diff --git a/thys/Native_Word/Code_Target_Word_Base.thy b/thys/Native_Word/Code_Target_Word_Base.thy --- a/thys/Native_Word/Code_Target_Word_Base.thy +++ b/thys/Native_Word/Code_Target_Word_Base.thy @@ -1,445 +1,445 @@ (* Title: Code_Target_Word_Base.thy Author: Andreas Lochbihler, ETH Zurich *) chapter \Common base for target language implementations of word types\ theory Code_Target_Word_Base imports "HOL-Word.Word" Bits_Integer begin text \More lemmas\ lemma nat_div_eq_Suc_0_iff: "n div m = Suc 0 \ m \ n \ n < 2 * m" apply auto using div_greater_zero_iff apply fastforce apply (metis One_nat_def div_greater_zero_iff dividend_less_div_times mult.right_neutral mult_Suc mult_numeral_1 numeral_2_eq_2 zero_less_numeral) apply (simp add: div_nat_eqI) done lemma Suc_0_lt_2p_len_of: "Suc 0 < 2 ^ LENGTH('a :: len)" by (metis One_nat_def len_gt_0 lessI numeral_2_eq_2 one_less_power) lemma div_half_nat: fixes x y :: nat assumes "y \ 0" shows "(x div y, x mod y) = (let q = 2 * (x div 2 div y); r = x - q * y in if y \ r then (q + 1, r - y) else (q, r))" proof - let ?q = "2 * (x div 2 div y)" have q: "?q = x div y - x div y mod 2" by(metis div_mult2_eq mult.commute minus_mod_eq_mult_div [symmetric]) let ?r = "x - ?q * y" have r: "?r = x mod y + x div y mod 2 * y" by(simp add: q diff_mult_distrib minus_mod_eq_div_mult [symmetric])(metis diff_diff_cancel mod_less_eq_dividend mod_mult2_eq add.commute mult.commute) show ?thesis proof(cases "y \ x - ?q * y") case True with assms q have "x div y mod 2 \ 0" unfolding r by (metis Nat.add_0_right diff_0_eq_0 diff_Suc_1 le_div_geq mod2_gr_0 mod_div_trivial mult_0 neq0_conv numeral_1_eq_Suc_0 numerals(1)) hence "x div y = ?q + 1" unfolding q by simp moreover hence "x mod y = ?r - y" by simp(metis minus_div_mult_eq_mod [symmetric] diff_commute diff_diff_left mult_Suc) ultimately show ?thesis using True by(simp add: Let_def) next case False hence "x div y mod 2 = 0" unfolding r by(simp add: not_le)(metis Nat.add_0_right assms div_less div_mult_self2 mod_div_trivial mult.commute) hence "x div y = ?q" unfolding q by simp moreover hence "x mod y = ?r" by (metis minus_div_mult_eq_mod [symmetric]) ultimately show ?thesis using False by(simp add: Let_def) qed qed lemma unat_p2: "n < LENGTH('a :: len) \ unat (2 ^ n :: 'a word) = 2 ^ n" proof(induct n) case 0 thus ?case by simp next case (Suc n) then obtain n' where "LENGTH('a) = Suc n'" by(cases "LENGTH('a)") simp_all with Suc show ?case by (simp add: unat_word_ariths bintrunc_mod2p) qed lemma word_div_lt_eq_0: "x < y \ x div y = 0" for x :: "'a :: len word" by (simp add: word_eq_iff word_less_def word_test_bit_def uint_div) lemma word_div_eq_1_iff: "n div m = 1 \ n \ m \ unat n < 2 * unat (m :: 'a :: len word)" apply(simp only: word_arith_nat_defs word_le_nat_alt nat_div_eq_Suc_0_iff[symmetric]) apply(rule word_unat.Abs_inject) apply(simp only: unat_div[symmetric] word_unat.Rep) apply(simp add: unats_def Suc_0_lt_2p_len_of) done lemma div_half_word: fixes x y :: "'a :: len word" assumes "y \ 0" shows "(x div y, x mod y) = (let q = (x >> 1) div y << 1; r = x - q * y in if y \ r then (q + 1, r - y) else (q, r))" proof - obtain n where n: "x = of_nat n" "n < 2 ^ LENGTH('a)" by (rule that [of \unat x\]) simp_all moreover obtain m where m: "y = of_nat m" "m < 2 ^ LENGTH('a)" by (rule that [of \unat y\]) simp_all ultimately have [simp]: \unat (of_nat n :: 'a word) = n\ \unat (of_nat m :: 'a word) = m\ - by (transfer, simp add: take_bit_of_nat take_bit_eq_self)+ + by (transfer, simp add: take_bit_of_nat take_bit_nat_eq_self_iff)+ let ?q = "(x >> 1) div y << 1" let ?q' = "2 * (n div 2 div m)" have "n div 2 div m < 2 ^ LENGTH('a)" using n by (metis of_nat_inverse unat_lt2p uno_simps(2)) hence q: "?q = of_nat ?q'" using n m apply (auto simp add: shiftr_word_eq drop_bit_eq_div shiftl_t2n word_arith_nat_div uno_simps) apply (metis \unat (of_nat n) = n\ uno_simps(2)) done from assms have "m \ 0" using m by -(rule notI, simp) from n have "2 * (n div 2 div m) < 2 ^ LENGTH('a)" by(metis mult.commute div_mult2_eq minus_mod_eq_mult_div [symmetric] less_imp_diff_less of_nat_inverse unat_lt2p uno_simps(2)) moreover have "2 * (n div 2 div m) * m < 2 ^ LENGTH('a)" using n unfolding div_mult2_eq[symmetric] by(subst (2) mult.commute)(simp add: minus_mod_eq_div_mult [symmetric] diff_mult_distrib minus_mod_eq_mult_div [symmetric] div_mult2_eq) moreover have "2 * (n div 2 div m) * m \ n" by (metis div_mult2_eq dtle mult.assoc mult.left_commute) ultimately have r: "x - ?q * y = of_nat (n - ?q' * m)" and "y \ x - ?q * y \ of_nat (n - ?q' * m) - y = of_nat (n - ?q' * m - m)" using n m unfolding q by (simp_all add: word_sub_wi word_mult_def uint_nat unat_of_nat of_nat_mult [symmetric] word_of_nat[symmetric] of_nat_diff word_le_nat_alt del: of_nat_mult) (metis diff_diff_left less_imp_diff_less of_nat_diff of_nat_inverse word_of_nat) thus ?thesis using n m div_half_nat[OF \m \ 0\, of n] unfolding q by(simp add: word_le_nat_alt word_div_def word_mod_def uint_nat unat_of_nat zmod_int[symmetric] zdiv_int[symmetric] word_of_nat[symmetric])(simp add: Let_def split del: if_split split: if_split_asm) qed lemma word_test_bit_set_bits: "(BITS n. f n :: 'a :: len word) !! n \ n < LENGTH('a) \ f n" by (simp add: test_bit_eq_bit bit_set_bits_word_iff) lemma word_of_int_conv_set_bits: "word_of_int i = (BITS n. i !! n)" by (rule word_eqI) (auto simp add: word_test_bit_set_bits test_bit.eq_norm) lemma word_and_mask_or_conv_and_mask: "n !! index \ (n AND mask index) OR (1 << index) = n AND mask (index + 1)" for n :: \'a::len word\ by(rule word_eqI)(auto simp add: word_ao_nth word_size nth_shiftl simp del: shiftl_1) lemma uint_and_mask_or_full: fixes n :: "'a :: len word" assumes "n !! (LENGTH('a) - 1)" and "mask1 = mask (LENGTH('a) - 1)" and "mask2 = 1 << LENGTH('a) - 1" shows "uint (n AND mask1) OR mask2 = uint n" proof - have "mask2 = uint (1 << LENGTH('a) - 1 :: 'a word)" using assms by (simp add: uint_shiftl word_size bintrunc_shiftl del: shiftl_1) hence "uint (n AND mask1) OR mask2 = uint (n AND mask1 OR (1 << LENGTH('a) - 1 :: 'a word))" by(simp add: uint_or) also have "\ = uint (n AND mask (LENGTH('a) - 1 + 1))" using assms by(simp only: word_and_mask_or_conv_and_mask) also have "\ = uint n" by simp finally show ?thesis . qed text \Division on @{typ "'a word"} is unsigned, but Scala and OCaml only have signed division and modulus.\ definition word_sdiv :: "'a :: len word \ 'a word \ 'a word" (infixl "sdiv" 70) where [code]: "x sdiv y = (let x' = sint x; y' = sint y; negative = (x' < 0) \ (y' < 0); result = abs x' div abs y' in word_of_int (if negative then -result else result))" definition word_smod :: "'a :: len word \ 'a word \ 'a word" (infixl "smod" 70) where [code]: "x smod y = (let x' = sint x; y' = sint y; negative = (x' < 0); result = abs x' mod abs y' in word_of_int (if negative then -result else result))" lemma sdiv_smod_id: "(a sdiv b) * b + (a smod b) = a" proof - note [simp] = word_sdiv_def word_smod_def have F5: "\u::'a word. - (- u) = u" by (metis minus_minus) have F7: "\v u::'a word. u + v = v + u" by(metis add.left_commute add_0_right) have F8: "\(w::'a word) (v::int) u::int. word_of_int u + word_of_int v * w = word_of_int (u + v * sint w)" by (metis word_sint.Rep_inverse wi_hom_syms(1) wi_hom_syms(3)) have "\u. u = - sint b \ word_of_int (sint a mod u + - (- u * (sint a div u))) = a" using F5 by (metis minus_minus word_sint.Rep_inverse' mult_minus_left add.commute mult_div_mod_eq [symmetric]) hence "word_of_int (sint a mod - sint b + - (sint b * (sint a div - sint b))) = a" by (metis equation_minus_iff) hence "word_of_int (sint a mod - sint b) + word_of_int (- (sint a div - sint b)) * b = a" using F8 by(metis mult.commute mult_minus_left) hence eq: "word_of_int (- (sint a div - sint b)) * b + word_of_int (sint a mod - sint b) = a" using F7 by metis show ?thesis proof(cases "sint a < 0") case True note a = this show ?thesis proof(cases "sint b < 0") case True with a show ?thesis by simp (metis F7 F8 eq minus_equation_iff minus_mult_minus mod_div_mult_eq) next case False from eq have "word_of_int (- (- sint a div sint b)) * b + word_of_int (- (- sint a mod sint b)) = a" by (metis div_minus_right mod_minus_right) with a False show ?thesis by simp qed next case False note a = this show ?thesis proof(cases "sint b < 0") case True with a eq show ?thesis by simp next case False with a show ?thesis by simp (metis wi_hom_add wi_hom_mult add.commute mult.commute word_sint.Rep_inverse add.commute mult_div_mod_eq [symmetric]) qed qed qed text \ This algorithm implements unsigned division in terms of signed division. Taken from Hacker's Delight. \ lemma divmod_via_sdivmod: fixes x y :: "'a :: len word" assumes "y \ 0" shows "(x div y, x mod y) = (if 1 << (LENGTH('a) - 1) \ y then if x < y then (0, x) else (1, x - y) else let q = ((x >> 1) sdiv y) << 1; r = x - q * y in if r \ y then (q + 1, r - y) else (q, r))" proof(cases "1 << (LENGTH('a) - 1) \ y") case True note y = this show ?thesis proof(cases "x < y") case True then have "x mod y = x" by (cases x, cases y) (simp add: word_less_def word_mod_def) thus ?thesis using True y by(simp add: word_div_lt_eq_0) next case False obtain n where n: "y = of_nat n" "n < 2 ^ LENGTH('a)" by (rule that [of \unat y\]) simp_all have "unat x < 2 ^ LENGTH('a)" by(rule unat_lt2p) also have "\ = 2 * 2 ^ (LENGTH('a) - 1)" by(metis Suc_pred len_gt_0 power_Suc One_nat_def) also have "\ \ 2 * n" using y n by(simp add: word_le_nat_alt unat_of_nat unat_p2) finally have div: "x div of_nat n = 1" using False n by(simp add: word_div_eq_1_iff not_less word_le_nat_alt unat_of_nat) moreover have "x mod y = x - x div y * y" by (simp add: minus_div_mult_eq_mod) with div n have "x mod y = x - y" by simp ultimately show ?thesis using False y n by simp qed next case False note y = this obtain n where n: "x = of_nat n" "n < 2 ^ LENGTH('a)" by (rule that [of \unat x\]) simp_all hence "int n div 2 + 2 ^ (LENGTH('a) - Suc 0) < 2 ^ LENGTH('a)" by (cases "LENGTH('a)") (simp_all, simp only: of_nat_numeral [where ?'a = int, symmetric] zdiv_int [symmetric] of_nat_power [symmetric]) with y n have "sint (x >> 1) = uint (x >> 1)" by (simp add: sint_uint sbintrunc_mod2p shiftr_div_2n) (simp add: uint_nat unat_of_nat) moreover have "uint y + 2 ^ (LENGTH('a) - Suc 0) < 2 ^ LENGTH('a)" using y by (cases "LENGTH('a)") (simp_all add: not_le word_2p_lem word_size) then have "sint y = uint y" by (simp add: sint_uint sbintrunc_mod2p) ultimately show ?thesis using y by(subst div_half_word[OF assms])(simp add: word_sdiv_def uint_div[symmetric]) qed text \More implementations tailored towards target-language implementations\ context includes integer.lifting begin lift_definition word_of_integer :: "integer \ 'a :: len word" is word_of_int . lemma word_of_integer_code [code]: "word_of_integer n = word_of_int (int_of_integer n)" by(simp add: word_of_integer.rep_eq) end lemma word_of_int_code [code abstract]: "uint (word_of_int x :: 'a word) = x AND mask (LENGTH('a :: len))" by(simp add: uint_word_of_int and_bin_mask_conv_mod) context fixes f :: "nat \ bool" begin definition set_bits_aux :: \'a word \ nat \ 'a :: len word\ where \set_bits_aux w n = push_bit n w OR take_bit n (set_bits f)\ lemma set_bits_aux_conv: \set_bits_aux w n = (w << n) OR (set_bits f AND mask n)\ for w :: \'a::len word\ by (rule bit_word_eqI) (auto simp add: set_bits_aux_def shiftl_word_eq bit_and_iff bit_or_iff bit_push_bit_iff bit_take_bit_iff bit_mask_iff bit_set_bits_word_iff exp_eq_zero_iff) corollary set_bits_conv_set_bits_aux: \set_bits f = (set_bits_aux 0 (LENGTH('a)) :: 'a :: len word)\ by (simp add: set_bits_aux_conv) lemma set_bits_aux_0 [simp]: \set_bits_aux w 0 = w\ by (simp add: set_bits_aux_conv) lemma set_bits_aux_Suc [simp]: \set_bits_aux w (Suc n) = set_bits_aux ((w << 1) OR (if f n then 1 else 0)) n\ by (simp add: set_bits_aux_def shiftl_word_eq bit_eq_iff bit_or_iff bit_push_bit_iff bit_take_bit_iff bit_set_bits_word_iff) (auto simp add: bit_exp_iff not_less bit_1_iff less_Suc_eq_le exp_eq_zero_iff) lemma set_bits_aux_simps [code]: \set_bits_aux w 0 = w\ \set_bits_aux w (Suc n) = set_bits_aux ((w << 1) OR (if f n then 1 else 0)) n\ by simp_all end lemma word_of_int_via_signed: fixes mask assumes mask_def: "mask = Bit_Operations.mask (LENGTH('a))" and shift_def: "shift = 1 << LENGTH('a)" and index_def: "index = LENGTH('a) - 1" and overflow_def:"overflow = 1 << (LENGTH('a) - 1)" and least_def: "least = - overflow" shows "(word_of_int i :: 'a :: len word) = (let i' = i AND mask in if i' !! index then if i' - shift < least \ overflow \ i' - shift then arbitrary1 i' else word_of_int (i' - shift) else if i' < least \ overflow \ i' then arbitrary2 i' else word_of_int i')" proof - define i' where "i' = i AND mask" have "shift = mask + 1" unfolding assms by(simp add: bin_mask_p1_conv_shift) hence "i' < shift" by(simp add: mask_def i'_def int_and_le) show ?thesis proof(cases "i' !! index") case True hence unf: "i' = overflow OR i'" unfolding assms i'_def by(auto intro!: bin_eqI simp add: bin_nth_ops) have "overflow \ i'" by(subst unf)(rule le_int_or, simp add: bin_sign_and assms i'_def) hence "i' - shift < least \ False" unfolding assms by(cases "LENGTH('a)")(simp_all add: not_less) moreover have "overflow \ i' - shift \ False" using \i' < shift\ unfolding assms by(cases "LENGTH('a)")(auto simp add: not_le elim: less_le_trans) moreover have "word_of_int (i' - shift) = (word_of_int i :: 'a word)" using \i' < shift\ by(auto intro!: word_eqI simp add: i'_def shift_def mask_def bin_nth_ops bin_nth_minus_p2 bin_sign_and) ultimately show ?thesis using True by(simp add: Let_def i'_def) next case False hence "i' = i AND Bit_Operations.mask (LENGTH('a) - 1)" unfolding assms i'_def by(clarsimp simp add: i'_def bin_nth_ops intro!: bin_eqI)(cases "LENGTH('a)", auto simp add: less_Suc_eq) also have "\ \ Bit_Operations.mask (LENGTH('a) - 1)" by(rule int_and_le) simp also have "\ < overflow" unfolding overflow_def by(simp add: bin_mask_p1_conv_shift[symmetric]) also have "least \ 0" unfolding least_def overflow_def by simp have "0 \ i'" by(simp add: i'_def mask_def bin_mask_ge0) hence "least \ i'" using \least \ 0\ by simp moreover have "word_of_int i' = (word_of_int i :: 'a word)" by(rule word_eqI)(auto simp add: i'_def bin_nth_ops mask_def) ultimately show ?thesis using False by(simp add: Let_def i'_def) qed qed text \Quickcheck conversion functions\ notation scomp (infixl "\\" 60) definition qc_random_cnv :: "(natural \ 'a::term_of) \ natural \ Random.seed \ ('a \ (unit \ Code_Evaluation.term)) \ Random.seed" where "qc_random_cnv a_of_natural i = Random.range (i + 1) \\ (\k. Pair ( let n = a_of_natural k in (n, \_. Code_Evaluation.term_of n)))" no_notation scomp (infixl "\\" 60) definition qc_exhaustive_cnv :: "(natural \ 'a) \ ('a \ (bool \ term list) option) \ natural \ (bool \ term list) option" where "qc_exhaustive_cnv a_of_natural f d = Quickcheck_Exhaustive.exhaustive (%x. f (a_of_natural x)) d" definition qc_full_exhaustive_cnv :: "(natural \ ('a::term_of)) \ ('a \ (unit \ term) \ (bool \ term list) option) \ natural \ (bool \ term list) option" where "qc_full_exhaustive_cnv a_of_natural f d = Quickcheck_Exhaustive.full_exhaustive (%(x, xt). f (a_of_natural x, %_. Code_Evaluation.term_of (a_of_natural x))) d" declare [[quickcheck_narrowing_ghc_options = "-XTypeSynonymInstances"]] definition qc_narrowing_drawn_from :: "'a list \ integer \ _" where "qc_narrowing_drawn_from xs = foldr Quickcheck_Narrowing.sum (map Quickcheck_Narrowing.cons (butlast xs)) (Quickcheck_Narrowing.cons (last xs))" locale quickcheck_narrowing_samples = fixes a_of_integer :: "integer \ 'a \ 'a :: {partial_term_of, term_of}" and zero :: "'a" and tr :: "typerep" begin function narrowing_samples :: "integer \ 'a list" where "narrowing_samples i = (if i > 0 then let (a, a') = a_of_integer i in narrowing_samples (i - 1) @ [a, a'] else [zero])" by pat_completeness auto termination including integer.lifting proof(relation "measure nat_of_integer") fix i :: integer assume "0 < i" thus "(i - 1, i) \ measure nat_of_integer" by simp(transfer, simp) qed simp definition partial_term_of_sample :: "integer \ 'a" where "partial_term_of_sample i = (if i < 0 then undefined else if i = 0 then zero else if i mod 2 = 0 then snd (a_of_integer (i div 2)) else fst (a_of_integer (i div 2 + 1)))" lemma partial_term_of_code: "partial_term_of (ty :: 'a itself) (Quickcheck_Narrowing.Narrowing_variable p t) \ Code_Evaluation.Free (STR ''_'') tr" "partial_term_of (ty :: 'a itself) (Quickcheck_Narrowing.Narrowing_constructor i []) \ Code_Evaluation.term_of (partial_term_of_sample i)" by (rule partial_term_of_anything)+ end lemmas [code] = quickcheck_narrowing_samples.narrowing_samples.simps quickcheck_narrowing_samples.partial_term_of_sample_def text \ The separate code target \SML_word\ collects setups for the code generator that PolyML does not provide. \ setup \Code_Target.add_derived_target ("SML_word", [(Code_ML.target_SML, I)])\ code_identifier code_module Code_Target_Word_Base \ (SML) Word and (Haskell) Word and (OCaml) Word and (Scala) Word export_code signed_take_bit \mask :: nat \ int\ in SML module_name Code end