diff --git a/thys/Native_Word/Word_Type_Copies.thy b/thys/Native_Word/Word_Type_Copies.thy --- a/thys/Native_Word/Word_Type_Copies.thy +++ b/thys/Native_Word/Word_Type_Copies.thy @@ -1,334 +1,336 @@ (* Title: Word_Type_Copies.thy Author: Florian Haftmann, TU Muenchen *) chapter \Systematic approach towards type copies of word type\ theory Word_Type_Copies imports "HOL-Library.Word" "Word_Lib.Most_significant_bit" "Word_Lib.Least_significant_bit" "Word_Lib.Generic_set_bit" "Word_Lib.Bit_Comprehension" "Code_Target_Word_Base" begin text \The lifting machinery is not localized, hence the abstract proofs are carried out using morphisms.\ locale word_type_copy = fixes of_word :: \'b::len word \ 'a\ and word_of :: \'a \ 'b word\ assumes type_definition: \type_definition word_of of_word UNIV\ begin lemma word_of_word: \word_of (of_word w) = w\ using type_definition by (simp add: type_definition_def) lemma of_word_of [code abstype]: \of_word (word_of p) = p\ \ \Use an abstract type for code generation to disable pattern matching on \<^term>\of_word\.\ using type_definition by (simp add: type_definition_def) lemma word_of_eqI: \p = q\ if \word_of p = word_of q\ proof - from that have \of_word (word_of p) = of_word (word_of q)\ by simp then show ?thesis by (simp add: of_word_of) qed lemma eq_iff_word_of: \p = q \ word_of p = word_of q\ by (auto intro: word_of_eqI) end bundle constraintless begin declaration \ let val cs = map (rpair NONE o fst o dest_Const) [\<^term>\0\, \<^term>\(+)\, \<^term>\uminus\, \<^term>\(-)\, \<^term>\1\, \<^term>\(*)\, \<^term>\(div)\, \<^term>\(mod)\, \<^term>\HOL.equal\, \<^term>\(\)\, \<^term>\(<)\, \<^term>\(dvd)\, \<^term>\of_bool\, \<^term>\numeral\, \<^term>\of_nat\, \<^term>\bit\, \<^term>\Bit_Operations.not\, \<^term>\Bit_Operations.and\, \<^term>\Bit_Operations.or\, \<^term>\Bit_Operations.xor\, \<^term>\mask\, \<^term>\push_bit\, \<^term>\drop_bit\, \<^term>\take_bit\, \<^term>\Bit_Operations.set_bit\, \<^term>\unset_bit\, \<^term>\flip_bit\, \<^term>\msb\, \<^term>\lsb\, \<^term>\size\, \<^term>\Generic_set_bit.set_bit\, \<^term>\set_bits\] in K (Context.mapping I (fold Proof_Context.add_const_constraint cs)) end \ end locale word_type_copy_ring = word_type_copy opening constraintless + constrains word_of :: \'a \ 'b::len word\ assumes word_of_0 [code]: \word_of 0 = 0\ and word_of_1 [code]: \word_of 1 = 1\ and word_of_add [code]: \word_of (p + q) = word_of p + word_of q\ and word_of_minus [code]: \word_of (- p) = - (word_of p)\ and word_of_diff [code]: \word_of (p - q) = word_of p - word_of q\ and word_of_mult [code]: \word_of (p * q) = word_of p * word_of q\ and word_of_div [code]: \word_of (p div q) = word_of p div word_of q\ and word_of_mod [code]: \word_of (p mod q) = word_of p mod word_of q\ and equal_iff_word_of [code]: \HOL.equal p q \ HOL.equal (word_of p) (word_of q)\ and less_eq_iff_word_of [code]: \p \ q \ word_of p \ word_of q\ and less_iff_word_of [code]: \p < q \ word_of p < word_of q\ begin lemma of_class_comm_ring_1: \OFCLASS('a, comm_ring_1_class)\ by standard (simp_all add: eq_iff_word_of word_of_0 word_of_1 word_of_add word_of_minus word_of_diff word_of_mult algebra_simps) lemma of_class_semiring_modulo: \OFCLASS('a, semiring_modulo_class)\ by standard (simp_all add: eq_iff_word_of word_of_0 word_of_1 word_of_add word_of_minus word_of_diff word_of_mult word_of_mod word_of_div algebra_simps mod_mult_div_eq) lemma of_class_equal: \OFCLASS('a, equal_class)\ by standard (simp add: eq_iff_word_of equal_iff_word_of equal) lemma of_class_linorder: \OFCLASS('a, linorder_class)\ by standard (auto simp add: eq_iff_word_of less_eq_iff_word_of less_iff_word_of) end locale word_type_copy_bits = word_type_copy_ring opening constraintless bit_operations_syntax + constrains word_of :: \'a::{comm_ring_1, semiring_modulo, equal, linorder} \ 'b::len word\ fixes signed_drop_bit :: \nat \ 'a \ 'a\ assumes bit_eq_word_of [code]: \bit p = bit (word_of p)\ and word_of_not [code]: \word_of (NOT p) = NOT (word_of p)\ and word_of_and [code]: \word_of (p AND q) = word_of p AND word_of q\ and word_of_or [code]: \word_of (p OR q) = word_of p OR word_of q\ and word_of_xor [code]: \word_of (p XOR q) = word_of p XOR word_of q\ and word_of_mask [code]: \word_of (mask n) = mask n\ and word_of_push_bit [code]: \word_of (push_bit n p) = push_bit n (word_of p)\ and word_of_drop_bit [code]: \word_of (drop_bit n p) = drop_bit n (word_of p)\ and word_of_signed_drop_bit [code]: \word_of (signed_drop_bit n p) = Word.signed_drop_bit n (word_of p)\ and word_of_take_bit [code]: \word_of (take_bit n p) = take_bit n (word_of p)\ and word_of_set_bit [code]: \word_of (Bit_Operations.set_bit n p) = Bit_Operations.set_bit n (word_of p)\ and word_of_unset_bit [code]: \word_of (unset_bit n p) = unset_bit n (word_of p)\ and word_of_flip_bit [code]: \word_of (flip_bit n p) = flip_bit n (word_of p)\ begin lemma word_of_bool: \word_of (of_bool n) = of_bool n\ by (simp add: word_of_0 word_of_1) lemma word_of_nat: \word_of (of_nat n) = of_nat n\ by (induction n) (simp_all add: word_of_0 word_of_1 word_of_add) lemma word_of_numeral [simp]: \word_of (numeral n) = numeral n\ proof - have \word_of (of_nat (numeral n)) = of_nat (numeral n)\ by (simp only: word_of_nat) then show ?thesis by simp qed lemma word_of_power: \word_of (p ^ n) = word_of p ^ n\ by (induction n) (simp_all add: word_of_1 word_of_mult) lemma even_iff_word_of: \2 dvd p \ 2 dvd word_of p\ (is \?P \ ?Q\) proof assume ?P then obtain q where \p = 2 * q\ .. then show ?Q by (simp add: word_of_mult) next assume ?Q then obtain w where \word_of p = 2 * w\ .. then have \of_word (word_of p) = of_word (2 * w)\ by simp then have \p = 2 * of_word w\ by (simp add: eq_iff_word_of word_of_word word_of_mult) then show ?P by simp qed lemma of_class_ring_bit_operations: \OFCLASS('a, ring_bit_operations_class)\ proof - have induct: \P p\ if stable: \(\p. p div 2 = p \ P p)\ and rec: \(\p b. P p \ (of_bool b + 2 * p) div 2 = p \ P (of_bool b + 2 * p))\ for p :: 'a and P proof - from stable have stable': \(\p. word_of p div 2 = word_of p \ P p)\ by (simp add: eq_iff_word_of word_of_div) from rec have rec': \(\p b. P p \ (of_bool b + 2 * word_of p) div 2 = word_of p \ P (of_bool b + 2 * p))\ by (simp add: eq_iff_word_of word_of_add word_of_bool word_of_mult word_of_div) define w where \w = word_of p\ then have \p = of_word w\ by (simp add: of_word_of) also have \P (of_word w)\ proof (induction w rule: bits_induct) case (stable w) show ?case by (rule stable') (simp add: word_of_word stable) next case (rec w b) have \P (of_bool b + 2 * of_word w)\ by (rule rec') (simp_all add: word_of_word rec) also have \of_bool b + 2 * of_word w = of_word (of_bool b + 2 * w)\ by (simp add: eq_iff_word_of word_of_word word_of_add word_of_1 word_of_mult word_of_0) finally show ?case . qed finally show \P p\ . qed have \class.semiring_parity_axioms (+) (0::'a) (*) 1 (mod)\ by standard (simp_all add: eq_iff_word_of word_of_0 word_of_1 even_iff_word_of word_of_mod even_iff_mod_2_eq_zero) with of_class_semiring_modulo have \OFCLASS('a, semiring_parity_class)\ by (rule semiring_parity_class.intro) moreover have \class.semiring_bits_axioms (+) (-) (0::'a) (*) 1 (div) (mod) bit\ apply (standard, fact induct) apply (simp_all only: eq_iff_word_of word_of_0 word_of_1 word_of_bool word_of_numeral word_of_add word_of_diff word_of_mult word_of_div word_of_mod word_of_power even_iff_word_of bit_eq_word_of push_bit_take_bit drop_bit_take_bit even_drop_bit_iff_not_bit flip: push_bit_eq_mult drop_bit_eq_div take_bit_eq_mod mask_eq_exp_minus_1) apply (auto simp add: ac_simps bit_simps drop_bit_exp_eq) done ultimately have \OFCLASS('a, semiring_bits_class)\ by (rule semiring_bits_class.intro) moreover have \class.semiring_bit_operations_axioms (+) (-) (0::'a) (*) (1::'a) (div) (mod) bit (AND) (OR) (XOR) mask Bit_Operations.set_bit unset_bit flip_bit push_bit drop_bit take_bit\ apply standard apply (simp_all add: eq_iff_word_of word_of_add word_of_push_bit word_of_power bit_eq_word_of word_of_and word_of_or word_of_xor word_of_mask word_of_diff word_of_0 word_of_1 bit_simps word_of_set_bit set_bit_eq_or word_of_unset_bit word_of_flip_bit flip_bit_eq_xor word_of_mult word_of_drop_bit word_of_div word_of_take_bit word_of_mod and_rec [of \word_of a\ \word_of b\ for a b] or_rec [of \word_of a\ \word_of b\ for a b] xor_rec [of \word_of a\ \word_of b\ for a b] even_iff_word_of flip: mask_eq_exp_minus_1 push_bit_eq_mult drop_bit_eq_div take_bit_eq_mod) done ultimately have \OFCLASS('a, semiring_bit_operations_class)\ by (rule semiring_bit_operations_class.intro) moreover have \OFCLASS('a, ring_parity_class)\ using \OFCLASS('a, semiring_parity_class)\ by (rule ring_parity_class.intro) standard - moreover have \class.ring_bit_operations_axioms (+) (-) (0::'a) (*) 1 bit uminus NOT\ - by standard (simp_all add: eq_iff_word_of word_of_power - bit_eq_word_of word_of_diff word_of_1 bit_simps linorder_not_le - word_of_not word_of_0 - word_of_minus minus_eq_not_minus_1) + moreover have \class.ring_bit_operations_axioms (+) (-) (0::'a) (*) 1 divide uminus NOT\ + apply standard + apply (simp_all add: eq_iff_word_of word_of_power + bit_eq_word_of word_of_diff word_of_1 bit_simps linorder_not_le even_iff_word_of + word_of_not word_of_0 word_of_add word_of_mult word_of_div + word_of_minus minus_eq_not_minus_1 not_rec [of \word_of a\ for a]) + done ultimately show \OFCLASS('a, ring_bit_operations_class)\ by (rule ring_bit_operations_class.intro) qed lemma [code]: \take_bit n a = a AND mask n\ for a :: 'a by (simp add: eq_iff_word_of word_of_take_bit word_of_and word_of_mask take_bit_eq_mask) lemma [code]: \mask (Suc n) = push_bit n (1 :: 'a) OR mask n\ \mask 0 = (0 :: 'a)\ by (simp_all add: eq_iff_word_of word_of_mask word_of_or word_of_push_bit word_of_0 word_of_1 mask_Suc_exp) lemma [code]: \Bit_Operations.set_bit n w = w OR push_bit n 1\ for w :: 'a by (simp add: eq_iff_word_of word_of_set_bit word_of_or word_of_push_bit word_of_1 set_bit_eq_or) lemma [code]: \unset_bit n w = w AND NOT (push_bit n 1)\ for w :: 'a by (simp add: eq_iff_word_of word_of_unset_bit word_of_and word_of_not word_of_push_bit word_of_1 unset_bit_eq_and_not) lemma [code]: \flip_bit n w = w XOR push_bit n 1\ for w :: 'a by (simp add: eq_iff_word_of word_of_flip_bit word_of_xor word_of_push_bit word_of_1 flip_bit_eq_xor) end locale word_type_copy_more = word_type_copy_bits + constrains word_of :: \'a::{ring_bit_operations, equal, linorder} \ 'b::len word\ fixes of_nat :: \nat \ 'a\ and nat_of :: \'a \ nat\ and of_int :: \int \ 'a\ and int_of :: \'a \ int\ and of_integer :: \integer \ 'a\ and integer_of :: \'a \ integer\ assumes word_of_nat_eq: \word_of (of_nat n) = word_of_nat n\ and nat_of_eq_word_of: \nat_of p = unat (word_of p)\ and word_of_int_eq: \word_of (of_int k) = word_of_int k\ and int_of_eq_word_of: \int_of p = uint (word_of p)\ and word_of_integer_eq: \word_of (of_integer l) = word_of_integer l\ and integer_of_eq_word_of: \integer_of p = unsigned (word_of p)\ begin lemma of_word_numeral [code_post]: \of_word (numeral n) = numeral n\ by (simp add: eq_iff_word_of word_of_word) lemma of_word_0 [code_post]: \of_word 0 = 0\ by (simp add: eq_iff_word_of word_of_0 word_of_word) lemma of_word_1 [code_post]: \of_word 1 = 1\ by (simp add: eq_iff_word_of word_of_1 word_of_word) text \Use pretty numerals from integer for pretty printing\ lemma numeral_eq_integer [code_unfold]: \numeral n = of_integer (numeral n)\ by (simp add: eq_iff_word_of word_of_integer_eq) lemma neg_numeral_eq_integer [code_unfold]: \- numeral n = of_integer (- numeral n)\ by (simp add: eq_iff_word_of word_of_integer_eq word_of_minus) end locale word_type_copy_misc = word_type_copy_more opening constraintless bit_operations_syntax + constrains word_of :: \'a::{ring_bit_operations, equal, linorder} \ 'b::len word\ fixes size :: nat and set_bits_aux :: \(nat \ bool) \ nat \ 'a \ 'a\ assumes size_eq_length: \size = LENGTH('b::len)\ and msb_iff_word_of [code]: \msb p \ msb (word_of p)\ and lsb_iff_word_of [code]: \lsb p \ lsb (word_of p)\ and size_eq_word_of: \Nat.size (p :: 'a) = Nat.size (word_of p)\ and word_of_generic_set_bit [code]: \word_of (Generic_set_bit.set_bit p n b) = Generic_set_bit.set_bit (word_of p) n b\ and word_of_set_bits: \word_of (set_bits P) = set_bits P\ and word_of_set_bits_aux: \word_of (set_bits_aux P n p) = Bit_Comprehension.set_bits_aux P n (word_of p)\ begin lemma size_eq [code]: \Nat.size p = size\ for p :: 'a by (simp add: size_eq_length size_eq_word_of word_size) lemma set_bits_aux_code [code]: \set_bits_aux f n w = (if n = 0 then w else let n' = n - 1 in set_bits_aux f n' (push_bit 1 w OR (if f n' then 1 else 0)))\ by (simp add: eq_iff_word_of word_of_set_bits_aux Let_def word_of_mult word_of_or word_of_0 word_of_1 set_bits_aux_rec [of f n]) lemma set_bits_code [code]: \set_bits P = set_bits_aux P size 0\ by (simp add: fun_eq_iff eq_iff_word_of word_of_set_bits word_of_set_bits_aux word_of_0 size_eq_length set_bits_conv_set_bits_aux) lemma of_class_lsb: \OFCLASS('a, lsb_class)\ by standard (simp add: fun_eq_iff lsb_iff_word_of even_iff_word_of lsb_odd) lemma of_class_set_bit: \OFCLASS('a, set_bit_class)\ by standard (simp add: eq_iff_word_of word_of_generic_set_bit bit_eq_word_of word_of_power word_of_0 bit_simps linorder_not_le) lemma of_class_bit_comprehension: \OFCLASS('a, bit_comprehension_class)\ by standard (simp add: eq_iff_word_of word_of_set_bits bit_eq_word_of set_bits_bit_eq) end end