n" and nv: "n \ LENGTH('a)" shows "to_bl w = (take (LENGTH('a) - n) (to_bl w)) @ replicate n False" proof - from nv have rl: "\q. q < 2 ^ (LENGTH('a) - n) \ to_bl (2 ^ n * (of_nat q :: 'a word)) = drop n (to_bl (of_nat q :: 'a word)) @ replicate n False" by (metis bl_shiftl le_antisym min_def shiftl_t2n wsst_TYs(3)) show ?thesis using aligned by (auto simp: rl elim: is_alignedE) qed lemma is_aligned_drop: fixes w::"'a::len word" assumes "is_aligned w n" "n \ LENGTH('a)" shows "drop (LENGTH('a) - n) (to_bl w) = replicate n False" proof - have "to_bl w = take (LENGTH('a) - n) (to_bl w) @ replicate n False" by (rule is_aligned_replicate) fact+ then have "drop (LENGTH('a) - n) (to_bl w) = drop (LENGTH('a) - n) \" by simp also have "\ = replicate n False" by simp finally show ?thesis . qed lemma less_is_drop_replicate: fixes x::"'a::len word" assumes lt: "x < 2 ^ n" shows "to_bl x = replicate (LENGTH('a) - n) False @ drop (LENGTH('a) - n) (to_bl x)" by (metis assms bl_and_mask' less_mask_eq) lemma is_aligned_add_conv: fixes off::"'a::len word" assumes aligned: "is_aligned w n" and offv: "off < 2 ^ n" shows "to_bl (w + off) = (take (LENGTH('a) - n) (to_bl w)) @ (drop (LENGTH('a) - n) (to_bl off))" proof cases assume nv: "n \ LENGTH('a)" show ?thesis proof (subst aligned_bl_add_size, simp_all only: word_size) show "drop (LENGTH('a) - n) (to_bl w) = replicate n False" by (subst is_aligned_replicate [OF aligned nv]) (simp add: word_size) from offv show "take (LENGTH('a) - n) (to_bl off) = replicate (LENGTH('a) - n) False" by (subst less_is_drop_replicate, assumption) simp qed fact next assume "\ n \ LENGTH('a)" with offv show ?thesis by (simp add: power_overflow) qed lemma is_aligned_replicateI: "to_bl p = addr @ replicate n False \ is_aligned (p::'a::len word) n" apply (simp add: is_aligned_to_bl word_size) apply (subgoal_tac "length addr = LENGTH('a) - n") apply (simp add: replicate_not_True) apply (drule arg_cong [where f=length]) apply simp done lemma to_bl_2p: "n < LENGTH('a) \ to_bl ((2::'a::len word) ^ n) = replicate (LENGTH('a) - Suc n) False @ True # replicate n False" apply (subst shiftl_1 [symmetric]) apply (subst bl_shiftl) apply (simp add: to_bl_1 min_def word_size) done lemma xor_2p_to_bl: fixes x::"'a::len word" shows "to_bl (x XOR 2^n) = (if n < LENGTH('a) then take (LENGTH('a)-Suc n) (to_bl x) @ (\rev (to_bl x)!n) # drop (LENGTH('a)-n) (to_bl x) else to_bl x)" -proof - - have x: "to_bl x = take (LENGTH('a)-Suc n) (to_bl x) @ drop (LENGTH('a)-Suc n) (to_bl x)" - by simp - - show ?thesis - apply simp - apply (rule conjI) - apply (clarsimp simp: word_size) - apply (simp add: bl_word_xor to_bl_2p) - apply (subst x) - apply (subst zip_append) - apply simp - apply (simp add: map_zip_replicate_False_xor drop_minus) - apply (auto simp add: word_size nth_w2p intro!: word_eqI) + apply (auto simp add: to_bl_eq_rev take_map drop_map take_rev drop_rev bit_simps) + apply (rule nth_equalityI) + apply (auto simp add: bit_simps rev_nth nth_append Suc_diff_Suc) done -qed lemma is_aligned_replicateD: "\ is_aligned (w::'a::len word) n; n \ LENGTH('a) \ \ \xs. to_bl w = xs @ replicate n False \ length xs = size w - n" apply (subst is_aligned_replicate, assumption+) apply (rule exI, rule conjI, rule refl) apply (simp add: word_size) done text \right-padding a word to a certain length\ definition "bl_pad_to bl sz \ bl @ (replicate (sz - length bl) False)" lemma bl_pad_to_length: assumes lbl: "length bl \ sz" shows "length (bl_pad_to bl sz) = sz" using lbl by (simp add: bl_pad_to_def) lemma bl_pad_to_prefix: "prefix bl (bl_pad_to bl sz)" by (simp add: bl_pad_to_def) lemma of_bl_length: "length xs < LENGTH('a) \ of_bl xs < (2 :: 'a::len word) ^ length xs" by (simp add: of_bl_length_less) lemma of_bl_mult_and_not_mask_eq: "\is_aligned (a :: 'a::len word) n; length b + m \ n\ \ a + of_bl b * (2^m) AND NOT(mask n) = a" apply (simp flip: push_bit_eq_mult subtract_mask(1) take_bit_eq_mask) apply (subst disjunctive_add) apply (auto simp add: bit_simps not_le not_less) apply (meson is_aligned_imp_not_bit is_aligned_weaken less_diff_conv2) apply (erule is_alignedE') apply (simp add: take_bit_push_bit) apply (rule bit_word_eqI) apply (auto simp add: bit_simps) done lemma bin_to_bl_of_bl_eq: "\is_aligned (a::'a::len word) n; length b + c \ n; length b + c < LENGTH('a)\ \ bin_to_bl (length b) (uint ((a + of_bl b * 2^c) >> c)) = b" apply (simp flip: push_bit_eq_mult take_bit_eq_mask add: shiftr_eq_drop_bit) apply (subst disjunctive_add) apply (auto simp add: bit_simps not_le not_less unsigned_or_eq unsigned_drop_bit_eq unsigned_push_bit_eq bin_to_bl_or simp flip: bin_to_bl_def) apply (meson is_aligned_imp_not_bit is_aligned_weaken less_diff_conv2) apply (erule is_alignedE') apply (rule nth_equalityI) apply (auto simp add: nth_bin_to_bl bit_simps rev_nth simp flip: bin_to_bl_def) done (* FIXME: move to Word distribution *) lemma bin_nth_minus_Bit0[simp]: "0 < n \ bit (numeral (num.Bit0 w) :: int) n = bit (numeral w :: int) (n - 1)" by (cases n; simp) lemma bin_nth_minus_Bit1[simp]: "0 < n \ bit (numeral (num.Bit1 w) :: int) n = bit (numeral w :: int) (n - 1)" by (cases n; simp) (* casting a long word to a shorter word and casting back to the long word is equal to the original long word -- if the word is small enough. 'l is the longer word. 's is the shorter word. *) lemma bl_cast_long_short_long_ingoreLeadingZero_generic: "\ length (dropWhile Not (to_bl w)) \ LENGTH('s); LENGTH('s) \ LENGTH('l) \ \ (of_bl :: _ \ 'l::len word) (to_bl ((of_bl::_ \ 's::len word) (to_bl w))) = w" by (rule word_uint_eqI) (simp add: uint_of_bl_is_bl_to_bin uint_of_bl_is_bl_to_bin_drop) (* Casting between longer and shorter word. 'l is the longer word. 's is the shorter word. For example: 'l::len word is 128 word (full ipv6 address) 's::len word is 16 word (address piece of ipv6 address in colon-text-representation) *) corollary ucast_short_ucast_long_ingoreLeadingZero: "\ length (dropWhile Not (to_bl w)) \ LENGTH('s); LENGTH('s) \ LENGTH('l) \ \ (ucast:: 's::len word \ 'l::len word) ((ucast:: 'l::len word \ 's::len word) w) = w" apply (subst ucast_bl)+ apply (rule bl_cast_long_short_long_ingoreLeadingZero_generic; simp) done lemma length_drop_mask: fixes w::"'a::len word" shows "length (dropWhile Not (to_bl (w AND mask n))) \ n" proof - have "length (takeWhile Not (replicate n False @ ls)) = n + length (takeWhile Not ls)" for ls n by(subst takeWhile_append2) simp+ then show ?thesis unfolding bl_and_mask by (simp add: dropWhile_eq_drop) qed lemma map_bits_rev_to_bl: - "map ((!!) x) [0.. of_bl xs * 2^c < (2::'a::len word) ^ (length xs + c)" by (simp add: of_bl_length word_less_power_trans2) lemma of_bl_max: "(of_bl xs :: 'a::len word) \ mask (length xs)" proof - define ys where \ys = rev xs\ have \take_bit (length ys) (horner_sum of_bool 2 ys :: 'a word) = horner_sum of_bool 2 ys\ by transfer (simp add: take_bit_horner_sum_bit_eq min_def) then have \(of_bl (rev ys) :: 'a word) \ mask (length ys)\ by (simp only: of_bl_rev_eq less_eq_mask_iff_take_bit_eq_self) with ys_def show ?thesis by simp qed text\Some auxiliaries for sign-shifting by the entire word length or more\ lemma sshiftr_clamp_pos: assumes "LENGTH('a) \ n" "0 \ sint x" shows "(x::'a::len word) >>> n = 0" apply (rule word_sint.Rep_eqD) apply (unfold sshiftr_div_2n Word.sint_0) apply (rule div_pos_pos_trivial) subgoal using assms(2) . apply (rule order.strict_trans[where b="2 ^ (LENGTH('a) - 1)"]) using sint_lt assms(1) by auto lemma sshiftr_clamp_neg: assumes "LENGTH('a) \ n" "sint x < 0" shows "(x::'a::len word) >>> n = -1" proof - have *: "- (2 ^ n) < sint x" apply (rule order.strict_trans2[where b="- (2 ^ (LENGTH('a) - 1))"]) using assms(1) sint_ge by auto show ?thesis apply (rule word_sint.Rep_eqD) apply (unfold sshiftr_div_2n Word.sint_n1) apply (subst div_minus_minus[symmetric]) apply (rule div_pos_neg_trivial) subgoal using assms(2) by linarith using * by simp qed lemma sshiftr_clamp: assumes "LENGTH('a) \ n" shows "(x::'a::len word) >>> n = x >>> LENGTH('a)" apply (cases "0 \ sint x") subgoal apply (subst sshiftr_clamp_pos[OF assms]) defer apply (subst sshiftr_clamp_pos) by auto apply (subst sshiftr_clamp_neg[OF assms]) defer apply (subst sshiftr_clamp_neg) by auto text\ Like @{thm shiftr1_bl_of}, but the precondition is stronger because we need to pick the msb out of the list. \ lemma sshiftr1_bl_of: "length bl = LENGTH('a) \ sshiftr1 (of_bl bl::'a::len word) = of_bl (hd bl # butlast bl)" apply (rule word_bl.Rep_eqD) apply (subst bl_sshiftr1[of "of_bl bl :: 'a word"]) by (simp add: word_bl.Abs_inverse) text\ Like @{thm sshiftr1_bl_of}, with a weaker precondition. We still get a direct equation for @{term \sshiftr1 (of_bl bl)\}, it's just uglier. \ lemma sshiftr1_bl_of': "LENGTH('a) \ length bl \ sshiftr1 (of_bl bl::'a::len word) = of_bl (hd (drop (length bl - LENGTH('a)) bl) # butlast (drop (length bl - LENGTH('a)) bl))" apply (subst of_bl_drop'[symmetric, of "length bl - LENGTH('a)"]) using sshiftr1_bl_of[of "drop (length bl - LENGTH('a)) bl"] by auto text\ Like @{thm shiftr_bl_of}. \ lemma sshiftr_bl_of: assumes "length bl = LENGTH('a)" shows "(of_bl bl::'a::len word) >>> n = of_bl (replicate n (hd bl) @ take (length bl - n) bl)" proof - { fix n assume "n \ LENGTH('a)" hence "(of_bl bl::'a::len word) >>> n = of_bl (replicate n (hd bl) @ take (length bl - n) bl)" proof (induction n) case (Suc n) hence "n < length bl" by (simp add: assms) hence ne: "\take (length bl - n) bl = []" by auto have left: "hd (replicate n (hd bl) @ take (length bl - n) bl) = (hd bl)" by (cases "0 < n") auto have right: "butlast (take (length bl - n) bl) = take (length bl - Suc n) bl" by (subst butlast_take) auto have "(of_bl bl::'a::len word) >>> Suc n = sshiftr1 ((of_bl bl::'a::len word) >>> n)" unfolding sshiftr_eq_funpow_sshiftr1 by simp also have "\ = of_bl (replicate (Suc n) (hd bl) @ take (length bl - Suc n) bl)" apply (subst Suc.IH[OF Suc_leD[OF Suc.prems]]) apply (subst sshiftr1_bl_of) subgoal using assms Suc.prems by simp apply (rule arg_cong[where f=of_bl]) apply (subst butlast_append) unfolding left right using ne by simp finally show ?case . qed (transfer, simp) } note pos = this { assume n: "LENGTH('a) \ n" have "(of_bl bl::'a::len word) >>> n = (of_bl bl::'a::len word) >>> LENGTH('a)" by (rule sshiftr_clamp[OF n]) also have "\ = of_bl (replicate LENGTH('a) (hd bl) @ take (length bl - LENGTH('a)) bl)" apply (rule pos) .. also have "\ = of_bl (replicate n (hd bl) @ take (length bl - n) bl)" proof - have "(of_bl (replicate LENGTH('a) (hd bl)) :: 'a word) = of_bl (replicate n (hd bl))" apply (subst of_bl_drop'[symmetric, of "n - LENGTH('a)" "replicate n (hd bl)"]) unfolding length_replicate by (auto simp: n) thus ?thesis by (simp add: assms n) qed finally have "(of_bl bl::'a::len word) >>> n = of_bl (replicate n (hd bl) @ take (length bl - n) bl)" . } thus ?thesis using pos by fastforce qed text\Like @{thm shiftr_bl}\ lemma sshiftr_bl: "x >>> n \ of_bl (replicate n (msb x) @ take (LENGTH('a) - n) (to_bl x))" for x :: "'a::len word" unfolding word_msb_alt by (smt (z3) length_to_bl_eq sshiftr_bl_of word_bl.Rep_inverse) end diff --git a/thys/Word_Lib/Rsplit.thy b/thys/Word_Lib/Rsplit.thy --- a/thys/Word_Lib/Rsplit.thy +++ b/thys/Word_Lib/Rsplit.thy @@ -1,168 +1,168 @@ (* * Copyright Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) (* Author: Jeremy Dawson and Gerwin Klein, NICTA *) section \Splitting words into lists\ theory Rsplit imports "HOL-Library.Word" Bits_Int begin definition word_rsplit :: "'a::len word \ 'b::len word list" where "word_rsplit w = map word_of_int (bin_rsplit LENGTH('b) (LENGTH('a), uint w))" lemma word_rsplit_no: "(word_rsplit (numeral bin :: 'b::len word) :: 'a word list) = map word_of_int (bin_rsplit (LENGTH('a::len)) (LENGTH('b), take_bit (LENGTH('b)) (numeral bin)))" by (simp add: word_rsplit_def of_nat_take_bit) lemmas word_rsplit_no_cl [simp] = word_rsplit_no [unfolded bin_rsplitl_def bin_rsplit_l [symmetric]] text \ This odd result arises from the fact that the statement of the result implies that the decoded words are of the same type, and therefore of the same length, as the original word.\ lemma word_rsplit_same: "word_rsplit w = [w]" apply (simp add: word_rsplit_def bin_rsplit_all) apply transfer apply simp done lemma word_rsplit_empty_iff_size: "word_rsplit w = [] \ size w = 0" by (simp add: word_rsplit_def bin_rsplit_def word_size bin_rsplit_aux_simp_alt Let_def split: prod.split) lemma test_bit_rsplit: "sw = word_rsplit w \ m < size (hd sw) \ - k < length sw \ (rev sw ! k) !! m = w !! (k * size (hd sw) + m)" + k < length sw \ bit (rev sw ! k) m = bit w (k * size (hd sw) + m)" for sw :: "'a::len word list" apply (unfold word_rsplit_def word_test_bit_def) apply (rule trans) apply (rule_tac f = "\x. bit x m" in arg_cong) apply (rule nth_map [symmetric]) apply simp apply (rule bin_nth_rsplit) apply simp_all apply (simp add : word_size rev_map) apply (rule trans) defer apply (rule map_ident [THEN fun_cong]) apply (rule refl [THEN map_cong]) apply simp using bin_rsplit_size_sign take_bit_int_eq_self_iff by blast lemma test_bit_rsplit_alt: - \(word_rsplit w :: 'b::len word list) ! i !! m \ - w !! ((length (word_rsplit w :: 'b::len word list) - Suc i) * size (hd (word_rsplit w :: 'b::len word list)) + m)\ + \bit ((word_rsplit w :: 'b::len word list) ! i) m \ + bit w ((length (word_rsplit w :: 'b::len word list) - Suc i) * size (hd (word_rsplit w :: 'b::len word list)) + m)\ if \i < length (word_rsplit w :: 'b::len word list)\ \m < size (hd (word_rsplit w :: 'b::len word list))\ \0 < length (word_rsplit w :: 'b::len word list)\ for w :: \'a::len word\ apply (rule trans) apply (rule test_bit_cong) apply (rule rev_nth [of _ \rev (word_rsplit w)\, simplified rev_rev_ident]) apply simp apply (rule that(1)) apply simp apply (rule test_bit_rsplit) apply (rule refl) apply (rule asm_rl) apply (rule that(2)) apply (rule diff_Suc_less) apply (rule that(3)) done lemma word_rsplit_len_indep [OF refl refl refl refl]: "[u,v] = p \ [su,sv] = q \ word_rsplit u = su \ word_rsplit v = sv \ length su = length sv" by (auto simp: word_rsplit_def bin_rsplit_len_indep) lemma length_word_rsplit_size: "n = LENGTH('a::len) \ length (word_rsplit w :: 'a word list) \ m \ size w \ m * n" by (auto simp: word_rsplit_def word_size bin_rsplit_len_le) lemmas length_word_rsplit_lt_size = length_word_rsplit_size [unfolded Not_eq_iff linorder_not_less [symmetric]] lemma length_word_rsplit_exp_size: "n = LENGTH('a::len) \ length (word_rsplit w :: 'a word list) = (size w + n - 1) div n" by (auto simp: word_rsplit_def word_size bin_rsplit_len) lemma length_word_rsplit_even_size: "n = LENGTH('a::len) \ size w = m * n \ length (word_rsplit w :: 'a word list) = m" by (cases \LENGTH('a)\) (simp_all add: length_word_rsplit_exp_size div_nat_eqI) lemmas length_word_rsplit_exp_size' = refl [THEN length_word_rsplit_exp_size] \ \alternative proof of \word_rcat_rsplit\\ lemmas tdle = times_div_less_eq_dividend lemmas dtle = xtrans(4) [OF tdle mult.commute] lemma word_rcat_rsplit: "word_rcat (word_rsplit w) = w" apply (rule word_eqI) apply (clarsimp simp: test_bit_rcat word_size) apply (subst refl [THEN test_bit_rsplit]) apply (simp_all add: word_size refl [THEN length_word_rsplit_size [simplified not_less [symmetric], simplified]]) apply safe apply (erule xtrans(7), rule dtle)+ done lemma size_word_rsplit_rcat_size: "word_rcat ws = frcw \ size frcw = length ws * LENGTH('a) \ length (word_rsplit frcw::'a word list) = length ws" for ws :: "'a::len word list" and frcw :: "'b::len word" by (cases \LENGTH('a)\) (simp_all add: word_size length_word_rsplit_exp_size' div_nat_eqI) lemma msrevs: "0 < n \ (k * n + m) div n = m div n + k" "(k * n + m) mod n = m mod n" for n :: nat by (auto simp: add.commute) lemma word_rsplit_rcat_size [OF refl]: "word_rcat ws = frcw \ size frcw = length ws * LENGTH('a) \ word_rsplit frcw = ws" for ws :: "'a::len word list" apply (frule size_word_rsplit_rcat_size, assumption) apply (clarsimp simp add : word_size) apply (rule nth_equalityI, assumption) apply clarsimp apply (rule word_eqI [rule_format]) apply (rule trans) apply (rule test_bit_rsplit_alt) apply (clarsimp simp: word_size)+ apply (rule trans) apply (rule test_bit_rcat [OF refl refl]) apply (simp add: word_size) apply (subst rev_nth) apply arith apply (simp add: le0 [THEN [2] xtrans(7), THEN diff_Suc_less]) apply safe apply (simp add: diff_mult_distrib) apply (cases "size ws") apply simp_all done lemma word_rsplit_upt: "\ size x = LENGTH('a :: len) * n; n \ 0 \ \ word_rsplit x = map (\i. ucast (x >> i * len_of TYPE ('a)) :: 'a word) (rev [0 ..< n])" apply (subgoal_tac "length (word_rsplit x :: 'a word list) = n") apply (rule nth_equalityI, simp) apply (intro allI word_eqI impI) apply (simp add: test_bit_rsplit_alt word_size) apply (simp add: nth_ucast nth_shiftr rev_nth field_simps) apply (simp add: length_word_rsplit_exp_size) apply transfer apply (metis (no_types, lifting) Nat.add_diff_assoc Suc_leI add_0_left diff_Suc_less div_less len_gt_0 msrevs(1) mult.commute) done end \ No newline at end of file diff --git a/thys/Word_Lib/Syntax_Bundles.thy b/thys/Word_Lib/Syntax_Bundles.thy new file mode 100644 --- /dev/null +++ b/thys/Word_Lib/Syntax_Bundles.thy @@ -0,0 +1,20 @@ +(* + * Copyright Florian Haftmann + * + * SPDX-License-Identifier: BSD-2-Clause + *) + +section \Syntax bundles for traditional infix syntax\ + +theory Syntax_Bundles + imports "HOL-Library.Word" +begin + +bundle bit_projection_infix_syntax +begin + +notation bit (infixl \!!\ 100) + +end + +end diff --git a/thys/Word_Lib/Traditional_Infix_Syntax.thy b/thys/Word_Lib/Traditional_Infix_Syntax.thy --- a/thys/Word_Lib/Traditional_Infix_Syntax.thy +++ b/thys/Word_Lib/Traditional_Infix_Syntax.thy @@ -1,1077 +1,1032 @@ (* * Copyright Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) (* Author: Jeremy Dawson, NICTA *) section \Operation variants with traditional syntax\ theory Traditional_Infix_Syntax - imports "HOL-Library.Word" More_Word Signed_Words + imports "HOL-Library.Word" More_Word Signed_Words Syntax_Bundles begin class semiring_bit_syntax = semiring_bit_shifts begin -definition test_bit :: \'a \ nat \ bool\ (infixl "!!" 100) - where test_bit_eq_bit: \test_bit = bit\ - definition shiftl :: \'a \ nat \ 'a\ (infixl "<<" 55) where shiftl_eq_push_bit: \a << n = push_bit n a\ definition shiftr :: \'a \ nat \ 'a\ (infixl ">>" 55) where shiftr_eq_drop_bit: \a >> n = drop_bit n a\ end instance word :: (len) semiring_bit_syntax .. context includes lifting_syntax begin -lemma test_bit_word_transfer [transfer_rule]: - \(pcr_word ===> (=)) (\k n. n < LENGTH('a) \ bit k n) (test_bit :: 'a::len word \ _)\ - by (unfold test_bit_eq_bit) transfer_prover - lemma shiftl_word_transfer [transfer_rule]: \(pcr_word ===> (=) ===> pcr_word) (\k n. push_bit n k) shiftl\ by (unfold shiftl_eq_push_bit) transfer_prover lemma shiftr_word_transfer [transfer_rule]: \(pcr_word ===> (=) ===> pcr_word) (\k n. (drop_bit n \ take_bit LENGTH('a)) k) (shiftr :: 'a::len word \ _)\ by (unfold shiftr_eq_drop_bit) transfer_prover end -lemma test_bit_word_eq: - \test_bit = (bit :: 'a::len word \ _)\ - by (fact test_bit_eq_bit) - lemma shiftl_word_eq: \w << n = push_bit n w\ for w :: \'a::len word\ by (fact shiftl_eq_push_bit) lemma shiftr_word_eq: \w >> n = drop_bit n w\ for w :: \'a::len word\ by (fact shiftr_eq_drop_bit) -lemma test_bit_eq_iff: "test_bit u = test_bit v \ u = v" +lemma test_bit_eq_iff: "bit u = bit v \ u = v" for u v :: "'a::len word" - by (simp add: bit_eq_iff test_bit_eq_bit fun_eq_iff) + by (simp add: bit_eq_iff fun_eq_iff) -lemma test_bit_size: "w !! n \ n < size w" +lemma test_bit_size: "bit w n \ n < size w" for w :: "'a::len word" by transfer simp -lemma word_eq_iff: "x = y \ (\n?P \ ?Q\) +lemma word_eq_iff: "x = y \ (\n?P \ ?Q\) for x y :: "'a::len word" by transfer (auto simp add: bit_eq_iff bit_take_bit_iff) -lemma word_eqI: "(\n. n < size u \ u !! n = v !! n) \ u = v" +lemma word_eqI: "(\n. n < size u \ bit u n = bit v n) \ u = v" for u :: "'a::len word" by (simp add: word_size word_eq_iff) -lemma word_eqD: "u = v \ u !! x = v !! x" +lemma word_eqD: "u = v \ bit u x = bit v x" for u v :: "'a::len word" by simp -lemma test_bit_bin': "w !! n \ n < size w \ bit (uint w) n" +lemma test_bit_bin': "bit w n \ n < size w \ bit (uint w) n" by transfer (simp add: bit_take_bit_iff) lemmas test_bit_bin = test_bit_bin' [unfolded word_size] lemma word_test_bit_def: - \test_bit a = bit (uint a)\ + \bit a = bit (uint a)\ by transfer (simp add: fun_eq_iff bit_take_bit_iff) lemmas test_bit_def' = word_test_bit_def [THEN fun_cong] lemma word_test_bit_transfer [transfer_rule]: "(rel_fun pcr_word (rel_fun (=) (=))) - (\x n. n < LENGTH('a) \ bit x n) (test_bit :: 'a::len word \ _)" - by (simp only: test_bit_eq_bit) transfer_prover + (\x n. n < LENGTH('a) \ bit x n) (bit :: 'a::len word \ _)" + by transfer_prover -lemma test_bit_wi [simp]: - "(word_of_int x :: 'a::len word) !! n \ n < LENGTH('a) \ bit x n" +lemma test_bit_wi: + "bit (word_of_int x :: 'a::len word) n \ n < LENGTH('a) \ bit x n" by transfer simp lemma word_ops_nth_size: "n < size x \ - (x OR y) !! n = (x !! n | y !! n) \ - (x AND y) !! n = (x !! n \ y !! n) \ - (x XOR y) !! n = (x !! n \ y !! n) \ - (NOT x) !! n = (\ x !! n)" + bit (x OR y) n = (bit x n | bit y n) \ + bit (x AND y) n = (bit x n \ bit y n) \ + bit (x XOR y) n = (bit x n \ bit y n) \ + bit (NOT x) n = (\ bit x n)" for x :: "'a::len word" by transfer (simp add: bit_or_iff bit_and_iff bit_xor_iff bit_not_iff) lemma word_ao_nth: - "(x OR y) !! n = (x !! n | y !! n) \ - (x AND y) !! n = (x !! n \ y !! n)" + "bit (x OR y) n = (bit x n | bit y n) \ + bit (x AND y) n = (bit x n \ bit y n)" for x :: "'a::len word" by transfer (auto simp add: bit_or_iff bit_and_iff) lemmas msb0 = len_gt_0 [THEN diff_Suc_less, THEN word_ops_nth_size [unfolded word_size]] lemmas msb1 = msb0 [where i = 0] -lemma test_bit_numeral [simp]: - "(numeral w :: 'a::len word) !! n \ - n < LENGTH('a) \ bit (numeral w :: int) n" - by transfer (rule refl) - -lemma test_bit_neg_numeral [simp]: - "(- numeral w :: 'a::len word) !! n \ - n < LENGTH('a) \ bit (- numeral w :: int) n" - by transfer (rule refl) - -lemma test_bit_1 [iff]: "(1 :: 'a::len word) !! n \ n = 0" +lemma test_bit_1 [iff]: "bit (1 :: 'a::len word) n \ n = 0" by transfer (auto simp add: bit_1_iff) -lemma nth_0 [simp]: "\ (0 :: 'a::len word) !! n" +lemma nth_0: "\ bit (0 :: 'a::len word) n" by transfer simp -lemma nth_minus1 [simp]: "(-1 :: 'a::len word) !! n \ n < LENGTH('a)" +lemma nth_minus1: "bit (-1 :: 'a::len word) n \ n < LENGTH('a)" by transfer simp lemma shiftl1_code [code]: \shiftl1 w = push_bit 1 w\ by transfer (simp add: ac_simps) lemma uint_shiftr_eq: \uint (w >> n) = uint w div 2 ^ n\ by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit min_def le_less less_diff_conv) lemma shiftr1_code [code]: \shiftr1 w = drop_bit 1 w\ by transfer (simp add: drop_bit_Suc) lemma shiftl_def: \w << n = (shiftl1 ^^ n) w\ proof - have \push_bit n = (((*) 2 ^^ n) :: int \ int)\ for n by (induction n) (simp_all add: fun_eq_iff funpow_swap1, simp add: ac_simps) then show ?thesis by transfer simp qed lemma shiftr_def: \w >> n = (shiftr1 ^^ n) w\ proof - have \shiftr1 ^^ n = (drop_bit n :: 'a word \ 'a word)\ apply (induction n) apply simp apply (simp only: shiftr1_eq_div_2 [abs_def] drop_bit_eq_div [abs_def] funpow_Suc_right) apply (use div_exp_eq [of _ 1, where ?'a = \'a word\] in simp) done then show ?thesis by (simp add: shiftr_eq_drop_bit) qed lemma bit_shiftl_word_iff [bit_simps]: \bit (w << m) n \ m \ n \ n < LENGTH('a) \ bit w (n - m)\ for w :: \'a::len word\ by (simp add: shiftl_word_eq bit_push_bit_iff not_le) lemma bit_shiftr_word_iff [bit_simps]: \bit (w >> m) n \ bit w (m + n)\ for w :: \'a::len word\ by (simp add: shiftr_word_eq bit_drop_bit_eq) lift_definition sshiftr :: \'a::len word \ nat \ 'a word\ (infixl \>>>\ 55) is \\k n. take_bit LENGTH('a) (drop_bit n (signed_take_bit (LENGTH('a) - Suc 0) k))\ by (simp flip: signed_take_bit_decr_length_iff) lemma sshiftr_eq [code]: \w >>> n = signed_drop_bit n w\ by transfer simp lemma sshiftr_eq_funpow_sshiftr1: \w >>> n = (sshiftr1 ^^ n) w\ apply (rule sym) apply (simp add: sshiftr1_eq_signed_drop_bit_Suc_0 sshiftr_eq) apply (induction n) apply simp_all done lemma uint_sshiftr_eq: \uint (w >>> n) = take_bit LENGTH('a) (sint w div 2 ^ n)\ for w :: \'a::len word\ by transfer (simp flip: drop_bit_eq_div) lemma sshift1_code [code]: \sshiftr1 w = signed_drop_bit 1 w\ by transfer (simp add: drop_bit_Suc) lemma sshiftr_0 [simp]: "0 >>> n = 0" by transfer simp lemma sshiftr_n1 [simp]: "-1 >>> n = -1" by transfer simp lemma bit_sshiftr_word_iff [bit_simps]: \bit (w >>> m) n \ bit w (if LENGTH('a) - m \ n \ n < LENGTH('a) then LENGTH('a) - 1 else (m + n))\ for w :: \'a::len word\ apply transfer apply (auto simp add: bit_take_bit_iff bit_drop_bit_eq bit_signed_take_bit_iff min_def not_le simp flip: bit_Suc) using le_less_Suc_eq apply fastforce using le_less_Suc_eq apply fastforce done lemma nth_sshiftr : - "(w >>> m) !! n = - (n < size w \ (if n + m \ size w then w !! (size w - 1) else w !! (n + m)))" + "bit (w >>> m) n = + (n < size w \ (if n + m \ size w then bit w (size w - 1) else bit w (n + m)))" apply transfer apply (auto simp add: bit_take_bit_iff bit_drop_bit_eq bit_signed_take_bit_iff min_def not_le ac_simps) using le_less_Suc_eq apply fastforce using le_less_Suc_eq apply fastforce done lemma sshiftr_numeral [simp]: \(numeral k >>> numeral n :: 'a::len word) = word_of_int (drop_bit (numeral n) (signed_take_bit (LENGTH('a) - 1) (numeral k)))\ - apply (rule word_eqI) - apply (cases \LENGTH('a)\) - apply (simp_all add: word_size bit_drop_bit_eq nth_sshiftr bit_signed_take_bit_iff min_def not_le not_less less_Suc_eq_le ac_simps) + apply (rule bit_word_eqI) + apply (simp add: word_size nth_sshiftr ac_simps bit_simps) done setup \ Context.theory_map (fold SMT_Word.add_word_shift' [ (\<^term>\shiftl :: 'a::len word \ _\, "bvshl"), (\<^term>\shiftr :: 'a::len word \ _\, "bvlshr"), (\<^term>\sshiftr :: 'a::len word \ _\, "bvashr") ]) \ lemma revcast_down_us [OF refl]: "rc = revcast \ source_size rc = target_size rc + n \ rc w = ucast (w >>> n)" for w :: "'a::len word" apply (simp add: source_size_def target_size_def) apply (rule bit_word_eqI) apply (simp add: bit_revcast_iff bit_ucast_iff bit_sshiftr_word_iff ac_simps) done lemma revcast_down_ss [OF refl]: "rc = revcast \ source_size rc = target_size rc + n \ rc w = scast (w >>> n)" for w :: "'a::len word" apply (simp add: source_size_def target_size_def) apply (rule bit_word_eqI) apply (simp add: bit_revcast_iff bit_word_scast_iff bit_sshiftr_word_iff ac_simps) done lemma sshiftr_div_2n: "sint (w >>> n) = sint w div 2 ^ n" using sint_signed_drop_bit_eq [of n w] by (simp add: drop_bit_eq_div sshiftr_eq) lemmas lsb0 = len_gt_0 [THEN word_ops_nth_size [unfolded word_size]] lemma nth_sint: fixes w :: "'a::len word" defines "l \ LENGTH('a)" - shows "bit (sint w) n = (if n < l - 1 then w !! n else w !! (l - 1))" + shows "bit (sint w) n = (if n < l - 1 then bit w n else bit w (l - 1))" unfolding sint_uint l_def by (auto simp: bit_signed_take_bit_iff word_test_bit_def not_less min_def) -lemma test_bit_2p: "(word_of_int (2 ^ n)::'a::len word) !! m \ m = n \ m < LENGTH('a)" +lemma test_bit_2p: "bit (word_of_int (2 ^ n)::'a::len word) m \ m = n \ m < LENGTH('a)" by transfer (auto simp add: bit_exp_iff) -lemma nth_w2p: "((2::'a::len word) ^ n) !! m \ m = n \ m < LENGTH('a::len)" +lemma nth_w2p: "bit ((2::'a::len word) ^ n) m \ m = n \ m < LENGTH('a::len)" by transfer (auto simp add: bit_exp_iff) -lemma bang_is_le: "x !! m \ 2 ^ m \ x" +lemma bang_is_le: "bit x m \ 2 ^ m \ x" for x :: "'a::len word" apply (rule xtrans(3)) apply (rule_tac [2] y = "x" in le_word_or2) apply (rule word_eqI) apply (auto simp add: word_ao_nth nth_w2p word_size) done lemma mask_eq: \mask n = (1 << n) - (1 :: 'a::len word)\ by transfer (simp add: mask_eq_exp_minus_1 push_bit_of_1) lemma nth_ucast: - "(ucast w::'a::len word) !! n = (w !! n \ n < LENGTH('a))" + "bit (ucast w::'a::len word) n = (bit w n \ n < LENGTH('a))" by transfer (simp add: bit_take_bit_iff ac_simps) lemma shiftl_0 [simp]: "(0::'a::len word) << n = 0" by transfer simp lemma shiftr_0 [simp]: "(0::'a::len word) >> n = 0" by transfer simp -lemma nth_shiftl1: "shiftl1 w !! n \ n < size w \ n > 0 \ w !! (n - 1)" +lemma nth_shiftl1: "bit (shiftl1 w) n \ n < size w \ n > 0 \ bit w (n - 1)" by transfer (auto simp add: bit_double_iff) -lemma nth_shiftl': "(w << m) !! n \ n < size w \ n >= m \ w !! (n - m)" +lemma nth_shiftl': "bit (w << m) n \ n < size w \ n >= m \ bit w (n - m)" for w :: "'a::len word" by transfer (auto simp add: bit_push_bit_iff) lemmas nth_shiftl = nth_shiftl' [unfolded word_size] -lemma nth_shiftr1: "shiftr1 w !! n = w !! Suc n" +lemma nth_shiftr1: "bit (shiftr1 w) n = bit w (Suc n)" by transfer (auto simp add: bit_take_bit_iff simp flip: bit_Suc) -lemma nth_shiftr: "(w >> m) !! n = w !! (n + m)" +lemma nth_shiftr: "bit (w >> m) n = bit w (n + m)" for w :: "'a::len word" apply (unfold shiftr_def) apply (induct "m" arbitrary: n) apply (auto simp add: nth_shiftr1) done -lemma nth_sshiftr1: "sshiftr1 w !! n = (if n = size w - 1 then w !! n else w !! Suc n)" +lemma nth_sshiftr1: "bit (sshiftr1 w) n = (if n = size w - 1 then bit w n else bit w (Suc n))" apply transfer apply (auto simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def simp flip: bit_Suc) using le_less_Suc_eq apply fastforce using le_less_Suc_eq apply fastforce done lemma shiftr_div_2n: "uint (shiftr w n) = uint w div 2 ^ n" by (fact uint_shiftr_eq) lemma shiftl_rev: "shiftl w n = word_reverse (shiftr (word_reverse w) n)" by (induct n) (auto simp add: shiftl_def shiftr_def shiftl1_rev) lemma rev_shiftl: "word_reverse w << n = word_reverse (w >> n)" by (simp add: shiftl_rev) lemma shiftr_rev: "w >> n = word_reverse (word_reverse w << n)" by (simp add: rev_shiftl) lemma rev_shiftr: "word_reverse w >> n = word_reverse (w << n)" by (simp add: shiftr_rev) lemma shiftl_numeral [simp]: \numeral k << numeral l = (push_bit (numeral l) (numeral k) :: 'a::len word)\ by (fact shiftl_word_eq) lemma shiftl_zero_size: "size x \ n \ x << n = 0" for x :: "'a::len word" apply transfer apply (simp add: take_bit_push_bit) done lemma shiftl_t2n: "shiftl w n = 2 ^ n * w" for w :: "'a::len word" by (induct n) (auto simp: shiftl_def shiftl1_2t) lemma shiftr_numeral [simp]: \(numeral k >> numeral n :: 'a::len word) = drop_bit (numeral n) (numeral k)\ by (fact shiftr_word_eq) lemma shiftr_numeral_Suc [simp]: \(numeral k >> Suc 0 :: 'a::len word) = drop_bit (Suc 0) (numeral k)\ by (fact shiftr_word_eq) lemma drop_bit_numeral_bit0_1 [simp]: \drop_bit (Suc 0) (numeral k) = (word_of_int (drop_bit (Suc 0) (take_bit LENGTH('a) (numeral k))) :: 'a::len word)\ by (metis Word_eq_word_of_int drop_bit_word.abs_eq of_int_numeral) -lemma nth_mask [simp]: - \(mask n :: 'a::len word) !! i \ i < n \ i < size (mask n :: 'a word)\ - by (auto simp add: test_bit_word_eq word_size Word.bit_mask_iff) +lemma nth_mask: + \bit (mask n :: 'a::len word) i \ i < n \ i < size (mask n :: 'a word)\ + by (auto simp add: word_size Word.bit_mask_iff) lemma slice_shiftr: "slice n w = ucast (w >> n)" apply (rule bit_word_eqI) apply (cases \n \ LENGTH('b)\) apply (auto simp add: bit_slice_iff bit_ucast_iff bit_shiftr_word_iff ac_simps dest: bit_imp_le_length) done -lemma nth_slice: "(slice n w :: 'a::len word) !! m = (w !! (m + n) \ m < LENGTH('a))" +lemma nth_slice: "bit (slice n w :: 'a::len word) m = (bit w (m + n) \ m < LENGTH('a))" by (simp add: slice_shiftr nth_ucast nth_shiftr) lemma revcast_down_uu [OF refl]: "rc = revcast \ source_size rc = target_size rc + n \ rc w = ucast (w >> n)" for w :: "'a::len word" apply (simp add: source_size_def target_size_def) apply (rule bit_word_eqI) apply (simp add: bit_revcast_iff bit_ucast_iff bit_shiftr_word_iff ac_simps) done lemma revcast_down_su [OF refl]: "rc = revcast \ source_size rc = target_size rc + n \ rc w = scast (w >> n)" for w :: "'a::len word" apply (simp add: source_size_def target_size_def) apply (rule bit_word_eqI) apply (simp add: bit_revcast_iff bit_word_scast_iff bit_shiftr_word_iff ac_simps) done lemma cast_down_rev [OF refl]: "uc = ucast \ source_size uc = target_size uc + n \ uc w = revcast (w << n)" for w :: "'a::len word" apply (simp add: source_size_def target_size_def) apply (rule bit_word_eqI) apply (simp add: bit_revcast_iff bit_word_ucast_iff bit_shiftl_word_iff) done lemma revcast_up [OF refl]: "rc = revcast \ source_size rc + n = target_size rc \ rc w = (ucast w :: 'a::len word) << n" apply (simp add: source_size_def target_size_def) apply (rule bit_word_eqI) apply (simp add: bit_revcast_iff bit_word_ucast_iff bit_shiftl_word_iff) apply auto apply (metis add.commute add_diff_cancel_right) apply (metis diff_add_inverse2 diff_diff_add) done lemmas rc1 = revcast_up [THEN revcast_rev_ucast [symmetric, THEN trans, THEN word_rev_gal, symmetric]] lemmas rc2 = revcast_down_uu [THEN revcast_rev_ucast [symmetric, THEN trans, THEN word_rev_gal, symmetric]] lemmas ucast_up = rc1 [simplified rev_shiftr [symmetric] revcast_ucast [symmetric]] lemmas ucast_down = rc2 [simplified rev_shiftr revcast_ucast [symmetric]] \ \problem posed by TPHOLs referee: criterion for overflow of addition of signed integers\ lemma sofl_test: \sint x + sint y = sint (x + y) \ (x + y XOR x) AND (x + y XOR y) >> (size x - 1) = 0\ for x y :: \'a::len word\ proof - obtain n where n: \LENGTH('a) = Suc n\ by (cases \LENGTH('a)\) simp_all have *: \sint x + sint y + 2 ^ Suc n > signed_take_bit n (sint x + sint y) \ sint x + sint y \ - (2 ^ n)\ \signed_take_bit n (sint x + sint y) > sint x + sint y - 2 ^ Suc n \ 2 ^ n > sint x + sint y\ using signed_take_bit_int_greater_eq [of \sint x + sint y\ n] signed_take_bit_int_less_eq [of n \sint x + sint y\] by (auto intro: ccontr) have \sint x + sint y = sint (x + y) \ (sint (x + y) < 0 \ sint x < 0) \ (sint (x + y) < 0 \ sint y < 0)\ using sint_less [of x] sint_greater_eq [of x] sint_less [of y] sint_greater_eq [of y] signed_take_bit_int_eq_self [of \LENGTH('a) - 1\ \sint x + sint y\] apply (auto simp add: not_less) apply (unfold sint_word_ariths) apply (subst signed_take_bit_int_eq_self) prefer 4 apply (subst signed_take_bit_int_eq_self) prefer 7 apply (subst signed_take_bit_int_eq_self) prefer 10 apply (subst signed_take_bit_int_eq_self) apply (auto simp add: signed_take_bit_int_eq_self signed_take_bit_eq_take_bit_minus take_bit_Suc_from_most n not_less intro!: *) apply (smt (z3) take_bit_nonnegative) apply (smt (z3) take_bit_int_less_exp) apply (smt (z3) take_bit_nonnegative) apply (smt (z3) take_bit_int_less_exp) done then show ?thesis apply (simp only: One_nat_def word_size shiftr_word_eq drop_bit_eq_zero_iff_not_bit_last bit_and_iff bit_xor_iff) apply (simp add: bit_last_iff) done qed lemma shiftr_zero_size: "size x \ n \ x >> n = 0" for x :: "'a :: len word" by (rule word_eqI) (auto simp add: nth_shiftr dest: test_bit_size) lemma test_bit_cat [OF refl]: - "wc = word_cat a b \ wc !! n = (n < size wc \ - (if n < size b then b !! n else a !! (n - size b)))" + "wc = word_cat a b \ bit wc n = (n < size wc \ + (if n < size b then bit b n else bit a (n - size b)))" apply (simp add: word_size not_less; transfer) apply (auto simp add: bit_concat_bit_iff bit_take_bit_iff) done \ \keep quantifiers for use in simplification\ lemma test_bit_split': "word_split c = (a, b) \ (\n m. - b !! n = (n < size b \ c !! n) \ - a !! m = (m < size a \ c !! (m + size b)))" - by (auto simp add: word_split_bin' test_bit_bin bit_unsigned_iff word_size bit_drop_bit_eq ac_simps + bit b n = (n < size b \ bit c n) \ + bit a m = (m < size a \ bit c (m + size b)))" + by (auto simp add: word_split_bin' bit_unsigned_iff word_size bit_drop_bit_eq ac_simps dest: bit_imp_le_length) lemma test_bit_split: "word_split c = (a, b) \ - (\n::nat. b !! n \ n < size b \ c !! n) \ - (\m::nat. a !! m \ m < size a \ c !! (m + size b))" + (\n::nat. bit b n \ n < size b \ bit c n) \ + (\m::nat. bit a m \ m < size a \ bit c (m + size b))" by (simp add: test_bit_split') lemma test_bit_split_eq: "word_split c = (a, b) \ - ((\n::nat. b !! n = (n < size b \ c !! n)) \ - (\m::nat. a !! m = (m < size a \ c !! (m + size b))))" + ((\n::nat. bit b n = (n < size b \ bit c n)) \ + (\m::nat. bit a m = (m < size a \ bit c (m + size b))))" apply (rule_tac iffI) apply (rule_tac conjI) apply (erule test_bit_split [THEN conjunct1]) apply (erule test_bit_split [THEN conjunct2]) apply (case_tac "word_split c") apply (frule test_bit_split) apply (erule trans) apply (fastforce intro!: word_eqI simp add: word_size) done lemma test_bit_rcat: - "sw = size (hd wl) \ rc = word_rcat wl \ rc !! n = - (n < size rc \ n div sw < size wl \ (rev wl) ! (n div sw) !! (n mod sw))" + "sw = size (hd wl) \ rc = word_rcat wl \ bit rc n = + (n < size rc \ n div sw < size wl \ bit ((rev wl) ! (n div sw)) (n mod sw))" for wl :: "'a::len word list" - by (simp add: word_size word_rcat_def foldl_map rev_map bit_horner_sum_uint_exp_iff) - (simp add: test_bit_eq_bit) + by (simp add: word_size word_rcat_def rev_map bit_horner_sum_uint_exp_iff bit_simps not_le) -lemmas test_bit_cong = arg_cong [where f = "test_bit", THEN fun_cong] +lemmas test_bit_cong = arg_cong [where f = "bit", THEN fun_cong] -lemma max_test_bit: "(- 1::'a::len word) !! n \ n < LENGTH('a)" +lemma max_test_bit: "bit (- 1::'a::len word) n \ n < LENGTH('a)" by (fact nth_minus1) lemma shiftr_x_0 [iff]: "x >> 0 = x" for x :: "'a::len word" by transfer simp lemma shiftl_x_0 [simp]: "x << 0 = x" for x :: "'a::len word" by (simp add: shiftl_t2n) lemma shiftl_1 [simp]: "(1::'a::len word) << n = 2^n" by (simp add: shiftl_t2n) lemma shiftr_1[simp]: "(1::'a::len word) >> n = (if n = 0 then 1 else 0)" by (induct n) (auto simp: shiftr_def) -lemma map_nth_0 [simp]: "map ((!!) (0::'a::len word)) xs = replicate (length xs) False" +lemma map_nth_0 [simp]: "map (bit (0::'a::len word)) xs = replicate (length xs) False" by (induct xs) auto lemma word_and_1: - "n AND 1 = (if n !! 0 then 1 else 0)" for n :: "_ word" - by (rule bit_word_eqI) (auto simp add: bit_and_iff test_bit_eq_bit bit_1_iff intro: gr0I) + "n AND 1 = (if bit n 0 then 1 else 0)" for n :: "_ word" + by (rule bit_word_eqI) (auto simp add: bit_and_iff bit_1_iff intro: gr0I) -lemma test_bit_1' [simp]: - "(1 :: 'a :: len word) !! n \ 0 < LENGTH('a) \ n = 0" +lemma test_bit_1': + "bit (1 :: 'a :: len word) n \ 0 < LENGTH('a) \ n = 0" by simp lemma shiftl0: "x << 0 = (x :: 'a :: len word)" by (fact shiftl_x_0) -lemma word_ops_nth [simp]: +lemma word_ops_nth: fixes x y :: \'a::len word\ shows - word_or_nth: "(x OR y) !! n = (x !! n \ y !! n)" and - word_and_nth: "(x AND y) !! n = (x !! n \ y !! n)" and - word_xor_nth: "(x XOR y) !! n = (x !! n \ y !! n)" - by ((cases "n < size x", - auto dest: test_bit_size simp: word_ops_nth_size word_size)[1])+ + word_or_nth: "bit (x OR y) n = (bit x n \ bit y n)" and + word_and_nth: "bit (x AND y) n = (bit x n \ bit y n)" and + word_xor_nth: "bit (x XOR y) n = (bit x n \ bit y n)" + by (simp_all add: bit_simps) lemma and_not_mask: "w AND NOT (mask n) = (w >> n) << n" for w :: \'a::len word\ - apply (rule word_eqI) - apply (simp add : word_ops_nth_size word_size) - apply (simp add : nth_shiftr nth_shiftl) - by auto + by (rule bit_word_eqI) (auto simp add: bit_simps) lemma and_mask: "w AND mask n = (w << (size w - n)) >> (size w - n)" for w :: \'a::len word\ - apply (rule word_eqI) - apply (simp add : word_ops_nth_size word_size) - apply (simp add : nth_shiftr nth_shiftl) - by auto + by (rule bit_word_eqI) (auto simp add: bit_simps word_size) lemma nth_w2p_same: - "(2^n :: 'a :: len word) !! n = (n < LENGTH('a))" - by (simp add : nth_w2p) + "bit (2^n :: 'a :: len word) n = (n < LENGTH('a))" + by (simp add: nth_w2p) lemma shiftr_div_2n_w: "n < size w \ w >> n = w div (2^n :: 'a :: len word)" apply (unfold word_div_def) apply (simp add: uint_2p_alt word_size) apply (metis uint_shiftr_eq word_of_int_uint) done lemma le_shiftr: "u \ v \ u >> (n :: nat) \ (v :: 'a :: len word) >> n" apply (unfold shiftr_def) apply (induct_tac "n") apply auto apply (erule le_shiftr1) done lemma shiftr_mask_le: "n <= m \ mask n >> m = (0 :: 'a::len word)" - apply (rule word_eqI) - apply (simp add: word_size nth_shiftr) - done + by (rule bit_word_eqI) (auto simp add: bit_simps) lemma shiftr_mask [simp]: \mask m >> m = (0::'a::len word)\ by (rule shiftr_mask_le) simp lemma word_leI: - "(\n. \n < size (u::'a::len word); u !! n \ \ (v::'a::len word) !! n) \ u <= v" - apply (rule xtrans(4)) - apply (rule word_and_le2) - apply (rule word_eqI) - apply (simp add: word_ao_nth) - apply safe - apply assumption - apply (erule_tac [2] asm_rl) - apply (unfold word_size) - by auto + "(\n. \n < size (u::'a::len word); bit u n \ \ bit (v::'a::len word) n) \ u <= v" + apply (rule order_trans [of u \u AND v\ v]) + apply (rule eq_refl) + apply (rule bit_word_eqI) + apply (auto simp add: bit_simps word_and_le1 word_size) + done lemma le_mask_iff: "(w \ mask n) = (w >> n = 0)" for w :: \'a::len word\ apply safe apply (rule word_le_0_iff [THEN iffD1]) apply (rule xtrans(3)) apply (erule_tac [2] le_shiftr) apply simp apply (rule word_leI) apply (rename_tac n') apply (drule_tac x = "n' - n" in word_eqD) - apply (simp add : nth_shiftr word_size) + apply (simp add : nth_shiftr word_size bit_simps) apply (case_tac "n <= n'") by auto lemma and_mask_eq_iff_shiftr_0: "(w AND mask n = w) = (w >> n = 0)" for w :: \'a::len word\ apply (unfold test_bit_eq_iff [THEN sym]) apply (rule iffI) apply (rule ext) apply (rule_tac [2] ext) apply (auto simp add : word_ao_nth nth_shiftr) apply (drule arg_cong) apply (drule iffD2) apply assumption apply (simp add : word_ao_nth) prefer 2 apply (simp add : word_size test_bit_bin) apply transfer apply (auto simp add: fun_eq_iff bit_simps) apply (metis add_diff_inverse_nat) done lemma mask_shiftl_decompose: "mask m << n = mask (m + n) AND NOT (mask n :: 'a::len word)" - by (auto intro!: word_eqI simp: and_not_mask nth_shiftl nth_shiftr word_size) + by (rule bit_word_eqI) (auto simp add: bit_simps) lemma bang_eq: fixes x :: "'a::len word" - shows "(x = y) = (\n. x !! n = y !! n)" - by (subst test_bit_eq_iff[symmetric]) fastforce + shows "(x = y) = (\n. bit x n = bit y n)" + by (auto simp add: bit_eq_iff) lemma shiftl_over_and_dist: fixes a::"'a::len word" shows "(a AND b) << c = (a << c) AND (b << c)" apply(rule word_eqI) apply(simp add: word_ao_nth nth_shiftl, safe) done lemma shiftr_over_and_dist: fixes a::"'a::len word" shows "a AND b >> c = (a >> c) AND (b >> c)" apply(rule word_eqI) apply(simp add:nth_shiftr word_ao_nth) done lemma sshiftr_over_and_dist: fixes a::"'a::len word" shows "a AND b >>> c = (a >>> c) AND (b >>> c)" apply(rule word_eqI) apply(simp add:nth_sshiftr word_ao_nth word_size) done lemma shiftl_over_or_dist: fixes a::"'a::len word" shows "a OR b << c = (a << c) OR (b << c)" apply(rule word_eqI) apply(simp add:nth_shiftl word_ao_nth, safe) done lemma shiftr_over_or_dist: fixes a::"'a::len word" shows "a OR b >> c = (a >> c) OR (b >> c)" apply(rule word_eqI) apply(simp add:nth_shiftr word_ao_nth) done lemma sshiftr_over_or_dist: fixes a::"'a::len word" shows "a OR b >>> c = (a >>> c) OR (b >>> c)" apply(rule word_eqI) apply(simp add:nth_sshiftr word_ao_nth word_size) done lemmas shift_over_ao_dists = shiftl_over_or_dist shiftr_over_or_dist sshiftr_over_or_dist shiftl_over_and_dist shiftr_over_and_dist sshiftr_over_and_dist lemma shiftl_shiftl: fixes a::"'a::len word" shows "a << b << c = a << (b + c)" apply(rule word_eqI) apply(auto simp:word_size nth_shiftl add.commute add.left_commute) done lemma shiftr_shiftr: fixes a::"'a::len word" shows "a >> b >> c = a >> (b + c)" apply(rule word_eqI) apply(simp add:word_size nth_shiftr add.left_commute add.commute) done lemma shiftl_shiftr1: fixes a::"'a::len word" shows "c \ b \ a << b >> c = a AND (mask (size a - b)) << (b - c)" apply(rule word_eqI) - apply(auto simp:nth_shiftr nth_shiftl word_size word_ao_nth) + apply(auto simp:nth_shiftr nth_shiftl word_size word_ao_nth bit_simps) done lemma shiftl_shiftr2: fixes a::"'a::len word" shows "b < c \ a << b >> c = (a >> (c - b)) AND (mask (size a - c))" apply(rule word_eqI) - apply(auto simp:nth_shiftr nth_shiftl word_size word_ao_nth) + apply(auto simp:nth_shiftr nth_shiftl word_size word_ao_nth bit_simps) done lemma shiftr_shiftl1: fixes a::"'a::len word" shows "c \ b \ a >> b << c = (a >> (b - c)) AND (NOT (mask c))" - apply(rule word_eqI) - apply(auto simp:nth_shiftr nth_shiftl word_size word_ops_nth_size) - done + by (rule bit_word_eqI) (auto simp add: bit_simps) lemma shiftr_shiftl2: fixes a::"'a::len word" shows "b < c \ a >> b << c = (a << (c - b)) AND (NOT (mask c))" apply(rule word_eqI) - apply(auto simp:nth_shiftr nth_shiftl word_size word_ops_nth_size) + apply(auto simp:nth_shiftr nth_shiftl word_size word_ops_nth_size bit_simps) done lemmas multi_shift_simps = shiftl_shiftl shiftr_shiftr shiftl_shiftr1 shiftl_shiftr2 shiftr_shiftl1 shiftr_shiftl2 lemma shiftr_mask2: "n \ LENGTH('a) \ (mask n >> m :: ('a :: len) word) = mask (n - m)" - apply (rule word_eqI) - apply (simp add: nth_shiftr word_size) - apply arith - done + by (rule bit_word_eqI) (auto simp add: bit_simps) lemma word_shiftl_add_distrib: fixes x :: "'a :: len word" shows "(x + y) << n = (x << n) + (y << n)" by (simp add: shiftl_t2n ring_distribs) lemma mask_shift: "(x AND NOT (mask y)) >> y = x >> y" for x :: \'a::len word\ apply (rule bit_eqI) apply (simp add: bit_and_iff bit_not_iff bit_shiftr_word_iff bit_mask_iff not_le) using bit_imp_le_length apply auto done lemma shiftr_div_2n': "unat (w >> n) = unat w div 2 ^ n" apply (unfold unat_eq_nat_uint) apply (subst shiftr_div_2n) apply (subst nat_div_distrib) apply simp apply (simp add: nat_power_eq) done lemma shiftl_shiftr_id: assumes nv: "n < LENGTH('a)" and xv: "x < 2 ^ (LENGTH('a) - n)" shows "x << n >> n = (x::'a::len word)" apply (simp add: shiftl_t2n) apply (rule word_eq_unatI) apply (subst shiftr_div_2n') apply (cases n) apply simp apply (subst iffD1 [OF unat_mult_lem])+ apply (subst unat_power_lower[OF nv]) apply (rule nat_less_power_trans [OF _ order_less_imp_le [OF nv]]) apply (rule order_less_le_trans [OF unat_mono [OF xv] order_eq_refl]) apply (rule unat_power_lower) apply simp apply (subst unat_power_lower[OF nv]) apply simp done lemma ucast_shiftl_eq_0: fixes w :: "'a :: len word" shows "\ n \ LENGTH('b) \ \ ucast (w << n) = (0 :: 'b :: len word)" by transfer (simp add: take_bit_push_bit) lemma word_shift_nonzero: "\ (x::'a::len word) \ 2 ^ m; m + n < LENGTH('a::len); x \ 0\ \ x << n \ 0" apply (simp only: word_neq_0_conv word_less_nat_alt shiftl_t2n mod_0 unat_word_ariths unat_power_lower word_le_nat_alt) apply (subst mod_less) apply (rule order_le_less_trans) apply (erule mult_le_mono2) apply (subst power_add[symmetric]) apply (rule power_strict_increasing) apply simp apply simp apply simp done lemma word_shiftr_lt: fixes w :: "'a::len word" shows "unat (w >> n) < (2 ^ (LENGTH('a) - n))" apply (subst shiftr_div_2n') apply transfer apply (simp flip: drop_bit_eq_div add: drop_bit_nat_eq drop_bit_take_bit) done lemma neg_mask_test_bit: - "(NOT(mask n) :: 'a :: len word) !! m = (n \ m \ m < LENGTH('a))" + "bit (NOT(mask n) :: 'a :: len word) m = (n \ m \ m < LENGTH('a))" by (metis not_le nth_mask test_bit_bin word_ops_nth_size word_size) lemma upper_bits_unset_is_l2p: - \(\n' \ n. n' < LENGTH('a) \ \ p !! n') \ (p < 2 ^ n)\ (is \?P \ ?Q\) + \(\n' \ n. n' < LENGTH('a) \ \ bit p n') \ (p < 2 ^ n)\ (is \?P \ ?Q\) if \n < LENGTH('a)\ for p :: "'a :: len word" proof assume ?Q then show ?P by (meson bang_is_le le_less_trans not_le word_power_increasing) next assume ?P have \take_bit n p = p\ proof (rule bit_word_eqI) fix q assume \q < LENGTH('a)\ show \bit (take_bit n p) q \ bit p q\ proof (cases \q < n\) case True then show ?thesis by (auto simp add: bit_simps) next case False then have \n \ q\ by simp with \?P\ \q < LENGTH('a)\ have \\ bit p q\ - by (simp add: test_bit_eq_bit) + by simp then show ?thesis by (simp add: bit_simps) qed qed with that show ?Q using take_bit_word_eq_self_iff [of n p] by auto qed lemma less_2p_is_upper_bits_unset: - "p < 2 ^ n \ n < LENGTH('a) \ (\n' \ n. n' < LENGTH('a) \ \ p !! n')" for p :: "'a :: len word" + "p < 2 ^ n \ n < LENGTH('a) \ (\n' \ n. n' < LENGTH('a) \ \ bit p n')" for p :: "'a :: len word" by (meson le_less_trans le_mask_iff_lt_2n upper_bits_unset_is_l2p word_zero_le) lemma test_bit_over: - "n \ size (x::'a::len word) \ (x !! n) = False" + "n \ size (x::'a::len word) \ (bit x n) = False" by transfer auto lemma le_mask_high_bits: - "w \ mask n \ (\i \ {n ..< size w}. \ w !! i)" + "w \ mask n \ (\i \ {n ..< size w}. \ bit w i)" for w :: \'a::len word\ - by (auto simp: word_size and_mask_eq_iff_le_mask[symmetric] word_eq_iff) + apply (auto simp add: bit_simps word_size less_eq_mask_iff_take_bit_eq_self) + apply (metis bit_take_bit_iff leD) + apply (metis atLeastLessThan_iff leI take_bit_word_eq_self_iff upper_bits_unset_is_l2p) + done lemma test_bit_conj_lt: - "(x !! m \ m < LENGTH('a)) = x !! m" for x :: "'a :: len word" + "(bit x m \ m < LENGTH('a)) = bit x m" for x :: "'a :: len word" using test_bit_bin by blast lemma neg_test_bit: - "(NOT x) !! n = (\ x !! n \ n < LENGTH('a))" for x :: "'a::len word" + "bit (NOT x) n = (\ bit x n \ n < LENGTH('a))" for x :: "'a::len word" by (cases "n < LENGTH('a)") (auto simp add: test_bit_over word_ops_nth_size word_size) lemma shiftr_less_t2n': "\ x AND mask (n + m) = x; m < LENGTH('a) \ \ x >> n < 2 ^ m" for x :: "'a :: len word" apply (simp add: word_size mask_eq_iff_w2p [symmetric] flip: take_bit_eq_mask) apply transfer apply (simp add: take_bit_drop_bit ac_simps) done lemma shiftr_less_t2n: "x < 2 ^ (n + m) \ x >> n < 2 ^ m" for x :: "'a :: len word" apply (rule shiftr_less_t2n') apply (erule less_mask_eq) apply (rule ccontr) apply (simp add: not_less) apply (subst (asm) p2_eq_0[symmetric]) apply (simp add: power_add) done lemma shiftr_eq_0: "n \ LENGTH('a) \ ((w::'a::len word) >> n) = 0" apply (cut_tac shiftr_less_t2n'[of w n 0], simp) apply (simp add: mask_eq_iff) apply (simp add: lt2p_lem) apply simp done lemma shiftr_not_mask_0: "n+m \ LENGTH('a :: len) \ ((w::'a::len word) >> n) AND NOT (mask m) = 0" - by (rule bit_word_eqI) (auto simp add: bit_simps dest: bit_imp_le_length) + by (rule bit_word_eqI) (auto simp add: bit_simps word_size dest: bit_imp_le_length) lemma shiftl_less_t2n: fixes x :: "'a :: len word" shows "\ x < (2 ^ (m - n)); m < LENGTH('a) \ \ (x << n) < 2 ^ m" apply (simp add: word_size mask_eq_iff_w2p [symmetric] flip: take_bit_eq_mask) apply transfer apply (simp add: take_bit_push_bit) done lemma shiftl_less_t2n': "(x::'a::len word) < 2 ^ m \ m+n < LENGTH('a) \ x << n < 2 ^ (m + n)" by (rule shiftl_less_t2n) simp_all -lemma nth_w2p_scast [simp]: - "((scast ((2::'a::len signed word) ^ n) :: 'a word) !! m) - \ ((((2::'a::len word) ^ n) :: 'a word) !! m)" +lemma nth_w2p_scast: + "(bit (scast ((2::'a::len signed word) ^ n) :: 'a word) m) + \ (bit (((2::'a::len word) ^ n) :: 'a word) m)" by transfer (auto simp add: bit_simps) lemma scast_bit_test [simp]: "scast ((1 :: 'a::len signed word) << n) = (1 :: 'a word) << n" by (clarsimp simp: word_eq_iff) lemma signed_shift_guard_to_word: "\ n < len_of TYPE ('a); n > 0 \ \ (unat (x :: 'a :: len word) * 2 ^ y < 2 ^ n) = (x = 0 \ x < (1 << n >> y))" apply (simp only: nat_mult_power_less_eq) apply (cases "y \ n") apply (simp only: shiftl_shiftr1) apply (subst less_mask_eq) apply (simp add: word_less_nat_alt word_size) apply (rule order_less_le_trans[rotated], rule power_increasing[where n=1]) apply simp apply simp apply simp apply (simp add: nat_mult_power_less_eq word_less_nat_alt word_size) apply auto[1] apply (simp only: shiftl_shiftr2, simp add: unat_eq_0) done lemma nth_bounded: - "\(x :: 'a :: len word) !! n; x < 2 ^ m; m \ len_of TYPE ('a)\ \ n < m" + "\bit (x :: 'a :: len word) n; x < 2 ^ m; m \ len_of TYPE ('a)\ \ n < m" apply (rule ccontr) - apply (auto simp add: not_less test_bit_word_eq) + apply (auto simp add: not_less) apply (meson bit_imp_le_length bit_uint_iff less_2p_is_upper_bits_unset test_bit_bin) done lemma shiftl_mask_is_0[simp]: "(x << n) AND mask n = 0" for x :: \'a::len word\ by (simp flip: take_bit_eq_mask add: shiftl_eq_push_bit take_bit_push_bit) lemma rshift_sub_mask_eq: "(a >> (size a - b)) AND mask b = a >> (size a - b)" for a :: \'a::len word\ using shiftl_shiftr2[where a=a and b=0 and c="size a - b"] apply (cases "b < size a") apply simp apply (simp add: linorder_not_less mask_eq_decr_exp word_size p2_eq_0[THEN iffD2]) done lemma shiftl_shiftr3: "b \ c \ a << b >> c = (a >> c - b) AND mask (size a - c)" for a :: \'a::len word\ apply (cases "b = c") apply (simp add: shiftl_shiftr1) apply (simp add: shiftl_shiftr2) done lemma and_mask_shiftr_comm: "m \ size w \ (w AND mask m) >> n = (w >> n) AND mask (m-n)" for w :: \'a::len word\ by (simp add: and_mask shiftr_shiftr) (simp add: word_size shiftl_shiftr3) lemma and_mask_shiftl_comm: "m+n \ size w \ (w AND mask m) << n = (w << n) AND mask (m+n)" for w :: \'a::len word\ by (simp add: and_mask word_size shiftl_shiftl) (simp add: shiftl_shiftr1) lemma le_mask_shiftl_le_mask: "s = m + n \ x \ mask n \ x << m \ mask s" for x :: \'a::len word\ by (simp add: le_mask_iff shiftl_shiftr3) lemma word_and_1_shiftl: - "x AND (1 << n) = (if x !! n then (1 << n) else 0)" for x :: "'a :: len word" + "x AND (1 << n) = (if bit x n then (1 << n) else 0)" for x :: "'a :: len word" apply (rule bit_word_eqI; transfer) apply (auto simp add: bit_simps not_le ac_simps) done lemmas word_and_1_shiftls' = word_and_1_shiftl[where n=0] word_and_1_shiftl[where n=1] word_and_1_shiftl[where n=2] lemmas word_and_1_shiftls = word_and_1_shiftls' [simplified] lemma word_and_mask_shiftl: "x AND (mask n << m) = ((x >> m) AND mask n) << m" for x :: \'a::len word\ apply (rule bit_word_eqI; transfer) apply (auto simp add: bit_simps not_le ac_simps) done lemma shift_times_fold: "(x :: 'a :: len word) * (2 ^ n) << m = x << (m + n)" by (simp add: shiftl_t2n ac_simps power_add) lemma of_bool_nth: - "of_bool (x !! v) = (x >> v) AND 1" + "of_bool (bit x v) = (x >> v) AND 1" for x :: \'a::len word\ - by (simp add: test_bit_word_eq shiftr_word_eq bit_eq_iff) - (auto simp add: bit_1_iff bit_and_iff bit_drop_bit_eq intro: ccontr) + by (simp add: bit_iff_odd_drop_bit shiftr_word_eq word_and_1) lemma shiftr_mask_eq: "(x >> n) AND mask (size x - n) = x >> n" for x :: "'a :: len word" apply (simp flip: take_bit_eq_mask) apply transfer apply (simp add: take_bit_drop_bit) done lemma shiftr_mask_eq': "m = (size x - n) \ (x >> n) AND mask m = x >> n" for x :: "'a :: len word" by (simp add: shiftr_mask_eq) lemma and_eq_0_is_nth: fixes x :: "'a :: len word" - shows "y = 1 << n \ ((x AND y) = 0) = (\ (x !! n))" - apply safe - apply (drule_tac u="(x AND (1 << n))" and x=n in word_eqD) - apply (simp add: nth_w2p) - apply (simp add: test_bit_bin) - apply (rule bit_word_eqI) - apply (auto simp add: bit_simps test_bit_eq_bit) - done + shows "y = 1 << n \ ((x AND y) = 0) = (\ (bit x n))" + by (simp add: and_exp_eq_0_iff_not_bit) lemma and_neq_0_is_nth: - \x AND y \ 0 \ x !! n\ if \y = 2 ^ n\ for x y :: \'a::len word\ + \x AND y \ 0 \ bit x n\ if \y = 2 ^ n\ for x y :: \'a::len word\ apply (simp add: bit_eq_iff bit_simps) using that apply (simp add: bit_simps not_le) apply transfer apply auto done lemma nth_is_and_neq_0: - "(x::'a::len word) !! n = (x AND 2 ^ n \ 0)" + "bit (x::'a::len word) n = (x AND 2 ^ n \ 0)" by (subst and_neq_0_is_nth; rule refl) lemma word_shift_zero: "\ x << n = 0; x \ 2^m; m + n < LENGTH('a)\ \ (x::'a::len word) = 0" apply (rule ccontr) apply (drule (2) word_shift_nonzero) apply simp done lemma mask_shift_and_negate[simp]:"(w AND mask n << m) AND NOT (mask n << m) = 0" for w :: \'a::len word\ by (clarsimp simp add: mask_eq_decr_exp Parity.bit_eq_iff bit_and_iff bit_not_iff shiftl_word_eq bit_push_bit_iff) end diff --git a/thys/Word_Lib/Typedef_Morphisms.thy b/thys/Word_Lib/Typedef_Morphisms.thy --- a/thys/Word_Lib/Typedef_Morphisms.thy +++ b/thys/Word_Lib/Typedef_Morphisms.thy @@ -1,368 +1,368 @@ (* * Copyright Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) (* Author: Jeremy Dawson and Gerwin Klein, NICTA Consequences of type definition theorems, and of extended type definition. *) section \Type Definition Theorems\ theory Typedef_Morphisms imports Main "HOL-Library.Word" Bit_Comprehension Bits_Int begin subsection "More lemmas about normal type definitions" lemma tdD1: "type_definition Rep Abs A \ \x. Rep x \ A" and tdD2: "type_definition Rep Abs A \ \x. Abs (Rep x) = x" and tdD3: "type_definition Rep Abs A \ \y. y \ A \ Rep (Abs y) = y" by (auto simp: type_definition_def) lemma td_nat_int: "type_definition int nat (Collect ((\) 0))" unfolding type_definition_def by auto context type_definition begin declare Rep [iff] Rep_inverse [simp] Rep_inject [simp] lemma Abs_eqD: "Abs x = Abs y \ x \ A \ y \ A \ x = y" by (simp add: Abs_inject) lemma Abs_inverse': "r \ A \ Abs r = a \ Rep a = r" by (safe elim!: Abs_inverse) lemma Rep_comp_inverse: "Rep \ f = g \ Abs \ g = f" using Rep_inverse by auto lemma Rep_eqD [elim!]: "Rep x = Rep y \ x = y" by simp lemma Rep_inverse': "Rep a = r \ Abs r = a" by (safe intro!: Rep_inverse) lemma comp_Abs_inverse: "f \ Abs = g \ g \ Rep = f" using Rep_inverse by auto lemma set_Rep: "A = range Rep" proof (rule set_eqI) show "x \ A \ x \ range Rep" for x by (auto dest: Abs_inverse [of x, symmetric]) qed lemma set_Rep_Abs: "A = range (Rep \ Abs)" proof (rule set_eqI) show "x \ A \ x \ range (Rep \ Abs)" for x by (auto dest: Abs_inverse [of x, symmetric]) qed lemma Abs_inj_on: "inj_on Abs A" unfolding inj_on_def by (auto dest: Abs_inject [THEN iffD1]) lemma image: "Abs ` A = UNIV" by (fact Abs_image) lemmas td_thm = type_definition_axioms lemma fns1: "Rep \ fa = fr \ Rep \ fa \ Abs = Abs \ fr \ Abs \ fr \ Rep = fa" by (auto dest: Rep_comp_inverse elim: comp_Abs_inverse simp: o_assoc) lemmas fns1a = disjI1 [THEN fns1] lemmas fns1b = disjI2 [THEN fns1] lemma fns4: "Rep \ fa \ Abs = fr \ Rep \ fa = fr \ Rep \ fa \ Abs = Abs \ fr" by auto end interpretation nat_int: type_definition int nat "Collect ((\) 0)" by (rule td_nat_int) declare nat_int.Rep_cases [cases del] nat_int.Abs_cases [cases del] nat_int.Rep_induct [induct del] nat_int.Abs_induct [induct del] subsection "Extended form of type definition predicate" lemma td_conds: "norm \ norm = norm \ fr \ norm = norm \ fr \ norm \ fr \ norm = fr \ norm \ norm \ fr \ norm = norm \ fr" apply safe apply (simp_all add: comp_assoc) apply (simp_all add: o_assoc) done lemma fn_comm_power: "fa \ tr = tr \ fr \ fa ^^ n \ tr = tr \ fr ^^ n" apply (rule ext) apply (induct n) apply (auto dest: fun_cong) done lemmas fn_comm_power' = ext [THEN fn_comm_power, THEN fun_cong, unfolded o_def] locale td_ext = type_definition + fixes norm assumes eq_norm: "\x. Rep (Abs x) = norm x" begin lemma Abs_norm [simp]: "Abs (norm x) = Abs x" using eq_norm [of x] by (auto elim: Rep_inverse') lemma td_th: "g \ Abs = f \ f (Rep x) = g x" by (drule comp_Abs_inverse [symmetric]) simp lemma eq_norm': "Rep \ Abs = norm" by (auto simp: eq_norm) lemma norm_Rep [simp]: "norm (Rep x) = Rep x" by (auto simp: eq_norm' intro: td_th) lemmas td = td_thm lemma set_iff_norm: "w \ A \ w = norm w" by (auto simp: set_Rep_Abs eq_norm' eq_norm [symmetric]) lemma inverse_norm: "Abs n = w \ Rep w = norm n" apply (rule iffI) apply (clarsimp simp add: eq_norm) apply (simp add: eq_norm' [symmetric]) done lemma norm_eq_iff: "norm x = norm y \ Abs x = Abs y" by (simp add: eq_norm' [symmetric]) lemma norm_comps: "Abs \ norm = Abs" "norm \ Rep = Rep" "norm \ norm = norm" by (auto simp: eq_norm' [symmetric] o_def) lemmas norm_norm [simp] = norm_comps lemma fns5: "Rep \ fa \ Abs = fr \ fr \ norm = fr \ norm \ fr = fr" by (fold eq_norm') auto text \ following give conditions for converses to \td_fns1\ \<^item> the condition \norm \ fr \ norm = fr \ norm\ says that \fr\ takes normalised arguments to normalised results \<^item> \norm \ fr \ norm = norm \ fr\ says that \fr\ takes norm-equivalent arguments to norm-equivalent results \<^item> \fr \ norm = fr\ says that \fr\ takes norm-equivalent arguments to the same result \<^item> \norm \ fr = fr\ says that \fr\ takes any argument to a normalised result \ lemma fns2: "Abs \ fr \ Rep = fa \ norm \ fr \ norm = fr \ norm \ Rep \ fa = fr \ Rep" apply (fold eq_norm') apply safe prefer 2 apply (simp add: o_assoc) apply (rule ext) apply (drule_tac x="Rep x" in fun_cong) apply auto done lemma fns3: "Abs \ fr \ Rep = fa \ norm \ fr \ norm = norm \ fr \ fa \ Abs = Abs \ fr" apply (fold eq_norm') apply safe prefer 2 apply (simp add: comp_assoc) apply (rule ext) apply (drule_tac f="a \ b" for a b in fun_cong) apply simp done lemma fns: "fr \ norm = norm \ fr \ fa \ Abs = Abs \ fr \ Rep \ fa = fr \ Rep" apply safe apply (frule fns1b) prefer 2 apply (frule fns1a) apply (rule fns3 [THEN iffD1]) prefer 3 apply (rule fns2 [THEN iffD1]) apply (simp_all add: comp_assoc) apply (simp_all add: o_assoc) done lemma range_norm: "range (Rep \ Abs) = A" by (simp add: set_Rep_Abs) end lemmas td_ext_def' = td_ext_def [unfolded type_definition_def td_ext_axioms_def] subsection \Type-definition locale instantiations\ definition uints :: "nat \ int set" \ \the sets of integers representing the words\ where "uints n = range (take_bit n)" definition sints :: "nat \ int set" where "sints n = range (signed_take_bit (n - 1))" lemma uints_num: "uints n = {i. 0 \ i \ i < 2 ^ n}" by (simp add: uints_def range_bintrunc) lemma sints_num: "sints n = {i. - (2 ^ (n - 1)) \ i \ i < 2 ^ (n - 1)}" by (simp add: sints_def range_sbintrunc) definition unats :: "nat \ nat set" where "unats n = {i. i < 2 ^ n}" \ \naturals\ lemma uints_unats: "uints n = int ` unats n" apply (unfold unats_def uints_num) apply safe apply (rule_tac image_eqI) apply (erule_tac nat_0_le [symmetric]) by auto lemma unats_uints: "unats n = nat ` uints n" by (auto simp: uints_unats image_iff) lemma td_ext_uint: "td_ext (uint :: 'a word \ int) word_of_int (uints (LENGTH('a::len))) (\w::int. w mod 2 ^ LENGTH('a))" apply (unfold td_ext_def') apply transfer apply (simp add: uints_num take_bit_eq_mod) done interpretation word_uint: td_ext "uint::'a::len word \ int" word_of_int "uints (LENGTH('a::len))" "\w. w mod 2 ^ LENGTH('a::len)" by (fact td_ext_uint) lemmas td_uint = word_uint.td_thm lemmas int_word_uint = word_uint.eq_norm lemma td_ext_ubin: "td_ext (uint :: 'a word \ int) word_of_int (uints (LENGTH('a::len))) (take_bit (LENGTH('a)))" apply standard apply transfer apply simp done interpretation word_ubin: td_ext "uint::'a::len word \ int" word_of_int "uints (LENGTH('a::len))" "take_bit (LENGTH('a::len))" by (fact td_ext_ubin) lemma td_ext_unat [OF refl]: "n = LENGTH('a::len) \ td_ext (unat :: 'a word \ nat) of_nat (unats n) (\i. i mod 2 ^ n)" apply (standard; transfer) apply (simp_all add: unats_def take_bit_of_nat take_bit_nat_eq_self_iff flip: take_bit_eq_mod) done lemmas unat_of_nat = td_ext_unat [THEN td_ext.eq_norm] interpretation word_unat: td_ext "unat::'a::len word \ nat" of_nat "unats (LENGTH('a::len))" "\i. i mod 2 ^ LENGTH('a::len)" by (rule td_ext_unat) lemmas td_unat = word_unat.td_thm lemma unat_le: "y \ unat z \ y \ unats (LENGTH('a))" for z :: "'a::len word" apply (unfold unats_def) apply clarsimp apply (rule xtrans, rule unat_lt2p, assumption) done lemma td_ext_sbin: "td_ext (sint :: 'a word \ int) word_of_int (sints (LENGTH('a::len))) (signed_take_bit (LENGTH('a) - 1))" by (standard; transfer) (auto simp add: sints_def) lemma td_ext_sint: "td_ext (sint :: 'a word \ int) word_of_int (sints (LENGTH('a::len))) (\w. (w + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) - 2 ^ (LENGTH('a) - 1))" using td_ext_sbin [where ?'a = 'a] by (simp add: no_sbintr_alt2) text \ We do \sint\ before \sbin\, before \sint\ is the user version and interpretations do not produce thm duplicates. I.e. we get the name \word_sint.Rep_eqD\, but not \word_sbin.Req_eqD\, because the latter is the same thm as the former. \ interpretation word_sint: td_ext "sint ::'a::len word \ int" word_of_int "sints (LENGTH('a::len))" "\w. (w + 2^(LENGTH('a::len) - 1)) mod 2^LENGTH('a::len) - 2 ^ (LENGTH('a::len) - 1)" by (rule td_ext_sint) interpretation word_sbin: td_ext "sint ::'a::len word \ int" word_of_int "sints (LENGTH('a::len))" "signed_take_bit (LENGTH('a::len) - 1)" by (rule td_ext_sbin) lemmas int_word_sint = td_ext_sint [THEN td_ext.eq_norm] lemmas td_sint = word_sint.td lemma uints_mod: "uints n = range (\w. w mod 2 ^ n)" by (fact uints_def [unfolded no_bintr_alt1]) lemmas bintr_num = word_ubin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b lemmas sbintr_num = word_sbin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b lemmas uint_div_alt = word_div_def [THEN trans [OF uint_cong int_word_uint]] lemmas uint_mod_alt = word_mod_def [THEN trans [OF uint_cong int_word_uint]] interpretation test_bit: td_ext - "(!!) :: 'a::len word \ nat \ bool" + "bit :: 'a::len word \ nat \ bool" set_bits "{f. \i. f i \ i < LENGTH('a::len)}" "(\h i. h i \ i < LENGTH('a::len))" - by standard (auto simp add: test_bit_word_eq bit_imp_le_length bit_set_bits_word_iff set_bits_bit_eq) + by standard (auto simp add: bit_imp_le_length bit_set_bits_word_iff set_bits_bit_eq) lemmas td_nth = test_bit.td_thm lemma sints_subset: "m \ n \ sints m \ sints n" apply (simp add: sints_num) apply clarsimp apply (rule conjI) apply (erule order_trans[rotated]) apply simp apply (erule order_less_le_trans) apply simp done end diff --git a/thys/Word_Lib/Word_EqI.thy b/thys/Word_Lib/Word_EqI.thy --- a/thys/Word_Lib/Word_EqI.thy +++ b/thys/Word_Lib/Word_EqI.thy @@ -1,69 +1,70 @@ (* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section "Solving Word Equalities" theory Word_EqI imports More_Word Traditional_Infix_Syntax "HOL-Eisbach.Eisbach_Tools" begin text \ Some word equalities can be solved by considering the problem bitwise for all @{prop "n < LENGTH('a::len)"}, which is different to running @{text word_bitwise} and expanding into an explicit list of bits. \ named_theorems word_eqI_simps lemmas [word_eqI_simps] = word_ops_nth_size + bit_mask_iff word_size word_or_zero neg_mask_test_bit nth_ucast nth_w2p nth_shiftl nth_shiftr less_2p_is_upper_bits_unset le_mask_high_bits bang_eq neg_test_bit is_up is_down lemmas word_eqI_rule = word_eqI [rule_format] lemma test_bit_lenD: - "x !! n \ n < LENGTH('a) \ x !! n" for x :: "'a :: len word" + "bit x n \ n < LENGTH('a) \ bit x n" for x :: "'a :: len word" by (fastforce dest: test_bit_size simp: word_size) method word_eqI uses simp simp_del split split_del cong flip = ((* reduce conclusion to test_bit: *) rule word_eqI_rule, (* make sure we're in clarsimp normal form: *) (clarsimp simp: simp simp del: simp_del simp flip: flip split: split split del: split_del cong: cong)?, (* turn x < 2^n assumptions into mask equations: *) ((drule less_mask_eq)+)?, (* expand and distribute test_bit everywhere: *) (clarsimp simp: word_eqI_simps simp simp del: simp_del simp flip: flip split: split split del: split_del cong: cong)?, (* add any additional word size constraints to new indices: *) ((drule test_bit_lenD)+)?, (* try to make progress (can't use +, would loop): *) (clarsimp simp: word_eqI_simps simp simp del: simp_del simp flip: flip split: split split del: split_del cong: cong)?, (* helps sometimes, rarely: *) (simp add: simp test_bit_conj_lt del: simp_del flip: flip split: split split del: split_del cong: cong)?) method word_eqI_solve uses simp simp_del split split_del cong flip = solves \word_eqI simp: simp simp_del: simp_del split: split split_del: split_del cong: cong simp flip: flip; (fastforce dest: test_bit_size simp: word_eqI_simps simp flip: flip simp: simp simp del: simp_del split: split split del: split_del cong: cong)?\ end diff --git a/thys/Word_Lib/Word_Lemmas.thy b/thys/Word_Lib/Word_Lemmas.thy --- a/thys/Word_Lib/Word_Lemmas.thy +++ b/thys/Word_Lib/Word_Lemmas.thy @@ -1,1901 +1,1928 @@ (* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section "Lemmas with Generic Word Length" theory Word_Lemmas imports Type_Syntax Signed_Division_Word Signed_Words More_Word Most_significant_bit Enumeration_Word Aligned begin lemma max_word_not_less [simp]: "\ - 1 < x" for x :: \'a::len word\ by (fact word_order.extremum_strict) (* The seL4 bitfield generator produces functions containing mask and shift operations, such that * invoking two of them consecutively can produce something like the following. *) lemma bitfield_op_twice: "(x AND NOT (mask n << m) OR ((y AND mask n) << m)) AND NOT (mask n << m) = x AND NOT (mask n << m)" for x :: \'a::len word\ by (induct n arbitrary: m) (auto simp: word_ao_dist) lemma bitfield_op_twice'': "\NOT a = b << c; \x. b = mask x\ \ (x AND a OR (y AND b << c)) AND a = x AND a" for a b :: \'a::len word\ apply clarsimp apply (cut_tac n=xa and m=c and x=x and y=y in bitfield_op_twice) apply (clarsimp simp:mask_eq_decr_exp) apply (drule not_switch) apply clarsimp done lemma bit_twiddle_min: "(y::'a::len word) XOR (((x::'a::len word) XOR y) AND (if x < y then -1 else 0)) = min x y" - by (auto simp add: Parity.bit_eq_iff bit_xor_iff min_def) + by (rule bit_eqI) (auto simp add: bit_simps) lemma bit_twiddle_max: "(x::'a::len word) XOR (((x::'a::len word) XOR y) AND (if x < y then -1 else 0)) = max x y" - by (auto simp add: Parity.bit_eq_iff bit_xor_iff max_def) + by (rule bit_eqI) (auto simp add: bit_simps max_def) lemma swap_with_xor: "\(x::'a::len word) = a XOR b; y = b XOR x; z = x XOR y\ \ z = b \ y = a" by (auto simp add: Parity.bit_eq_iff bit_xor_iff max_def) lemma scast_nop1 [simp]: "((scast ((of_int x)::('a::len) word))::'a sword) = of_int x" apply (simp only: scast_eq) by (metis len_signed sint_sbintrunc' word_sint.Rep_inverse) lemma scast_nop2 [simp]: "((scast ((of_int x)::('a::len) sword))::'a word) = of_int x" apply (simp only: scast_eq) by (metis len_signed sint_sbintrunc' word_sint.Rep_inverse) lemmas scast_nop = scast_nop1 scast_nop2 scast_id lemma le_mask_imp_and_mask: "(x::'a::len word) \ mask n \ x AND mask n = x" by (metis and_mask_eq_iff_le_mask) lemma or_not_mask_nop: "((x::'a::len word) OR NOT (mask n)) AND mask n = x AND mask n" by (metis word_and_not word_ao_dist2 word_bw_comms(1) word_log_esimps(3)) lemma mask_subsume: "\n \ m\ \ ((x::'a::len word) OR y AND mask n) AND NOT (mask m) = x AND NOT (mask m)" - by (auto simp add: Parity.bit_eq_iff bit_not_iff bit_or_iff bit_and_iff bit_mask_iff) + by (rule bit_word_eqI) (auto simp add: bit_simps word_size) lemma and_mask_0_iff_le_mask: fixes w :: "'a::len word" shows "(w AND NOT(mask n) = 0) = (w \ mask n)" by (simp add: mask_eq_0_eq_x le_mask_imp_and_mask and_mask_eq_iff_le_mask) lemma mask_twice2: "n \ m \ ((x::'a::len word) AND mask m) AND mask n = x AND mask n" by (metis mask_twice min_def) lemma uint_2_id: "LENGTH('a) \ 2 \ uint (2::('a::len) word) = 2" by simp lemma bintrunc_id: "\m \ int n; 0 < m\ \ take_bit n m = m" by (simp add: bintrunc_mod2p le_less_trans) lemma shiftr1_unfold: "shiftr1 x = x >> 1" by (metis One_nat_def comp_apply funpow.simps(1) funpow.simps(2) id_apply shiftr_def) lemma shiftr1_is_div_2: "(x::('a::len) word) >> 1 = x div 2" by transfer (simp add: drop_bit_Suc) lemma shiftl1_is_mult: "(x << 1) = (x :: 'a::len word) * 2" by (metis One_nat_def mult_2 mult_2_right one_add_one power_0 power_Suc shiftl_t2n) lemma div_of_0_id[simp]:"(0::('a::len) word) div n = 0" by (simp add: word_div_def) lemma degenerate_word:"LENGTH('a) = 1 \ (x::('a::len) word) = 0 \ x = 1" by (metis One_nat_def less_irrefl_nat sint_1_cases) lemma div_by_0_word:"(x::('a::len) word) div 0 = 0" by (metis div_0 div_by_0 unat_0 word_arith_nat_defs(6) word_div_1) lemma div_less_dividend_word:"\x \ 0; n \ 1\ \ (x::('a::len) word) div n < x" apply (cases \n = 0\) apply clarsimp apply (simp add:word_neq_0_conv) apply (subst word_arith_nat_div) apply (rule word_of_nat_less) apply (rule div_less_dividend) using unat_eq_zero word_unat_Rep_inject1 apply force apply (simp add:unat_gt_0) done lemma shiftr1_lt:"x \ 0 \ (x::('a::len) word) >> 1 < x" apply (subst shiftr1_is_div_2) apply (rule div_less_dividend_word) apply simp+ done lemma word_less_div: fixes x :: "('a::len) word" and y :: "('a::len) word" shows "x div y = 0 \ y = 0 \ x < y" apply (case_tac "y = 0", clarsimp+) by (metis One_nat_def Suc_le_mono le0 le_div_geq not_less unat_0 unat_div unat_gt_0 word_less_nat_alt zero_less_one) lemma not_degenerate_imp_2_neq_0:"LENGTH('a) > 1 \ (2::('a::len) word) \ 0" by (metis numerals(1) power_not_zero power_zero_numeral) lemma shiftr1_0_or_1:"(x::('a::len) word) >> 1 = 0 \ x = 0 \ x = 1" apply (subst (asm) shiftr1_is_div_2) apply (drule word_less_div) apply (case_tac "LENGTH('a) = 1") apply (simp add:degenerate_word) apply (erule disjE) apply (subgoal_tac "(2::'a word) \ 0") apply simp apply (rule not_degenerate_imp_2_neq_0) apply (subgoal_tac "LENGTH('a) \ 0") apply arith apply simp apply (rule x_less_2_0_1', simp+) done lemma word_overflow:"(x::('a::len) word) + 1 > x \ x + 1 = 0" apply clarsimp by (metis diff_0 eq_diff_eq less_x_plus_1) lemma word_overflow_unat:"unat ((x::('a::len) word) + 1) = unat x + 1 \ x + 1 = 0" by (metis Suc_eq_plus1 add.commute unatSuc) lemma even_word_imp_odd_next:"even (unat (x::('a::len) word)) \ x + 1 = 0 \ odd (unat (x + 1))" apply (cut_tac x=x in word_overflow_unat) apply clarsimp done lemma odd_word_imp_even_next:"odd (unat (x::('a::len) word)) \ x + 1 = 0 \ even (unat (x + 1))" apply (cut_tac x=x in word_overflow_unat) apply clarsimp done -lemma overflow_imp_lsb:"(x::('a::len) word) + 1 = 0 \ x !! 0" - using even_plus_one_iff [of x] by (simp add: test_bit_word_eq) +lemma overflow_imp_lsb:"(x::('a::len) word) + 1 = 0 \ bit x 0" + using even_plus_one_iff [of x] by simp -lemma odd_iff_lsb:"odd (unat (x::('a::len) word)) = x !! 0" +lemma odd_iff_lsb:"odd (unat (x::('a::len) word)) = bit x 0" by transfer (simp add: even_nat_iff) lemma of_nat_neq_iff_word: "x mod 2 ^ LENGTH('a) \ y mod 2 ^ LENGTH('a) \ (((of_nat x)::('a::len) word) \ of_nat y) = (x \ y)" apply (rule iffI) apply (case_tac "x = y") apply (subst (asm) of_nat_eq_iff[symmetric]) apply simp+ apply (case_tac "((of_nat x)::('a::len) word) = of_nat y") apply (subst (asm) word_unat.norm_eq_iff[symmetric]) apply simp+ done -lemma shiftr1_irrelevant_lsb:"(x::('a::len) word) !! 0 \ x >> 1 = (x + 1) >> 1" +lemma shiftr1_irrelevant_lsb: "bit (x::('a::len) word) 0 \ x >> 1 = (x + 1) >> 1" apply (cases \LENGTH('a)\; transfer) apply (simp_all add: take_bit_drop_bit) apply (simp add: drop_bit_take_bit drop_bit_Suc) done lemma shiftr1_0_imp_only_lsb:"((x::('a::len) word) + 1) >> 1 = 0 \ x = 0 \ x + 1 = 0" by (metis One_nat_def shiftr1_0_or_1 word_less_1 word_overflow) -lemma shiftr1_irrelevant_lsb':"\((x::('a::len) word) !! 0) \ x >> 1 = (x + 1) >> 1" +lemma shiftr1_irrelevant_lsb': "\ (bit (x::('a::len) word) 0) \ x >> 1 = (x + 1) >> 1" by (metis shiftr1_irrelevant_lsb) -lemma lsb_this_or_next:"\(((x::('a::len) word) + 1) !! 0) \ x !! 0" - by (metis (poly_guards_query) even_word_imp_odd_next odd_iff_lsb overflow_imp_lsb) +lemma lsb_this_or_next: "\ (bit ((x::('a::len) word) + 1) 0) \ bit x 0" + by simp (* Perhaps this one should be a simp lemma, but it seems a little dangerous. *) lemma cast_chunk_assemble_id: "\n = LENGTH('a::len); m = LENGTH('b::len); n * 2 = m\ \ (((ucast ((ucast (x::'b word))::'a word))::'b word) OR (((ucast ((ucast (x >> n))::'a word))::'b word) << n)) = x" apply (subgoal_tac "((ucast ((ucast (x >> n))::'a word))::'b word) = x >> n") apply clarsimp apply (subst and_not_mask[symmetric]) apply (subst ucast_ucast_mask) apply (subst word_ao_dist2[symmetric]) apply clarsimp apply (rule ucast_ucast_len) apply (rule shiftr_less_t2n') apply (subst and_mask_eq_iff_le_mask) apply (simp_all add: mask_eq_decr_exp flip: mult_2_right) apply (metis add_diff_cancel_left' len_gt_0 mult_2_right zero_less_diff) done lemma cast_chunk_scast_assemble_id: "\n = LENGTH('a::len); m = LENGTH('b::len); n * 2 = m\ \ (((ucast ((scast (x::'b word))::'a word))::'b word) OR (((ucast ((scast (x >> n))::'a word))::'b word) << n)) = x" apply (subgoal_tac "((scast x)::'a word) = ((ucast x)::'a word)") apply (subgoal_tac "((scast (x >> n))::'a word) = ((ucast (x >> n))::'a word)") apply (simp add:cast_chunk_assemble_id) apply (subst down_cast_same[symmetric], subst is_down, arith, simp)+ done lemma mask_or_not_mask: "x AND mask n OR x AND NOT (mask n) = x" for x :: \'a::len word\ apply (subst word_oa_dist, simp) apply (subst word_oa_dist2, simp) done lemma is_aligned_add_not_aligned: "\is_aligned (p::'a::len word) n; \ is_aligned (q::'a::len word) n\ \ \ is_aligned (p + q) n" by (metis is_aligned_addD1) lemma word_gr0_conv_Suc: "(m::'a::len word) > 0 \ \n. m = n + 1" by (metis add.commute add_minus_cancel) lemma neg_mask_add_aligned: "\ is_aligned p n; q < 2 ^ n \ \ (p + q) AND NOT (mask n) = p AND NOT (mask n)" by (metis is_aligned_add_helper is_aligned_neg_mask_eq) lemma word_sless_sint_le:"x sint x \ sint y - 1" by (metis word_sless_alt zle_diff1_eq) lemma upper_trivial: fixes x :: "'a::len word" shows "x \ 2 ^ LENGTH('a) - 1 \ x < 2 ^ LENGTH('a) - 1" by (simp add: less_le) lemma constraint_expand: fixes x :: "'a::len word" shows "x \ {y. lower \ y \ y \ upper} = (lower \ x \ x \ upper)" by (rule mem_Collect_eq) lemma card_map_elide: "card ((of_nat :: nat \ 'a::len word) ` {0.. CARD('a::len word)" proof - let ?of_nat = "of_nat :: nat \ 'a word" from word_unat.Abs_inj_on have "inj_on ?of_nat {i. i < CARD('a word)}" by (simp add: unats_def card_word) moreover have "{0.. {i. i < CARD('a word)}" using that by auto ultimately have "inj_on ?of_nat {0.. CARD('a::len word) \ card ((of_nat::nat \ 'a::len word) ` {0..UCAST('b \ 'a) (UCAST('a \ 'b) x) = x\ if \x \ UCAST('b::len \ 'a) (- 1)\ for x :: \'a::len word\ proof - from that have a1: \x \ word_of_int (uint (word_of_int (2 ^ LENGTH('b) - 1) :: 'b word))\ by simp have f2: "((\i ia. (0::int) \ i \ \ 0 \ i + - 1 * ia \ i mod ia \ i) \ \ (0::int) \ - 1 + 2 ^ LENGTH('b) \ (0::int) \ - 1 + 2 ^ LENGTH('b) + - 1 * 2 ^ LENGTH('b) \ (- (1::int) + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b) = - 1 + 2 ^ LENGTH('b)) = ((\i ia. (0::int) \ i \ \ 0 \ i + - 1 * ia \ i mod ia \ i) \ \ (1::int) \ 2 ^ LENGTH('b) \ 2 ^ LENGTH('b) + - (1::int) * ((- 1 + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b)) = 1)" by force have f3: "\i ia. \ (0::int) \ i \ 0 \ i + - 1 * ia \ i mod ia = i" using mod_pos_pos_trivial by force have "(1::int) \ 2 ^ LENGTH('b)" by simp then have "2 ^ LENGTH('b) + - (1::int) * ((- 1 + 2 ^ LENGTH('b)) mod 2 ^ len_of TYPE ('b)) = 1" using f3 f2 by blast then have f4: "- (1::int) + 2 ^ LENGTH('b) = (- 1 + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b)" by linarith have f5: "x \ word_of_int (uint (word_of_int (- 1 + 2 ^ LENGTH('b))::'b word))" using a1 by force have f6: "2 ^ LENGTH('b) + - (1::int) = - 1 + 2 ^ LENGTH('b)" by force have f7: "- (1::int) * 1 = - 1" by auto have "\x0 x1. (x1::int) - x0 = x1 + - 1 * x0" by force then have "x \ 2 ^ LENGTH('b) - 1" using f7 f6 f5 f4 by (metis uint_word_of_int wi_homs(2) word_arith_wis(8) word_of_int_2p) then have \uint x \ uint (2 ^ LENGTH('b) - (1 :: 'a word))\ by (simp add: word_le_def) then have \uint x \ 2 ^ LENGTH('b) - 1\ by (simp add: uint_word_ariths) (metis \1 \ 2 ^ LENGTH('b)\ \uint x \ uint (2 ^ LENGTH('b) - 1)\ linorder_not_less lt2p_lem uint_1 uint_minus_simple_alt uint_power_lower word_le_def zle_diff1_eq) then show ?thesis apply (simp add: word_ubin.eq_norm bintrunc_mod2p unsigned_ucast_eq) apply (metis \x \ 2 ^ LENGTH('b) - 1\ and_mask_eq_iff_le_mask mask_eq_decr_exp take_bit_eq_mask) done qed lemma remdups_enum_upto: fixes s::"'a::len word" shows "remdups [s .e. e] = [s .e. e]" by simp lemma card_enum_upto: fixes s::"'a::len word" shows "card (set [s .e. e]) = Suc (unat e) - unat s" by (subst List.card_set) (simp add: remdups_enum_upto) lemma complement_nth_w2p: - shows "n' < LENGTH('a) \ (NOT (2 ^ n :: 'a::len word)) !! n' = (n' \ n)" + shows "n' < LENGTH('a) \ bit (NOT (2 ^ n :: 'a::len word)) n' = (n' \ n)" by (fastforce simp: word_ops_nth_size word_size nth_w2p) lemma word_unat_and_lt: "unat x < n \ unat y < n \ unat (x AND y) < n" by (meson le_less_trans word_and_le1 word_and_le2 word_le_nat_alt) lemma word_unat_mask_lt: "m \ size w \ unat ((w::'a::len word) AND mask m) < 2 ^ m" by (rule word_unat_and_lt) (simp add: unat_mask word_size) lemma unat_shiftr_less_t2n: fixes x :: "'a :: len word" shows "unat x < 2 ^ (n + m) \ unat (x >> n) < 2 ^ m" by (simp add: shiftr_div_2n' power_add mult.commute less_mult_imp_div_less) lemma le_or_mask: "w \ w' \ w OR mask x \ w' OR mask x" for w w' :: \'a::len word\ by (metis neg_mask_add_mask add.commute le_word_or1 mask_2pm1 neg_mask_mono_le word_plus_mono_left) lemma le_shiftr1': "\ shiftr1 u \ shiftr1 v ; shiftr1 u \ shiftr1 v \ \ u \ v" apply transfer apply simp done lemma le_shiftr': "\ u >> n \ v >> n ; u >> n \ v >> n \ \ (u::'a::len word) \ v" apply (induct n; simp add: shiftr_def) apply (case_tac "(shiftr1 ^^ n) u = (shiftr1 ^^ n) v", simp) apply (fastforce dest: le_shiftr1') done lemma word_add_no_overflow:"(x::'a::len word) < - 1 \ x < x + 1" using less_x_plus_1 order_less_le by blast lemma lt_plus_1_le_word: fixes x :: "'a::len word" assumes bound:"n < unat (maxBound::'a word)" shows "x < 1 + of_nat n = (x \ of_nat n)" by (metis add.commute bound max_word_max word_Suc_leq word_not_le word_of_nat_less) lemma unat_ucast_up_simp: fixes x :: "'a::len word" assumes "LENGTH('a) \ LENGTH('b)" shows "unat (ucast x :: 'b::len word) = unat x" unfolding ucast_eq unat_eq_nat_uint apply (subst int_word_uint) apply (subst mod_pos_pos_trivial; simp?) apply (rule lt2p_lem) apply (simp add: assms) done lemma unat_ucast_less_no_overflow: "\n < 2 ^ LENGTH('a); unat f < n\ \ (f::('a::len) word) < of_nat n" by (erule (1) order_le_less_trans[OF _ of_nat_mono_maybe,rotated]) simp lemma unat_ucast_less_no_overflow_simp: "n < 2 ^ LENGTH('a) \ (unat f < n) = ((f::('a::len) word) < of_nat n)" using unat_less_helper unat_ucast_less_no_overflow by blast lemma unat_ucast_no_overflow_le: assumes no_overflow: "unat b < (2 :: nat) ^ LENGTH('a)" and upward_cast: "LENGTH('a) < LENGTH('b)" shows "(ucast (f::'a::len word) < (b :: 'b :: len word)) = (unat f < unat b)" proof - have LR: "ucast f < b \ unat f < unat b" apply (rule unat_less_helper) apply (simp add:ucast_nat_def) apply (rule_tac 'b1 = 'b in ucast_less_ucast[OF order.strict_implies_order, THEN iffD1]) apply (rule upward_cast) apply (simp add: ucast_ucast_mask less_mask_eq word_less_nat_alt unat_power_lower[OF upward_cast] no_overflow) done have RL: "unat f < unat b \ ucast f < b" proof- assume ineq: "unat f < unat b" have "ucast (f::'a::len word) < ((ucast (ucast b ::'a::len word)) :: 'b :: len word)" apply (simp add: ucast_less_ucast[OF order.strict_implies_order] upward_cast) apply (simp only: flip: ucast_nat_def) apply (rule unat_ucast_less_no_overflow[OF no_overflow ineq]) done then show ?thesis apply (rule order_less_le_trans) apply (simp add:ucast_ucast_mask word_and_le2) done qed then show ?thesis by (simp add:RL LR iffI) qed lemmas ucast_up_mono = ucast_less_ucast[THEN iffD2] lemma minus_one_word: "(-1 :: 'a :: len word) = 2 ^ LENGTH('a) - 1" by simp lemma mask_exceed: "n \ LENGTH('a) \ (x::'a::len word) AND NOT (mask n) = 0" by (simp add: and_not_mask shiftr_eq_0) lemma word_shift_by_2: "x * 4 = (x::'a::len word) << 2" by (simp add: shiftl_t2n) lemma le_2p_upper_bits: "\ (p::'a::len word) \ 2^n - 1; n < LENGTH('a) \ \ - \n'\n. n' < LENGTH('a) \ \ p !! n'" + \n'\n. n' < LENGTH('a) \ \ bit p n'" by (subst upper_bits_unset_is_l2p; simp) lemma le2p_bits_unset: - "p \ 2 ^ n - 1 \ \n'\n. n' < LENGTH('a) \ \ (p::'a::len word) !! n'" + "p \ 2 ^ n - 1 \ \n'\n. n' < LENGTH('a) \ \ bit (p::'a::len word) n'" using upper_bits_unset_is_l2p [where p=p] by (cases "n < LENGTH('a)") auto lemma ucast_less_shiftl_helper: "\ LENGTH('b) + 2 < LENGTH('a); 2 ^ (LENGTH('b) + 2) \ n\ \ (ucast (x :: 'b::len word) << 2) < (n :: 'a::len word)" apply (erule order_less_le_trans[rotated]) using ucast_less[where x=x and 'a='a] apply (simp only: shiftl_t2n field_simps) apply (rule word_less_power_trans2; simp) done lemma word_power_nonzero: "\ (x :: 'a::len word) < 2 ^ (LENGTH('a) - n); n < LENGTH('a); x \ 0 \ \ x * 2 ^ n \ 0" by (metis and_mask_eq_iff_shiftr_0 less_mask_eq p2_gt_0 semiring_normalization_rules(7) shiftl_shiftr_id shiftl_t2n) lemma less_1_helper: "n \ m \ (n - 1 :: int) < m" by arith lemma div_power_helper: "\ x \ y; y < LENGTH('a) \ \ (2 ^ y - 1) div (2 ^ x :: 'a::len word) = 2 ^ (y - x) - 1" apply (rule word_uint.Rep_eqD) apply (simp only: uint_word_ariths uint_div uint_power_lower) apply (subst mod_pos_pos_trivial, fastforce, fastforce)+ apply (subst mod_pos_pos_trivial) apply (simp add: le_diff_eq uint_2p_alt) apply (rule less_1_helper) apply (rule power_increasing; simp) apply (subst mod_pos_pos_trivial) apply (simp add: uint_2p_alt) apply (rule less_1_helper) apply (rule power_increasing; simp) apply (subst int_div_sub_1; simp add: uint_2p_alt) apply (subst power_0[symmetric]) apply (simp add: uint_2p_alt le_imp_power_dvd power_diff_power_eq) done lemma word_add_power_off: fixes a :: "'a :: len word" assumes ak: "a < k" and kw: "k < 2 ^ (LENGTH('a) - m)" and mw: "m < LENGTH('a)" and off: "off < 2 ^ m" shows "(a * 2 ^ m) + off < k * 2 ^ m" proof (cases "m = 0") case True then show ?thesis using off ak by simp next case False from ak have ak1: "a + 1 \ k" by (rule inc_le) then have "(a + 1) * 2 ^ m \ 0" apply - apply (rule word_power_nonzero) apply (erule order_le_less_trans [OF _ kw]) apply (rule mw) apply (rule less_is_non_zero_p1 [OF ak]) done then have "(a * 2 ^ m) + off < ((a + 1) * 2 ^ m)" using kw mw apply - apply (simp add: distrib_right) apply (rule word_plus_strict_mono_right [OF off]) apply (rule is_aligned_no_overflow'') apply (rule is_aligned_mult_triv2) apply assumption done also have "\ \ k * 2 ^ m" using ak1 mw kw False apply - apply (erule word_mult_le_mono1) apply (simp add: p2_gt_0) apply (simp add: word_less_nat_alt) apply (meson nat_mult_power_less_eq zero_less_numeral) done finally show ?thesis . qed lemma offset_not_aligned: "\ is_aligned (p::'a::len word) n; i > 0; i < 2 ^ n; n < LENGTH('a)\ \ \ is_aligned (p + of_nat i) n" apply (erule is_aligned_add_not_aligned) apply transfer apply (auto simp add: is_aligned_iff_udvd) apply (metis bintrunc_bintrunc_ge int_ops(1) nat_int_comparison(1) nat_less_le take_bit_eq_0_iff take_bit_nat_eq_self_iff take_bit_of_nat) done lemma length_upto_enum_one: fixes x :: "'a :: len word" assumes lt1: "x < y" and lt2: "z < y" and lt3: "x \ z" shows "[x , y .e. z] = [x]" unfolding upto_enum_step_def proof (subst upto_enum_red, subst if_not_P [OF leD [OF lt3]], clarsimp, rule conjI) show "unat ((z - x) div (y - x)) = 0" proof (subst unat_div, rule div_less) have syx: "unat (y - x) = unat y - unat x" by (rule unat_sub [OF order_less_imp_le]) fact moreover have "unat (z - x) = unat z - unat x" by (rule unat_sub) fact ultimately show "unat (z - x) < unat (y - x)" using lt2 lt3 unat_mono word_less_minus_mono_left by blast qed then show "(z - x) div (y - x) * (y - x) = 0" by (metis mult_zero_left unat_0 word_unat.Rep_eqD) qed lemma max_word_mask: "(- 1 :: 'a::len word) = mask LENGTH('a)" by (fact minus_1_eq_mask) lemmas mask_len_max = max_word_mask[symmetric] lemma mask_out_first_mask_some: "\ x AND NOT (mask n) = y; n \ m \ \ x AND NOT (mask m) = y AND NOT (mask m)" for x y :: \'a::len word\ - by (rule bit_word_eqI) (auto simp add: bit_simps) + by (rule bit_word_eqI) (auto simp add: bit_simps word_size) lemma mask_lower_twice: "n \ m \ (x AND NOT (mask n)) AND NOT (mask m) = x AND NOT (mask m)" for x :: \'a::len word\ - by (rule bit_word_eqI) (auto simp add: bit_simps) + by (rule bit_word_eqI) (auto simp add: bit_simps word_size) lemma mask_lower_twice2: "(a AND NOT (mask n)) AND NOT (mask m) = a AND NOT (mask (max n m))" for a :: \'a::len word\ by (rule bit_word_eqI) (auto simp add: bit_simps) lemma ucast_and_neg_mask: "ucast (x AND NOT (mask n)) = ucast x AND NOT (mask n)" apply (rule bit_word_eqI) apply (auto simp add: bit_simps dest: bit_imp_le_length) done lemma ucast_and_mask: "ucast (x AND mask n) = ucast x AND mask n" apply (rule bit_word_eqI) apply (auto simp add: bit_simps dest: bit_imp_le_length) done lemma ucast_mask_drop: "LENGTH('a :: len) \ n \ (ucast (x AND mask n) :: 'a word) = ucast x" apply (rule bit_word_eqI) apply (auto simp add: bit_simps dest: bit_imp_le_length) done (* negating a mask which has been shifted to the very left *) lemma NOT_mask_shifted_lenword: "NOT (mask len << (LENGTH('a) - len) ::'a::len word) = mask (LENGTH('a) - len)" by (rule bit_word_eqI) (auto simp add: shiftl_word_eq word_size bit_not_iff bit_push_bit_iff bit_mask_iff) (* Comparisons between different word sizes. *) lemma eq_ucast_ucast_eq: "LENGTH('b) \ LENGTH('a) \ x = ucast y \ ucast x = y" for x :: "'a::len word" and y :: "'b::len word" by transfer simp lemma le_ucast_ucast_le: "x \ ucast y \ ucast x \ y" for x :: "'a::len word" and y :: "'b::len word" by (smt le_unat_uoi linorder_not_less order_less_imp_le ucast_nat_def unat_arith_simps(1)) lemma less_ucast_ucast_less: "LENGTH('b) \ LENGTH('a) \ x < ucast y \ ucast x < y" for x :: "'a::len word" and y :: "'b::len word" by (metis ucast_nat_def unat_mono unat_ucast_up_simp word_of_nat_less) lemma ucast_le_ucast: "LENGTH('a) \ LENGTH('b) \ (ucast x \ (ucast y::'b::len word)) = (x \ y)" for x :: "'a::len word" by (simp add: unat_arith_simps(1) unat_ucast_up_simp) lemmas ucast_up_mono_le = ucast_le_ucast[THEN iffD2] lemma ucast_le_ucast_eq: fixes x y :: "'a::len word" assumes x: "x < 2 ^ n" assumes y: "y < 2 ^ n" assumes n: "n = LENGTH('b::len)" shows "(UCAST('a \ 'b) x \ UCAST('a \ 'b) y) = (x \ y)" apply (rule iffI) apply (cases "LENGTH('b) < LENGTH('a)") apply (subst less_mask_eq[OF x, symmetric]) apply (subst less_mask_eq[OF y, symmetric]) apply (unfold n) apply (subst ucast_ucast_mask[symmetric])+ apply (simp add: ucast_le_ucast)+ apply (erule ucast_mono_le[OF _ y[unfolded n]]) done lemma ucast_or_distrib: fixes x :: "'a::len word" fixes y :: "'a::len word" shows "(ucast (x OR y) :: ('b::len) word) = ucast x OR ucast y" by transfer simp lemma shiftr_less: "(w::'a::len word) < k \ w >> n < k" by (metis div_le_dividend le_less_trans shiftr_div_2n' unat_arith_simps(2)) lemma word_and_notzeroD: "w AND w' \ 0 \ w \ 0 \ w' \ 0" by auto lemma word_exists_nth: - "(w::'a::len word) \ 0 \ \i. w !! i" - by (simp add: bit_eq_iff test_bit_word_eq) + "(w::'a::len word) \ 0 \ \i. bit w i" + by (simp add: bit_eq_iff) lemma shiftr_le_0: "unat (w::'a::len word) < 2 ^ n \ w >> n = (0::'a::len word)" by (rule word_unat.Rep_eqD) (simp add: shiftr_div_2n') lemma of_nat_shiftl: "(of_nat x << n) = (of_nat (x * 2 ^ n) :: ('a::len) word)" proof - have "(of_nat x::'a word) << n = of_nat (2 ^ n) * of_nat x" using shiftl_t2n by (metis word_unat_power) thus ?thesis by simp qed lemma shiftl_1_not_0: "n < LENGTH('a) \ (1::'a::len word) << n \ 0" by (simp add: shiftl_t2n) lemma max_word_not_0 [simp]: "- 1 \ (0 :: 'a::len word)" by simp lemma ucast_zero_is_aligned: - "UCAST('a::len \ 'b::len) w = 0 \ n \ LENGTH('b) \ is_aligned w n" - by (clarsimp simp: is_aligned_mask word_eq_iff word_size nth_ucast) + \is_aligned w n\ if \UCAST('a::len \ 'b::len) w = 0\ \n \ LENGTH('b)\ +proof (rule is_aligned_bitI) + fix q + assume \q < n\ + moreover have \bit (UCAST('a::len \ 'b::len) w) q = bit 0 q\ + using that by simp + with \q < n\ \n \ LENGTH('b)\ show \\ bit w q\ + by (simp add: bit_simps) +qed lemma unat_ucast_eq_unat_and_mask: "unat (UCAST('b::len \ 'a::len) w) = unat (w AND mask LENGTH('a))" apply (simp flip: take_bit_eq_mask) apply transfer apply (simp add: ac_simps) done lemma unat_max_word_pos[simp]: "0 < unat (- 1 :: 'a::len word)" using unat_gt_0 [of \- 1 :: 'a::len word\] by simp (* Miscellaneous conditional injectivity rules. *) lemma mult_pow2_inj: assumes ws: "m + n \ LENGTH('a)" assumes le: "x \ mask m" "y \ mask m" assumes eq: "x * 2 ^ n = y * (2 ^ n::'a::len word)" shows "x = y" proof (rule bit_word_eqI) fix q assume \q < LENGTH('a)\ from eq have \push_bit n x = push_bit n y\ by (simp add: push_bit_eq_mult) moreover from le have \take_bit m x = x\ \take_bit m y = y\ by (simp_all add: less_eq_mask_iff_take_bit_eq_self) ultimately have \push_bit n (take_bit m x) = push_bit n (take_bit m y)\ by simp_all with \q < LENGTH('a)\ ws show \bit x q \ bit y q\ apply (simp add: push_bit_take_bit) unfolding bit_eq_iff apply (simp add: bit_simps not_le) apply (metis (full_types) \take_bit m x = x\ \take_bit m y = y\ add.commute add_diff_cancel_right' add_less_cancel_right bit_take_bit_iff le_add2 less_le_trans) done qed lemma word_of_nat_inj: assumes bounded: "x < 2 ^ LENGTH('a)" "y < 2 ^ LENGTH('a)" assumes of_nats: "of_nat x = (of_nat y :: 'a::len word)" shows "x = y" by (rule contrapos_pp[OF of_nats]; cases "x < y"; cases "y < x") (auto dest: bounded[THEN of_nat_mono_maybe]) (* Uints *) lemma uints_mono_iff: "uints l \ uints m \ l \ m" using power_increasing_iff[of "2::int" l m] apply (auto simp: uints_num subset_iff simp del: power_increasing_iff) apply (meson less_irrefl not_le zero_le_numeral zero_le_power) done lemmas uints_monoI = uints_mono_iff[THEN iffD2] lemma Bit_in_uints_Suc: "of_bool c + 2 * w \ uints (Suc m)" if "w \ uints m" using that by (auto simp: uints_num) lemma Bit_in_uintsI: "of_bool c + 2 * w \ uints m" if "w \ uints (m - 1)" "m > 0" using Bit_in_uints_Suc[OF that(1)] that(2) by auto lemma bin_cat_in_uintsI: \concat_bit n b a \ uints m\ if \a \ uints l\ \m \ l + n\ proof - from \m \ l + n\ obtain q where \m = l + n + q\ using le_Suc_ex by blast then have \(2::int) ^ m = 2 ^ n * 2 ^ (l + q)\ by (simp add: ac_simps power_add) moreover have \a mod 2 ^ (l + q) = a\ using \a \ uints l\ by (auto simp add: uints_def take_bit_eq_mod power_add Divides.mod_mult2_eq) ultimately have \concat_bit n b a = take_bit m (concat_bit n b a)\ by (simp add: concat_bit_eq take_bit_eq_mod push_bit_eq_mult Divides.mod_mult2_eq) then show ?thesis by (simp add: uints_def) qed lemma bin_cat_cong: "concat_bit n b a = concat_bit m d c" if "n = m" "a = c" "take_bit m b = take_bit m d" using that(3) unfolding that(1,2) by (simp add: bin_cat_eq_push_bit_add_take_bit) lemma bin_cat_eqD1: "concat_bit n b a = concat_bit n d c \ a = c" by (metis drop_bit_bin_cat_eq) lemma bin_cat_eqD2: "concat_bit n b a = concat_bit n d c \ take_bit n b = take_bit n d" by (metis take_bit_bin_cat_eq) lemma bin_cat_inj: "(concat_bit n b a) = concat_bit n d c \ a = c \ take_bit n b = take_bit n d" by (auto intro: bin_cat_cong bin_cat_eqD1 bin_cat_eqD2) lemma word_of_int_bin_cat_eq_iff: "(word_of_int (concat_bit LENGTH('b) (uint b) (uint a))::'c::len word) = word_of_int (concat_bit LENGTH('b) (uint d) (uint c)) \ b = d \ a = c" if "LENGTH('a) + LENGTH('b) \ LENGTH('c)" for a::"'a::len word" and b::"'b::len word" by (subst word_uint.Abs_inject) (auto simp: bin_cat_inj intro!: that bin_cat_in_uintsI) lemma word_cat_inj: "(word_cat a b::'c::len word) = word_cat c d \ a = c \ b = d" if "LENGTH('a) + LENGTH('b) \ LENGTH('c)" for a::"'a::len word" and b::"'b::len word" using word_of_int_bin_cat_eq_iff [OF that, of b a d c] by transfer auto lemma p2_eq_1: "2 ^ n = (1::'a::len word) \ n = 0" proof - have "2 ^ n = (1::'a word) \ n = 0" by (metis One_nat_def not_less one_less_numeral_iff p2_eq_0 p2_gt_0 power_0 power_0 power_inject_exp semiring_norm(76) unat_power_lower zero_neq_one) then show ?thesis by auto qed (* usually: x,y = (len_of TYPE ('a)) *) lemma bitmagic_zeroLast_leq_or1Last: "(a::('a::len) word) AND (mask len << x - len) \ a OR mask (y - len)" by (meson le_word_or2 order_trans word_and_le2) lemma zero_base_lsb_imp_set_eq_as_bit_operation: fixes base ::"'a::len word" assumes valid_prefix: "mask (LENGTH('a) - len) AND base = 0" shows "(base = NOT (mask (LENGTH('a) - len)) AND a) \ (a \ {base .. base OR mask (LENGTH('a) - len)})" proof have helper3: "x OR y = x OR y AND NOT x" for x y ::"'a::len word" by (simp add: word_oa_dist2) from assms show "base = NOT (mask (LENGTH('a) - len)) AND a \ a \ {base..base OR mask (LENGTH('a) - len)}" apply(simp add: word_and_le1) apply(metis helper3 le_word_or2 word_bw_comms(1) word_bw_comms(2)) done next assume "a \ {base..base OR mask (LENGTH('a) - len)}" hence a: "base \ a \ a \ base OR mask (LENGTH('a) - len)" by simp show "base = NOT (mask (LENGTH('a) - len)) AND a" proof - have f2: "\x\<^sub>0. base AND NOT (mask x\<^sub>0) \ a AND NOT (mask x\<^sub>0)" using a neg_mask_mono_le by blast have f3: "\x\<^sub>0. a AND NOT (mask x\<^sub>0) \ (base OR mask (LENGTH('a) - len)) AND NOT (mask x\<^sub>0)" using a neg_mask_mono_le by blast have f4: "base = base AND NOT (mask (LENGTH('a) - len))" using valid_prefix by (metis mask_eq_0_eq_x word_bw_comms(1)) hence f5: "\x\<^sub>6. (base OR x\<^sub>6) AND NOT (mask (LENGTH('a) - len)) = base OR x\<^sub>6 AND NOT (mask (LENGTH('a) - len))" using word_ao_dist by (metis) have f6: "\x\<^sub>2 x\<^sub>3. a AND NOT (mask x\<^sub>2) \ x\<^sub>3 \ \ (base OR mask (LENGTH('a) - len)) AND NOT (mask x\<^sub>2) \ x\<^sub>3" using f3 dual_order.trans by auto have "base = (base OR mask (LENGTH('a) - len)) AND NOT (mask (LENGTH('a) - len))" using f5 by auto hence "base = a AND NOT (mask (LENGTH('a) - len))" using f2 f4 f6 by (metis eq_iff) thus "base = NOT (mask (LENGTH('a) - len)) AND a" by (metis word_bw_comms(1)) qed qed lemma of_nat_eq_signed_scast: "(of_nat x = (y :: ('a::len) signed word)) = (of_nat x = (scast y :: 'a word))" by (metis scast_of_nat scast_scast_id(2)) lemma word_aligned_add_no_wrap_bounded: "\ w + 2^n \ x; w + 2^n \ 0; is_aligned w n \ \ (w::'a::len word) < x" by (blast dest: is_aligned_no_overflow le_less_trans word_leq_le_minus_one) lemma mask_Suc: "mask (Suc n) = (2 :: 'a::len word) ^ n + mask n" by (simp add: mask_eq_decr_exp) lemma mask_mono: "sz' \ sz \ mask sz' \ (mask sz :: 'a::len word)" by (simp add: le_mask_iff shiftr_mask_le) lemma aligned_mask_disjoint: "\ is_aligned (a :: 'a :: len word) n; b \ mask n \ \ a AND b = 0" by (metis and_zero_eq is_aligned_mask le_mask_imp_and_mask word_bw_lcs(1)) lemma word_and_or_mask_aligned: "\ is_aligned a n; b \ mask n \ \ a + b = a OR b" by (simp add: aligned_mask_disjoint word_plus_and_or_coroll) lemma word_and_or_mask_aligned2: \is_aligned b n \ a \ mask n \ a + b = a OR b\ using word_and_or_mask_aligned [of b n a] by (simp add: ac_simps) lemma is_aligned_ucastI: "is_aligned w n \ is_aligned (ucast w) n" apply transfer apply (auto simp add: min_def) apply (metis bintrunc_bintrunc_ge bintrunc_n_0 nat_less_le not_le take_bit_eq_0_iff) done lemma ucast_le_maskI: "a \ mask n \ UCAST('a::len \ 'b::len) a \ mask n" by (metis and_mask_eq_iff_le_mask ucast_and_mask) lemma ucast_add_mask_aligned: "\ a \ mask n; is_aligned b n \ \ UCAST ('a::len \ 'b::len) (a + b) = ucast a + ucast b" by (metis add.commute is_aligned_ucastI ucast_le_maskI ucast_or_distrib word_and_or_mask_aligned) lemma ucast_shiftl: "LENGTH('b) \ LENGTH ('a) \ UCAST ('a::len \ 'b::len) x << n = ucast (x << n)" by word_eqI_solve lemma ucast_leq_mask: "LENGTH('a) \ n \ ucast (x::'a::len word) \ mask n" apply (simp add: less_eq_mask_iff_take_bit_eq_self) apply transfer apply (simp add: ac_simps) done lemma shiftl_inj: "\ x << n = y << n; x \ mask (LENGTH('a)-n); y \ mask (LENGTH('a)-n) \ \ x = (y :: 'a :: len word)" apply word_eqI apply (rename_tac n') apply (case_tac "LENGTH('a) - n \ n'", simp) by (metis add.commute add.right_neutral diff_add_inverse le_diff_conv linorder_not_less zero_order(1)) lemma distinct_word_add_ucast_shift_inj: - "\ p + (UCAST('a::len \ 'b::len) off << n) = p' + (ucast off' << n); - is_aligned p n'; is_aligned p' n'; n' = n + LENGTH('a); n' < LENGTH('b) \ - \ p' = p \ off' = off" - apply (simp add: word_and_or_mask_aligned le_mask_shiftl_le_mask[where n="LENGTH('a)"] - ucast_leq_mask) - apply (simp add: is_aligned_nth) - apply (rule conjI; word_eqI) - apply (metis add.commute test_bit_conj_lt diff_add_inverse le_diff_conv nat_less_le) - apply (rename_tac i) - apply (erule_tac x="i+n" in allE) - apply simp - done + \p' = p \ off' = off\ + if *: \p + (UCAST('a::len \ 'b::len) off << n) = p' + (ucast off' << n)\ + and \is_aligned p n'\ \is_aligned p' n'\ \n' = n + LENGTH('a)\ \n' < LENGTH('b)\ +proof - + from \n' = n + LENGTH('a)\ + have [simp]: \n' - n = LENGTH('a)\ \n + LENGTH('a) = n'\ + by simp_all + from \is_aligned p n'\ obtain q + where p: \p = push_bit n' (word_of_nat q)\ \q < 2 ^ (LENGTH('b) - n')\ + by (rule is_alignedE') + from \is_aligned p' n'\ obtain q' + where p': \p' = push_bit n' (word_of_nat q')\ \q' < 2 ^ (LENGTH('b) - n')\ + by (rule is_alignedE') + define m :: nat where \m = unat off\ + then have off: \off = word_of_nat m\ + by simp + define m' :: nat where \m' = unat off'\ + then have off': \off' = word_of_nat m'\ + by simp + have \push_bit n' q + take_bit n' (push_bit n m) < 2 ^ LENGTH('b)\ + by (metis id_apply is_aligned_no_wrap''' of_nat_eq_id of_nat_push_bit p(1) p(2) take_bit_nat_eq_self_iff take_bit_nat_less_exp take_bit_push_bit that(2) that(5) unsigned_of_nat) + moreover have \push_bit n' q' + take_bit n' (push_bit n m') < 2 ^ LENGTH('b)\ + by (metis \n' - n = LENGTH('a)\ id_apply is_aligned_no_wrap''' m'_def of_nat_eq_id of_nat_push_bit off' p'(1) p'(2) take_bit_nat_eq_self_iff take_bit_push_bit that(3) that(5) unsigned_of_nat) + ultimately have \push_bit n' q + take_bit n' (push_bit n m) = push_bit n' q' + take_bit n' (push_bit n m')\ + using * by (simp add: p p' off off' shiftl_eq_push_bit push_bit_of_nat push_bit_take_bit word_of_nat_inj flip: of_nat_add) + then have \int (push_bit n' q + take_bit n' (push_bit n m)) + = int (push_bit n' q' + take_bit n' (push_bit n m'))\ + by simp + then have \concat_bit n' (int (push_bit n m)) (int q) + = concat_bit n' (int (push_bit n m')) (int q')\ + by (simp add: of_nat_push_bit of_nat_take_bit bin_cat_eq_push_bit_add_take_bit) + then show ?thesis + by (simp add: bin_cat_inj p p' off off' take_bit_of_nat take_bit_push_bit word_of_nat_eq_iff) + (simp add: push_bit_eq_mult) +qed lemma word_upto_Nil: "y < x \ [x .e. y ::'a::len word] = []" by (simp add: upto_enum_red not_le word_less_nat_alt) lemma word_enum_decomp_elem: assumes "[x .e. (y ::'a::len word)] = as @ a # bs" shows "x \ a \ a \ y" proof - have "set as \ set [x .e. y] \ a \ set [x .e. y]" using assms by (auto dest: arg_cong[where f=set]) then show ?thesis by auto qed lemma word_enum_prefix: "[x .e. (y ::'a::len word)] = as @ a # bs \ as = (if x < a then [x .e. a - 1] else [])" apply (induct as arbitrary: x; clarsimp) apply (case_tac "x < y") prefer 2 apply (case_tac "x = y", simp) apply (simp add: not_less) apply (drule (1) dual_order.not_eq_order_implies_strict) apply (simp add: word_upto_Nil) apply (simp add: word_upto_Cons_eq) apply (case_tac "x < y") prefer 2 apply (case_tac "x = y", simp) apply (simp add: not_less) apply (drule (1) dual_order.not_eq_order_implies_strict) apply (simp add: word_upto_Nil) apply (clarsimp simp: word_upto_Cons_eq) apply (frule word_enum_decomp_elem) apply clarsimp apply (rule conjI) prefer 2 apply (subst word_Suc_le[symmetric]; clarsimp) apply (drule meta_spec) apply (drule (1) meta_mp) apply clarsimp apply (rule conjI; clarsimp) apply (subst (2) word_upto_Cons_eq) apply unat_arith apply simp done lemma word_enum_decomp_set: "[x .e. (y ::'a::len word)] = as @ a # bs \ a \ set as" by (metis distinct_append distinct_enum_upto' not_distinct_conv_prefix) lemma word_enum_decomp: assumes "[x .e. (y ::'a::len word)] = as @ a # bs" shows "x \ a \ a \ y \ a \ set as \ (\z \ set as. x \ z \ z \ y)" proof - from assms have "set as \ set [x .e. y] \ a \ set [x .e. y]" by (auto dest: arg_cong[where f=set]) with word_enum_decomp_set[OF assms] show ?thesis by auto qed lemma of_nat_unat_le_mask_ucast: "\of_nat (unat t) = w; t \ mask LENGTH('a)\ \ t = UCAST('a::len \ 'b::len) w" by (clarsimp simp: ucast_nat_def ucast_ucast_mask simp flip: and_mask_eq_iff_le_mask) lemma less_diff_gt0: "a < b \ (0 :: 'a :: len word) < b - a" by unat_arith lemma unat_plus_gt: "unat ((a :: 'a :: len word) + b) \ unat a + unat b" by (clarsimp simp: unat_plus_if_size) lemma const_less: "\ (a :: 'a :: len word) - 1 < b; a \ b \ \ a < b" by (metis less_1_simp word_le_less_eq) lemma add_mult_aligned_neg_mask: \(x + y * m) AND NOT(mask n) = (x AND NOT(mask n)) + y * m\ if \m AND (2 ^ n - 1) = 0\ for x y m :: \'a::len word\ by (metis (no_types, hide_lams) add.assoc add.commute add.right_neutral add_uminus_conv_diff mask_eq_decr_exp mask_eqs(2) mask_eqs(6) mult.commute mult_zero_left subtract_mask(1) that) lemma unat_of_nat_minus_1: "\ n < 2 ^ LENGTH('a); n \ 0 \ \ unat ((of_nat n:: 'a :: len word) - 1) = n - 1" by (simp add: of_nat_diff unat_eq_of_nat) lemma word_eq_zeroI: "a \ a - 1 \ a = 0" for a :: "'a :: len word" by (simp add: word_must_wrap) lemma word_add_format: "(-1 :: 'a :: len word) + b + c = b + (c - 1)" by simp lemma upto_enum_word_nth: "\ i \ j; k \ unat (j - i) \ \ [i .e. j] ! k = i + of_nat k" apply (clarsimp simp: upto_enum_def nth_append) apply (clarsimp simp: word_le_nat_alt[symmetric]) apply (rule conjI, clarsimp) apply (subst toEnum_of_nat, unat_arith) apply unat_arith apply (clarsimp simp: not_less unat_sub[symmetric]) apply unat_arith done lemma upto_enum_step_nth: "\ a \ c; n \ unat ((c - a) div (b - a)) \ \ [a, b .e. c] ! n = a + of_nat n * (b - a)" by (clarsimp simp: upto_enum_step_def not_less[symmetric] upto_enum_word_nth) lemma upto_enum_inc_1_len: "a < - 1 \ [(0 :: 'a :: len word) .e. 1 + a] = [0 .e. a] @ [1 + a]" apply (simp add: upto_enum_word) apply (subgoal_tac "unat (1+a) = 1 + unat a") apply simp apply (subst unat_plus_simple[THEN iffD1]) apply (metis add.commute no_plus_overflow_neg olen_add_eqv) apply unat_arith done lemma neg_mask_add: "y AND mask n = 0 \ x + y AND NOT(mask n) = (x AND NOT(mask n)) + y" for x y :: \'a::len word\ by (clarsimp simp: mask_out_sub_mask mask_eqs(7)[symmetric] mask_twice) lemma shiftr_shiftl_shiftr[simp]: "(x :: 'a :: len word) >> a << a >> a = x >> a" by word_eqI_solve lemma add_right_shift: "\ x AND mask n = 0; y AND mask n = 0; x \ x + y \ \ (x + y :: ('a :: len) word) >> n = (x >> n) + (y >> n)" apply (simp add: no_olen_add_nat is_aligned_mask[symmetric]) apply (simp add: unat_arith_simps shiftr_div_2n' split del: if_split) apply (subst if_P) apply (erule order_le_less_trans[rotated]) apply (simp add: add_mono) apply (simp add: shiftr_div_2n' is_aligned_iff_dvd_nat) done lemma sub_right_shift: "\ x AND mask n = 0; y AND mask n = 0; y \ x \ \ (x - y) >> n = (x >> n :: 'a :: len word) - (y >> n)" using add_right_shift[where x="x - y" and y=y and n=n] by (simp add: aligned_sub_aligned is_aligned_mask[symmetric] word_sub_le) lemma and_and_mask_simple: "y AND mask n = mask n \ (x AND y) AND mask n = x AND mask n" by (simp add: ac_simps) lemma and_and_mask_simple_not: "y AND mask n = 0 \ (x AND y) AND mask n = 0" by (simp add: ac_simps) lemma word_and_le': "b \ c \ (a :: 'a :: len word) AND b \ c" by (metis word_and_le1 order_trans) lemma word_and_less': "b < c \ (a :: 'a :: len word) AND b < c" by transfer simp lemma shiftr_w2p: "x < LENGTH('a) \ 2 ^ x = (2 ^ (LENGTH('a) - 1) >> (LENGTH('a) - 1 - x) :: 'a :: len word)" by word_eqI_solve lemma t2p_shiftr: "\ b \ a; a < LENGTH('a) \ \ (2 :: 'a :: len word) ^ a >> b = 2 ^ (a - b)" by word_eqI_solve lemma scast_1[simp]: "scast (1 :: 'a :: len signed word) = (1 :: 'a word)" by simp lemma unsigned_uminus1 [simp]: \(unsigned (-1::'b::len word)::'c::len word) = mask LENGTH('b)\ - by word_eqI + by (rule bit_word_eqI) (auto simp add: bit_simps) lemma ucast_ucast_mask_eq: "\ UCAST('a::len \ 'b::len) x = y; x AND mask LENGTH('b) = x \ \ x = ucast y" - by word_eqI_solve + by (drule sym) (simp flip: take_bit_eq_mask add: unsigned_ucast_eq) lemma ucast_up_eq: "\ ucast x = (ucast y::'b::len word); LENGTH('a) \ LENGTH ('b) \ \ ucast x = (ucast y::'a::len word)" by word_eqI_solve lemma ucast_up_neq: "\ ucast x \ (ucast y::'b::len word); LENGTH('b) \ LENGTH ('a) \ \ ucast x \ (ucast y::'a::len word)" by (fastforce dest: ucast_up_eq) lemma mask_AND_less_0: "\ x AND mask n = 0; m \ n \ \ x AND mask m = 0" for x :: \'a::len word\ by (metis mask_twice2 word_and_notzeroD) lemma mask_len_id [simp]: "(x :: 'a :: len word) AND mask LENGTH('a) = x" using uint_lt2p [of x] by (simp add: mask_eq_iff) lemma scast_ucast_down_same: "LENGTH('b) \ LENGTH('a) \ SCAST('a \ 'b) = UCAST('a::len \ 'b::len)" by (simp add: down_cast_same is_down) lemma word_aligned_0_sum: "\ a + b = 0; is_aligned (a :: 'a :: len word) n; b \ mask n; n < LENGTH('a) \ \ a = 0 \ b = 0" by (simp add: word_plus_and_or_coroll aligned_mask_disjoint word_or_zero) lemma mask_eq1_nochoice: "\ LENGTH('a) > 1; (x :: 'a :: len word) AND 1 = x \ \ x = 0 \ x = 1" by (metis word_and_1) lemma shiftr_and_eq_shiftl: "(w >> n) AND x = y \ w AND (x << n) = (y << n)" for y :: "'a:: len word" by (metis (no_types, lifting) and_not_mask bit.conj_ac(1) bit.conj_ac(2) mask_eq_0_eq_x shiftl_mask_is_0 shiftl_over_and_dist) lemma add_mask_lower_bits': "\ len = LENGTH('a); is_aligned (x :: 'a :: len word) n; - \n' \ n. n' < len \ \ p !! n' \ + \n' \ n. n' < len \ \ bit p n' \ \ x + p AND NOT(mask n) = x" using add_mask_lower_bits by auto lemma leq_mask_shift: "(x :: 'a :: len word) \ mask (low_bits + high_bits) \ (x >> low_bits) \ mask high_bits" by (simp add: le_mask_iff shiftr_shiftr) lemma ucast_ucast_eq_mask_shift: "(x :: 'a :: len word) \ mask (low_bits + LENGTH('b)) \ ucast((ucast (x >> low_bits)) :: 'b :: len word) = x >> low_bits" by (meson and_mask_eq_iff_le_mask eq_ucast_ucast_eq not_le_imp_less shiftr_less_t2n' ucast_ucast_len) lemma const_le_unat: "\ b < 2 ^ LENGTH('a); of_nat b \ a \ \ b \ unat (a :: 'a :: len word)" apply (simp add: word_le_def) apply (simp only: uint_nat zle_int) apply transfer apply (simp add: take_bit_nat_eq_self) done lemma upt_enum_offset_trivial: "\ x < 2 ^ LENGTH('a) - 1 ; n \ unat x \ \ ([(0 :: 'a :: len word) .e. x] ! n) = of_nat n" apply (induct x arbitrary: n) apply simp by (simp add: upto_enum_word_nth) lemma word_le_mask_out_plus_2sz: "x \ (x AND NOT(mask sz)) + 2 ^ sz - 1" for x :: \'a::len word\ by (metis add_diff_eq word_neg_and_le) lemma ucast_add: "ucast (a + (b :: 'a :: len word)) = ucast a + (ucast b :: ('a signed word))" by transfer (simp add: take_bit_add) lemma ucast_minus: "ucast (a - (b :: 'a :: len word)) = ucast a - (ucast b :: ('a signed word))" apply (insert ucast_add[where a=a and b="-b"]) apply (metis (no_types, hide_lams) add_diff_eq diff_add_cancel ucast_add) done lemma scast_ucast_add_one [simp]: "scast (ucast (x :: 'a::len word) + (1 :: 'a signed word)) = x + 1" apply (subst ucast_1[symmetric]) apply (subst ucast_add[symmetric]) apply clarsimp done lemma word_and_le_plus_one: "a > 0 \ (x :: 'a :: len word) AND (a - 1) < a" by (simp add: gt0_iff_gem1 word_and_less') lemma unat_of_ucast_then_shift_eq_unat_of_shift[simp]: "LENGTH('b) \ LENGTH('a) \ unat ((ucast (x :: 'a :: len word) :: 'b :: len word) >> n) = unat (x >> n)" by (simp add: shiftr_div_2n' unat_ucast_up_simp) lemma unat_of_ucast_then_mask_eq_unat_of_mask[simp]: "LENGTH('b) \ LENGTH('a) \ unat ((ucast (x :: 'a :: len word) :: 'b :: len word) AND mask m) = unat (x AND mask m)" by (metis ucast_and_mask unat_ucast_up_simp) lemma shiftr_less_t2n3: "\ (2 :: 'a word) ^ (n + m) = 0; m < LENGTH('a) \ \ (x :: 'a :: len word) >> n < 2 ^ m" by (fastforce intro: shiftr_less_t2n' simp: mask_eq_decr_exp power_overflow) lemma unat_shiftr_le_bound: "\ 2 ^ (LENGTH('a :: len) - n) - 1 \ bnd; 0 < n \ \ unat ((x :: 'a word) >> n) \ bnd" apply transfer apply (simp add: take_bit_drop_bit) apply (simp add: drop_bit_take_bit) apply (rule order_trans) defer apply assumption apply (simp add: nat_le_iff of_nat_diff) done lemma shiftr_eqD: "\ x >> n = y >> n; is_aligned x n; is_aligned y n \ \ x = y" by (metis is_aligned_shiftr_shiftl) lemma word_shiftr_shiftl_shiftr_eq_shiftr: "a \ b \ (x :: 'a :: len word) >> a << b >> b = x >> a" by (simp add: mask_shift multi_shift_simps(5) shiftr_shiftr) lemma of_int_uint_ucast: "of_int (uint (x :: 'a::len word)) = (ucast x :: 'b::len word)" by (fact Word.of_int_uint) lemma mod_mask_drop: "\ m = 2 ^ n; 0 < m; mask n AND msk = mask n \ \ (x mod m) AND msk = x mod m" for x :: \'a::len word\ by (simp add: word_mod_2p_is_mask word_bw_assocs) lemma mask_eq_ucast_eq: "\ x AND mask LENGTH('a) = (x :: ('c :: len word)); LENGTH('a) \ LENGTH('b)\ \ ucast (ucast x :: ('a :: len word)) = (ucast x :: ('b :: len word))" by (metis ucast_and_mask ucast_id ucast_ucast_mask ucast_up_eq) lemma of_nat_less_t2n: "of_nat i < (2 :: ('a :: len) word) ^ n \ n < LENGTH('a) \ unat (of_nat i :: 'a word) < 2 ^ n" by (metis order_less_trans p2_gt_0 unat_less_power word_neq_0_conv) lemma two_power_increasing_less_1: "\ n \ m; m \ LENGTH('a) \ \ (2 :: 'a :: len word) ^ n - 1 \ 2 ^ m - 1" by (metis diff_diff_cancel le_m1_iff_lt less_imp_diff_less p2_gt_0 two_power_increasing word_1_le_power word_le_minus_mono_left word_less_sub_1) lemma word_sub_mono4: "\ y + x \ z + x; y \ y + x; z \ z + x \ \ y \ z" for y :: "'a :: len word" by (simp add: word_add_le_iff2) lemma eq_or_less_helperD: "\ n = unat (2 ^ m - 1 :: 'a :: len word) \ n < unat (2 ^ m - 1 :: 'a word); m < LENGTH('a) \ \ n < 2 ^ m" by (meson le_less_trans nat_less_le unat_less_power word_power_less_1) lemma mask_sub: "n \ m \ mask m - mask n = mask m AND NOT(mask n :: 'a::len word)" by (metis (full_types) and_mask_eq_iff_shiftr_0 mask_out_sub_mask shiftr_mask_le word_bw_comms(1)) lemma neg_mask_diff_bound: "sz'\ sz \ (ptr AND NOT(mask sz')) - (ptr AND NOT(mask sz)) \ 2 ^ sz - 2 ^ sz'" (is "_ \ ?lhs \ ?rhs") for ptr :: \'a::len word\ proof - assume lt: "sz' \ sz" hence "?lhs = ptr AND (mask sz AND NOT(mask sz'))" by (metis add_diff_cancel_left' multiple_mask_trivia) also have "\ \ ?rhs" using lt by (metis (mono_tags) add_diff_eq diff_eq_eq eq_iff mask_2pm1 mask_sub word_and_le') finally show ?thesis by simp qed lemma mask_out_eq_0: "\ idx < 2 ^ sz; sz < LENGTH('a) \ \ (of_nat idx :: 'a :: len word) AND NOT(mask sz) = 0" by (simp add: of_nat_power less_mask_eq mask_eq_0_eq_x) lemma is_aligned_neg_mask_eq': "is_aligned ptr sz = (ptr AND NOT(mask sz) = ptr)" using is_aligned_mask mask_eq_0_eq_x by blast lemma neg_mask_mask_unat: "sz < LENGTH('a) \ unat ((ptr :: 'a :: len word) AND NOT(mask sz)) + unat (ptr AND mask sz) = unat ptr" by (metis AND_NOT_mask_plus_AND_mask_eq unat_plus_simple word_and_le2) lemma unat_pow_le_intro: "LENGTH('a) \ n \ unat (x :: 'a :: len word) < 2 ^ n" by (metis lt2p_lem not_le of_nat_le_iff of_nat_numeral semiring_1_class.of_nat_power uint_nat) lemma unat_shiftl_less_t2n: "\ unat (x :: 'a :: len word) < 2 ^ (m - n); m < LENGTH('a) \ \ unat (x << n) < 2 ^ m" by (metis (no_types) of_nat_power diff_le_self le_less_trans shiftl_less_t2n unat_less_power word_unat.Rep_inverse) lemma unat_is_aligned_add: "\ is_aligned p n; unat d < 2 ^ n \ \ unat (p + d AND mask n) = unat d \ unat (p + d AND NOT(mask n)) = unat p" by (metis add.right_neutral and_mask_eq_iff_le_mask and_not_mask le_mask_iff mask_add_aligned mask_out_add_aligned mult_zero_right shiftl_t2n shiftr_le_0) lemma unat_shiftr_shiftl_mask_zero: "\ c + a \ LENGTH('a) + b ; c < LENGTH('a) \ \ unat (((q :: 'a :: len word) >> a << b) AND NOT(mask c)) = 0" by (fastforce intro: unat_is_aligned_add[where p=0 and n=c, simplified, THEN conjunct2] unat_shiftl_less_t2n unat_shiftr_less_t2n unat_pow_le_intro) lemmas of_nat_ucast = ucast_of_nat[symmetric] lemma shift_then_mask_eq_shift_low_bits: "x \ mask (low_bits + high_bits) \ (x >> low_bits) AND mask high_bits = x >> low_bits" for x :: \'a::len word\ by (simp add: leq_mask_shift le_mask_imp_and_mask) lemma leq_low_bits_iff_zero: "\ x \ mask (low bits + high bits); x >> low_bits = 0 \ \ (x AND mask low_bits = 0) = (x = 0)" for x :: \'a::len word\ using and_mask_eq_iff_shiftr_0 by force lemma unat_less_iff: "\ unat (a :: 'a :: len word) = b; c < 2 ^ LENGTH('a) \ \ (a < of_nat c) = (b < c)" using unat_ucast_less_no_overflow_simp by blast lemma is_aligned_no_overflow3: "\ is_aligned (a :: 'a :: len word) n; n < LENGTH('a); b < 2 ^ n; c \ 2 ^ n; b < c \ \ a + b \ a + (c - 1)" by (meson is_aligned_no_wrap' le_m1_iff_lt not_le word_less_sub_1 word_plus_mono_right) lemma mask_add_aligned_right: "is_aligned p n \ (q + p) AND mask n = q AND mask n" by (simp add: mask_add_aligned add.commute) lemma leq_high_bits_shiftr_low_bits_leq_bits_mask: "x \ mask high_bits \ (x :: 'a :: len word) << low_bits \ mask (low_bits + high_bits)" by (metis le_mask_shiftl_le_mask) lemma word_two_power_neg_ineq: "2 ^ m \ (0 :: 'a word) \ 2 ^ n \ - (2 ^ m :: 'a :: len word)" apply (cases "n < LENGTH('a)"; simp add: power_overflow) apply (cases "m < LENGTH('a)"; simp add: power_overflow) apply (simp add: word_le_nat_alt unat_minus word_size) apply (cases "LENGTH('a)"; simp) apply (simp add: less_Suc_eq_le) apply (drule power_increasing[where a=2 and n=n] power_increasing[where a=2 and n=m], simp)+ apply (drule(1) add_le_mono) apply simp done lemma unat_shiftl_absorb: "\ x \ 2 ^ p; p + k < LENGTH('a) \ \ unat (x :: 'a :: len word) * 2 ^ k = unat (x * 2 ^ k)" by (smt add_diff_cancel_right' add_lessD1 le_add2 le_less_trans mult.commute nat_le_power_trans unat_lt2p unat_mult_lem unat_power_lower word_le_nat_alt) lemma word_plus_mono_right_split: "\ unat ((x :: 'a :: len word) AND mask sz) + unat z < 2 ^ sz; sz < LENGTH('a) \ \ x \ x + z" apply (subgoal_tac "(x AND NOT(mask sz)) + (x AND mask sz) \ (x AND NOT(mask sz)) + ((x AND mask sz) + z)") apply (simp add:word_plus_and_or_coroll2 field_simps) apply (rule word_plus_mono_right) apply (simp add: less_le_trans no_olen_add_nat) using of_nat_power is_aligned_no_wrap' by force lemma mul_not_mask_eq_neg_shiftl: "NOT(mask n :: 'a::len word) = -1 << n" by (simp add: NOT_mask shiftl_t2n) lemma shiftr_mul_not_mask_eq_and_not_mask: "(x >> n) * NOT(mask n) = - (x AND NOT(mask n))" for x :: \'a::len word\ by (metis NOT_mask and_not_mask mult_minus_left semiring_normalization_rules(7) shiftl_t2n) lemma mask_eq_n1_shiftr: "n \ LENGTH('a) \ (mask n :: 'a :: len word) = -1 >> (LENGTH('a) - n)" by (metis diff_diff_cancel eq_refl mask_full shiftr_mask2) lemma is_aligned_mask_out_add_eq: "is_aligned p n \ (p + x) AND NOT(mask n) = p + (x AND NOT(mask n))" by (simp add: mask_out_sub_mask mask_add_aligned) lemmas is_aligned_mask_out_add_eq_sub = is_aligned_mask_out_add_eq[where x="a - b" for a b, simplified field_simps] lemma aligned_bump_down: "is_aligned x n \ (x - 1) AND NOT(mask n) = x - 2 ^ n" by (drule is_aligned_mask_out_add_eq[where x="-1"]) (simp add: NOT_mask) lemma unat_2tp_if: "unat (2 ^ n :: ('a :: len) word) = (if n < LENGTH ('a) then 2 ^ n else 0)" by (split if_split, simp_all add: power_overflow) lemma mask_of_mask: "mask (n::nat) AND mask (m::nat) = (mask (min m n) :: 'a::len word)" by word_eqI_solve lemma unat_signed_ucast_less_ucast: "LENGTH('a) \ LENGTH('b) \ unat (ucast (x :: 'a :: len word) :: 'b :: len signed word) = unat x" by (simp add: unat_ucast_up_simp) lemma toEnum_of_ucast: "LENGTH('b) \ LENGTH('a) \ (toEnum (unat (b::'b :: len word))::'a :: len word) = of_nat (unat b)" by (simp add: unat_pow_le_intro) lemmas unat_ucast_mask = unat_ucast_eq_unat_and_mask[where w=a for a] lemma t2n_mask_eq_if: "2 ^ n AND mask m = (if n < m then 2 ^ n else (0 :: 'a::len word))" - by (rule word_eqI, auto simp add: word_size nth_w2p split: if_split) + by (rule word_eqI) (auto simp add: bit_simps) lemma unat_ucast_le: "unat (ucast (x :: 'a :: len word) :: 'b :: len word) \ unat x" by (simp add: ucast_nat_def word_unat_less_le) lemma ucast_le_up_down_iff: "\ LENGTH('a) \ LENGTH('b); (x :: 'b :: len word) \ ucast (- 1 :: 'a :: len word) \ \ (ucast x \ (y :: 'a word)) = (x \ ucast y)" using le_max_word_ucast_id ucast_le_ucast by metis lemma ucast_ucast_mask_shift: "a \ LENGTH('a) + b \ ucast (ucast (p AND mask a >> b) :: 'a :: len word) = p AND mask a >> b" by (metis add.commute le_mask_iff shiftr_mask_le ucast_ucast_eq_mask_shift word_and_le') lemma unat_ucast_mask_shift: "a \ LENGTH('a) + b \ unat (ucast (p AND mask a >> b) :: 'a :: len word) = unat (p AND mask a >> b)" by (metis linear ucast_ucast_mask_shift unat_ucast_up_simp) lemma mask_overlap_zero: "a \ b \ (p AND mask a) AND NOT(mask b) = 0" for p :: \'a::len word\ by (metis NOT_mask_AND_mask mask_lower_twice2 max_def) lemma mask_shifl_overlap_zero: "a + c \ b \ (p AND mask a << c) AND NOT(mask b) = 0" for p :: \'a::len word\ by (metis and_mask_0_iff_le_mask mask_mono mask_shiftl_decompose order_trans shiftl_over_and_dist word_and_le' word_and_le2) lemma mask_overlap_zero': "a \ b \ (p AND NOT(mask a)) AND mask b = 0" for p :: \'a::len word\ using mask_AND_NOT_mask mask_AND_less_0 by blast lemma mask_rshift_mult_eq_rshift_lshift: "((a :: 'a :: len word) >> b) * (1 << c) = (a >> b << c)" by (simp add: shiftl_t2n) lemma shift_alignment: "a \ b \ is_aligned (p >> a << a) b" using is_aligned_shift is_aligned_weaken by blast lemma mask_split_sum_twice: "a \ b \ (p AND NOT(mask a)) + ((p AND mask a) AND NOT(mask b)) + (p AND mask b) = p" for p :: \'a::len word\ by (simp add: add.commute multiple_mask_trivia word_bw_comms(1) word_bw_lcs(1) word_plus_and_or_coroll2) lemma mask_shift_eq_mask_mask: "(p AND mask a >> b << b) = (p AND mask a) AND NOT(mask b)" for p :: \'a::len word\ by (simp add: and_not_mask) lemma mask_shift_sum: "\ a \ b; unat n = unat (p AND mask b) \ \ (p AND NOT(mask a)) + (p AND mask a >> b) * (1 << b) + n = (p :: 'a :: len word)" by (metis and_not_mask mask_rshift_mult_eq_rshift_lshift mask_split_sum_twice word_unat.Rep_eqD) lemma is_up_compose: "\ is_up uc; is_up uc' \ \ is_up (uc' \ uc)" unfolding is_up_def by (simp add: Word.target_size Word.source_size) lemma of_int_sint_scast: "of_int (sint (x :: 'a :: len word)) = (scast x :: 'b :: len word)" by (fact Word.of_int_sint) lemma scast_of_nat_to_signed [simp]: "scast (of_nat x :: 'a :: len word) = (of_nat x :: 'a signed word)" by transfer simp lemma scast_of_nat_signed_to_unsigned_add: "scast (of_nat x + of_nat y :: 'a :: len signed word) = (of_nat x + of_nat y :: 'a :: len word)" by (metis of_nat_add scast_of_nat) lemma scast_of_nat_unsigned_to_signed_add: "(scast (of_nat x + of_nat y :: 'a :: len word)) = (of_nat x + of_nat y :: 'a :: len signed word)" by (metis Abs_fnat_hom_add scast_of_nat_to_signed) lemma and_mask_cases: fixes x :: "'a :: len word" assumes len: "n < LENGTH('a)" shows "x AND mask n \ of_nat ` set [0 ..< 2 ^ n]" apply (simp flip: take_bit_eq_mask) apply (rule image_eqI [of _ _ \unat (take_bit n x)\]) using len apply simp_all apply transfer apply simp done lemma sint_eq_uint_2pl: "\ (a :: 'a :: len word) < 2 ^ (LENGTH('a) - 1) \ \ sint a = uint a" by (simp add: not_msb_from_less sint_eq_uint word_2p_lem word_size) lemma pow_sub_less: "\ a + b \ LENGTH('a); unat (x :: 'a :: len word) = 2 ^ a \ \ unat (x * 2 ^ b - 1) < 2 ^ (a + b)" by (metis (mono_tags) eq_or_less_helperD not_less of_nat_numeral power_add semiring_1_class.of_nat_power unat_pow_le_intro word_unat.Rep_inverse) lemma sle_le_2pl: "\ (b :: 'a :: len word) < 2 ^ (LENGTH('a) - 1); a \ b \ \ a <=s b" by (simp add: not_msb_from_less word_sle_msb_le) lemma sless_less_2pl: "\ (b :: 'a :: len word) < 2 ^ (LENGTH('a) - 1); a < b \ \ a > n = w AND mask (size w - n)" for w :: \'a::len word\ by (cases "n \ size w"; clarsimp simp: word_and_le2 and_mask shiftl_zero_size) lemma aligned_sub_aligned_simple: "\ is_aligned a n; is_aligned b n \ \ is_aligned (a - b) n" by (simp add: aligned_sub_aligned) lemma minus_one_shift: "- (1 << n) = (-1 << n :: 'a::len word)" by (simp add: mask_eq_decr_exp NOT_eq flip: mul_not_mask_eq_neg_shiftl) lemma ucast_eq_mask: "(UCAST('a::len \ 'b::len) x = UCAST('a \ 'b) y) = (x AND mask LENGTH('b) = y AND mask LENGTH('b))" - by (rule iffI; word_eqI_solve) + by transfer (simp flip: take_bit_eq_mask add: ac_simps) context fixes w :: "'a::len word" begin private lemma sbintrunc_uint_ucast: assumes "Suc n = LENGTH('b::len)" shows "signed_take_bit n (uint (ucast w :: 'b word)) = signed_take_bit n (uint w)" by (rule bit_eqI) (use assms in \simp add: bit_simps\) private lemma test_bit_sbintrunc: assumes "i < LENGTH('a)" - shows "(word_of_int (signed_take_bit n (uint w)) :: 'a word) !! i - = (if n < i then w !! n else w !! i)" - using assms by (simp add: nth_sbintr) - (simp add: test_bit_bin) + shows "bit (word_of_int (signed_take_bit n (uint w)) :: 'a word) i + = (if n < i then bit w n else bit w i)" + using assms by (simp add: bit_simps) private lemma test_bit_sbintrunc_ucast: assumes len_a: "i < LENGTH('a)" - shows "(word_of_int (signed_take_bit (LENGTH('b) - 1) (uint (ucast w :: 'b word))) :: 'a word) !! i - = (if LENGTH('b::len) \ i then w !! (LENGTH('b) - 1) else w !! i)" - apply (subst sbintrunc_uint_ucast) - apply simp - apply (subst test_bit_sbintrunc) - apply (rule len_a) - apply (rule if_cong[OF _ refl refl]) - using leD less_linear by fastforce + shows "bit (word_of_int (signed_take_bit (LENGTH('b) - 1) (uint (ucast w :: 'b word))) :: 'a word) i + = (if LENGTH('b::len) \ i then bit w (LENGTH('b) - 1) else bit w i)" + using len_a by (auto simp add: sbintrunc_uint_ucast bit_simps) lemma scast_ucast_high_bits: \scast (ucast w :: 'b::len word) = w - \ (\ i \ {LENGTH('b) ..< size w}. w !! i = w !! (LENGTH('b) - 1))\ + \ (\ i \ {LENGTH('b) ..< size w}. bit w i = bit w (LENGTH('b) - 1))\ proof (cases \LENGTH('a) \ LENGTH('b)\) case True moreover define m where \m = LENGTH('b) - LENGTH('a)\ ultimately have \LENGTH('b) = m + LENGTH('a)\ by simp then show ?thesis apply (simp_all add: signed_ucast_eq word_size) apply (rule bit_word_eqI) apply (simp add: bit_signed_take_bit_iff) done next case False define q where \q = LENGTH('b) - 1\ then have \LENGTH('b) = Suc q\ by simp moreover define m where \m = Suc LENGTH('a) - LENGTH('b)\ with False \LENGTH('b) = Suc q\ have \LENGTH('a) = m + q\ by (simp add: not_le) ultimately show ?thesis apply (simp_all add: signed_ucast_eq word_size) apply (transfer fixing: m q) apply (simp add: signed_take_bit_take_bit) apply rule apply (subst bit_eq_iff) apply (simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def) apply (auto simp add: Suc_le_eq) using less_imp_le_nat apply blast using less_imp_le_nat apply blast done qed lemma scast_ucast_mask_compare: "scast (ucast w :: 'b::len word) = w \ (w \ mask (LENGTH('b) - 1) \ NOT(mask (LENGTH('b) - 1)) \ w)" apply (clarsimp simp: le_mask_high_bits neg_mask_le_high_bits scast_ucast_high_bits word_size) apply (rule iffI; clarsimp) apply (rename_tac i j; case_tac "i = LENGTH('b) - 1"; case_tac "j = LENGTH('b) - 1") by auto lemma ucast_less_shiftl_helper': "\ LENGTH('b) + (a::nat) < LENGTH('a); 2 ^ (LENGTH('b) + a) \ n\ \ (ucast (x :: 'b::len word) << a) < (n :: 'a::len word)" apply (erule order_less_le_trans[rotated]) using ucast_less[where x=x and 'a='a] apply (simp only: shiftl_t2n field_simps) apply (rule word_less_power_trans2; simp) done end lemma ucast_ucast_mask2: "is_down (UCAST ('a \ 'b)) \ UCAST ('b::len \ 'c::len) (UCAST ('a::len \ 'b::len) x) = UCAST ('a \ 'c) (x AND mask LENGTH('b))" - by word_eqI_solve + apply (simp flip: take_bit_eq_mask) + apply transfer + apply simp + done lemma ucast_NOT: "ucast (NOT x) = NOT(ucast x) AND mask (LENGTH('a))" for x::"'a::len word" by word_eqI lemma ucast_NOT_down: "is_down UCAST('a::len \ 'b::len) \ UCAST('a \ 'b) (NOT x) = NOT(UCAST('a \ 'b) x)" by word_eqI lemma upto_enum_step_shift: "\ is_aligned p n \ \ ([p , p + 2 ^ m .e. p + 2 ^ n - 1]) = map ((+) p) [0, 2 ^ m .e. 2 ^ n - 1]" apply (erule is_aligned_get_word_bits) prefer 2 apply (simp add: map_idI) apply (clarsimp simp: upto_enum_step_def) apply (frule is_aligned_no_overflow) apply (simp add: linorder_not_le [symmetric]) done lemma upto_enum_step_shift_red: "\ is_aligned p sz; sz < LENGTH('a); us \ sz \ \ [p :: 'a :: len word, p + 2 ^ us .e. p + 2 ^ sz - 1] = map (\x. p + of_nat x * 2 ^ us) [0 ..< 2 ^ (sz - us)]" apply (subst upto_enum_step_shift, assumption) apply (simp add: upto_enum_step_red) done lemma upto_enum_step_subset: "set [x, y .e. z] \ {x .. z}" apply (clarsimp simp: upto_enum_step_def linorder_not_less) apply (drule div_to_mult_word_lt) apply (rule conjI) apply (erule word_random[rotated]) apply simp apply (rule order_trans) apply (erule word_plus_mono_right) apply simp apply simp done lemma ucast_distrib: fixes M :: "'a::len word \ 'a::len word \ 'a::len word" fixes M' :: "'b::len word \ 'b::len word \ 'b::len word" fixes L :: "int \ int \ int" assumes lift_M: "\x y. uint (M x y) = L (uint x) (uint y) mod 2 ^ LENGTH('a)" assumes lift_M': "\x y. uint (M' x y) = L (uint x) (uint y) mod 2 ^ LENGTH('b)" assumes distrib: "\x y. (L (x mod (2 ^ LENGTH('b))) (y mod (2 ^ LENGTH('b)))) mod (2 ^ LENGTH('b)) = (L x y) mod (2 ^ LENGTH('b))" assumes is_down: "is_down (ucast :: 'a word \ 'b word)" shows "ucast (M a b) = M' (ucast a) (ucast b)" apply (simp only: ucast_eq) apply (subst lift_M) apply (subst of_int_uint [symmetric], subst lift_M') apply (subst (1 2) int_word_uint) apply (subst word_ubin.norm_eq_iff [symmetric]) apply (subst (1 2) bintrunc_mod2p) apply (insert is_down) apply (unfold is_down_def) apply (clarsimp simp: target_size source_size) apply (clarsimp simp: mod_exp_eq min_def) apply (rule distrib [symmetric]) done lemma ucast_down_add: "is_down (ucast:: 'a word \ 'b word) \ ucast ((a :: 'a::len word) + b) = (ucast a + ucast b :: 'b::len word)" by (rule ucast_distrib [where L="(+)"], (clarsimp simp: uint_word_ariths)+, presburger, simp) lemma ucast_down_minus: "is_down (ucast:: 'a word \ 'b word) \ ucast ((a :: 'a::len word) - b) = (ucast a - ucast b :: 'b::len word)" apply (rule ucast_distrib [where L="(-)"], (clarsimp simp: uint_word_ariths)+) apply (metis mod_diff_left_eq mod_diff_right_eq) apply simp done lemma ucast_down_mult: "is_down (ucast:: 'a word \ 'b word) \ ucast ((a :: 'a::len word) * b) = (ucast a * ucast b :: 'b::len word)" apply (rule ucast_distrib [where L="(*)"], (clarsimp simp: uint_word_ariths)+) apply (metis mod_mult_eq) apply simp done lemma scast_distrib: fixes M :: "'a::len word \ 'a::len word \ 'a::len word" fixes M' :: "'b::len word \ 'b::len word \ 'b::len word" fixes L :: "int \ int \ int" assumes lift_M: "\x y. uint (M x y) = L (uint x) (uint y) mod 2 ^ LENGTH('a)" assumes lift_M': "\x y. uint (M' x y) = L (uint x) (uint y) mod 2 ^ LENGTH('b)" assumes distrib: "\x y. (L (x mod (2 ^ LENGTH('b))) (y mod (2 ^ LENGTH('b)))) mod (2 ^ LENGTH('b)) = (L x y) mod (2 ^ LENGTH('b))" assumes is_down: "is_down (scast :: 'a word \ 'b word)" shows "scast (M a b) = M' (scast a) (scast b)" apply (subst (1 2 3) down_cast_same [symmetric]) apply (insert is_down) apply (clarsimp simp: is_down_def target_size source_size is_down) apply (rule ucast_distrib [where L=L, OF lift_M lift_M' distrib]) apply (insert is_down) apply (clarsimp simp: is_down_def target_size source_size is_down) done lemma scast_down_add: "is_down (scast:: 'a word \ 'b word) \ scast ((a :: 'a::len word) + b) = (scast a + scast b :: 'b::len word)" by (rule scast_distrib [where L="(+)"], (clarsimp simp: uint_word_ariths)+, presburger, simp) lemma scast_down_minus: "is_down (scast:: 'a word \ 'b word) \ scast ((a :: 'a::len word) - b) = (scast a - scast b :: 'b::len word)" apply (rule scast_distrib [where L="(-)"], (clarsimp simp: uint_word_ariths)+) apply (metis mod_diff_left_eq mod_diff_right_eq) apply simp done lemma scast_down_mult: "is_down (scast:: 'a word \ 'b word) \ scast ((a :: 'a::len word) * b) = (scast a * scast b :: 'b::len word)" apply (rule scast_distrib [where L="(*)"], (clarsimp simp: uint_word_ariths)+) apply (metis mod_mult_eq) apply simp done lemma scast_ucast_1: "\ is_down (ucast :: 'a word \ 'b word); is_down (ucast :: 'b word \ 'c word) \ \ (scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis down_cast_same ucast_eq ucast_down_wi) lemma scast_ucast_3: "\ is_down (ucast :: 'a word \ 'c word); is_down (ucast :: 'b word \ 'c word) \ \ (scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis down_cast_same ucast_eq ucast_down_wi) lemma scast_ucast_4: "\ is_up (ucast :: 'a word \ 'b word); is_down (ucast :: 'b word \ 'c word) \ \ (scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis down_cast_same ucast_eq ucast_down_wi) lemma scast_scast_b: "\ is_up (scast :: 'a word \ 'b word) \ \ (scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" by (metis scast_eq sint_up_scast) lemma ucast_scast_1: "\ is_down (scast :: 'a word \ 'b word); is_down (ucast :: 'b word \ 'c word) \ \ (ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" by (metis scast_eq ucast_down_wi) lemma ucast_scast_3: "\ is_down (scast :: 'a word \ 'c word); is_down (ucast :: 'b word \ 'c word) \ \ (ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" by (metis scast_eq ucast_down_wi) lemma ucast_scast_4: "\ is_up (scast :: 'a word \ 'b word); is_down (ucast :: 'b word \ 'c word) \ \ (ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" by (metis down_cast_same scast_eq sint_up_scast) lemma ucast_ucast_a: "\ is_down (ucast :: 'b word \ 'c word) \ \ (ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis down_cast_same ucast_eq ucast_down_wi) lemma ucast_ucast_b: "\ is_up (ucast :: 'a word \ 'b word) \ \ (ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis ucast_up_ucast) lemma scast_scast_a: "\ is_down (scast :: 'b word \ 'c word) \ \ (scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" apply (simp only: scast_eq) apply (metis down_cast_same is_up_down scast_eq ucast_down_wi) done lemma scast_down_wi [OF refl]: "uc = scast \ is_down uc \ uc (word_of_int x) = word_of_int x" by (metis down_cast_same is_up_down ucast_down_wi) lemmas cast_simps = is_down is_up scast_down_add scast_down_minus scast_down_mult ucast_down_add ucast_down_minus ucast_down_mult scast_ucast_1 scast_ucast_3 scast_ucast_4 ucast_scast_1 ucast_scast_3 ucast_scast_4 ucast_ucast_a ucast_ucast_b scast_scast_a scast_scast_b ucast_down_wi scast_down_wi ucast_of_nat scast_of_nat uint_up_ucast sint_up_scast up_scast_surj up_ucast_surj lemma sdiv_word_max: "(sint (a :: ('a::len) word) sdiv sint (b :: ('a::len) word) < (2 ^ (size a - 1))) = ((a \ - (2 ^ (size a - 1)) \ (b \ -1)))" (is "?lhs = (\ ?a_int_min \ \ ?b_minus1)") proof (rule classical) assume not_thesis: "\ ?thesis" have not_zero: "b \ 0" using not_thesis by (clarsimp) have result_range: "sint a sdiv sint b \ (sints (size a)) \ {2 ^ (size a - 1)}" apply (cut_tac sdiv_int_range [where a="sint a" and b="sint b"]) apply (erule rev_subsetD) using sint_range' [where x=a] sint_range' [where x=b] apply (auto simp: max_def abs_if word_size sints_num) done have result_range_overflow: "(sint a sdiv sint b = 2 ^ (size a - 1)) = (?a_int_min \ ?b_minus1)" apply (rule iffI [rotated]) apply (clarsimp simp: signed_divide_int_def sgn_if word_size sint_int_min) apply (rule classical) apply (case_tac "?a_int_min") apply (clarsimp simp: word_size sint_int_min) apply (metis diff_0_right int_sdiv_negated_is_minus1 minus_diff_eq minus_int_code(2) power_eq_0_iff sint_minus1 zero_neq_numeral) apply (subgoal_tac "abs (sint a) < 2 ^ (size a - 1)") apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1] apply (clarsimp simp: word_size) apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1] apply (insert word_sint.Rep [where x="a"])[1] apply (clarsimp simp: minus_le_iff word_size abs_if sints_num split: if_split_asm) apply (metis minus_minus sint_int_min word_sint.Rep_inject) done have result_range_simple: "(sint a sdiv sint b \ (sints (size a))) \ ?thesis" apply (insert sdiv_int_range [where a="sint a" and b="sint b"]) apply (clarsimp simp: word_size sints_num sint_int_min) done show ?thesis apply (rule UnE [OF result_range result_range_simple]) apply simp apply (clarsimp simp: word_size) using result_range_overflow apply (clarsimp simp: word_size) done qed lemmas sdiv_word_min' = sdiv_word_min [simplified word_size, simplified] lemmas sdiv_word_max' = sdiv_word_max [simplified word_size, simplified] lemma signed_arith_ineq_checks_to_eq: "((- (2 ^ (size a - 1)) \ (sint a + sint b)) \ (sint a + sint b \ (2 ^ (size a - 1) - 1))) = (sint a + sint b = sint (a + b ))" "((- (2 ^ (size a - 1)) \ (sint a - sint b)) \ (sint a - sint b \ (2 ^ (size a - 1) - 1))) = (sint a - sint b = sint (a - b))" "((- (2 ^ (size a - 1)) \ (- sint a)) \ (- sint a) \ (2 ^ (size a - 1) - 1)) = ((- sint a) = sint (- a))" "((- (2 ^ (size a - 1)) \ (sint a * sint b)) \ (sint a * sint b \ (2 ^ (size a - 1) - 1))) = (sint a * sint b = sint (a * b))" "((- (2 ^ (size a - 1)) \ (sint a sdiv sint b)) \ (sint a sdiv sint b \ (2 ^ (size a - 1) - 1))) = (sint a sdiv sint b = sint (a sdiv b))" "((- (2 ^ (size a - 1)) \ (sint a smod sint b)) \ (sint a smod sint b \ (2 ^ (size a - 1) - 1))) = (sint a smod sint b = sint (a smod b))" by (auto simp: sint_word_ariths word_size signed_div_arith signed_mod_arith sbintrunc_eq_in_range range_sbintrunc) lemma signed_arith_sint: "((- (2 ^ (size a - 1)) \ (sint a + sint b)) \ (sint a + sint b \ (2 ^ (size a - 1) - 1))) \ sint (a + b) = (sint a + sint b)" "((- (2 ^ (size a - 1)) \ (sint a - sint b)) \ (sint a - sint b \ (2 ^ (size a - 1) - 1))) \ sint (a - b) = (sint a - sint b)" "((- (2 ^ (size a - 1)) \ (- sint a)) \ (- sint a) \ (2 ^ (size a - 1) - 1)) \ sint (- a) = (- sint a)" "((- (2 ^ (size a - 1)) \ (sint a * sint b)) \ (sint a * sint b \ (2 ^ (size a - 1) - 1))) \ sint (a * b) = (sint a * sint b)" "((- (2 ^ (size a - 1)) \ (sint a sdiv sint b)) \ (sint a sdiv sint b \ (2 ^ (size a - 1) - 1))) \ sint (a sdiv b) = (sint a sdiv sint b)" "((- (2 ^ (size a - 1)) \ (sint a smod sint b)) \ (sint a smod sint b \ (2 ^ (size a - 1) - 1))) \ sint (a smod b) = (sint a smod sint b)" by (subst (asm) signed_arith_ineq_checks_to_eq; simp)+ end diff --git a/thys/Word_Lib/Word_Lib_Sumo.thy b/thys/Word_Lib/Word_Lib_Sumo.thy --- a/thys/Word_Lib/Word_Lib_Sumo.thy +++ b/thys/Word_Lib/Word_Lib_Sumo.thy @@ -1,136 +1,139 @@ (* * Copyright Florian Haftmann * * SPDX-License-Identifier: BSD-2-Clause *) section \Ancient comprehensive Word Library\ theory Word_Lib_Sumo imports "HOL-Library.Word" Aligned Bit_Comprehension Bits_Int Bitwise_Signed Bitwise Enumeration_Word Generic_set_bit Hex_Words Least_significant_bit More_Arithmetic More_Divides More_Sublist Even_More_List More_Misc Strict_part_mono Legacy_Aliases Most_significant_bit Next_and_Prev Norm_Words Reversed_Bit_Lists Rsplit Signed_Words + Syntax_Bundles Traditional_Infix_Syntax Typedef_Morphisms Type_Syntax Word_EqI Word_Lemmas Word_8 Word_16 Word_32 Word_Syntax Signed_Division_Word More_Word_Operations Many_More begin +unbundle bit_projection_infix_syntax + declare word_induct2[induct type] declare word_nat_cases[cases type] declare signed_take_bit_Suc [simp] (* these generate take_bit terms, which we often don't want for concrete lengths *) lemmas of_int_and_nat = unsigned_of_nat unsigned_of_int signed_of_int signed_of_nat bundle no_take_bit begin declare of_int_and_nat[simp del] end lemmas bshiftr1_def = bshiftr1_eq lemmas is_down_def = is_down_eq lemmas is_up_def = is_up_eq lemmas mask_def = mask_eq lemmas scast_def = scast_eq lemmas shiftl1_def = shiftl1_eq lemmas shiftr1_def = shiftr1_eq lemmas sshiftr1_def = sshiftr1_eq lemmas sshiftr_def = sshiftr_eq_funpow_sshiftr1 lemmas to_bl_def = to_bl_eq lemmas ucast_def = ucast_eq lemmas unat_def = unat_eq_nat_uint lemmas word_cat_def = word_cat_eq lemmas word_reverse_def = word_reverse_eq_of_bl_rev_to_bl lemmas word_roti_def = word_roti_eq_word_rotr_word_rotl lemmas word_rotl_def = word_rotl_eq lemmas word_rotr_def = word_rotr_eq lemmas word_sle_def = word_sle_eq lemmas word_sless_def = word_sless_eq lemmas uint_0 = uint_nonnegative lemmas uint_lt = uint_bounded lemmas uint_mod_same = uint_idem lemmas of_nth_def = word_set_bits_def lemmas of_nat_word_eq_iff = word_of_nat_eq_iff lemmas of_nat_word_eq_0_iff = word_of_nat_eq_0_iff lemmas of_int_word_eq_iff = word_of_int_eq_iff lemmas of_int_word_eq_0_iff = word_of_int_eq_0_iff lemmas word_next_def = word_next_unfold lemmas word_prev_def = word_prev_unfold lemmas is_aligned_def = is_aligned_iff_dvd_nat lemma shiftl_transfer [transfer_rule]: includes lifting_syntax shows "(pcr_word ===> (=) ===> pcr_word) (<<) (<<)" by (unfold shiftl_eq_push_bit) transfer_prover lemmas word_and_max_simps = word8_and_max_simp word16_and_max_simp word32_and_max_simp lemma distinct_lemma: "f x \ f y \ x \ y" by auto lemmas and_bang = word_and_nth lemmas sdiv_int_def = signed_divide_int_def lemmas smod_int_def = signed_modulo_int_def (* shortcut for some specific lengths *) lemma word_fixed_sint_1[simp]: "sint (1::8 word) = 1" "sint (1::16 word) = 1" "sint (1::32 word) = 1" "sint (1::64 word) = 1" by (auto simp: sint_word_ariths) declare of_nat_diff [simp] (* Haskellish names/syntax *) notation (input) - test_bit ("testBit") + bit ("testBit") lemmas cast_simps = cast_simps ucast_down_bl (* shadows the slightly weaker Word.nth_ucast *) lemma nth_ucast: "(ucast (w::'a::len word)::'b::len word) !! n = (w !! n \ n < min LENGTH('a) LENGTH('b))" by transfer (simp add: bit_take_bit_iff ac_simps) end