diff --git a/thys/Core_DOM/common/Core_DOM_Functions.thy b/thys/Core_DOM/common/Core_DOM_Functions.thy --- a/thys/Core_DOM/common/Core_DOM_Functions.thy +++ b/thys/Core_DOM/common/Core_DOM_Functions.thy @@ -1,3725 +1,3767 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\Querying and Modifying the DOM\ text\In this theory, we are formalizing the functions for querying and modifying the DOM.\ theory Core_DOM_Functions imports "monads/DocumentMonad" begin text \If we do not declare show\_variants, then all abbreviations that contain constants that are overloaded by using adhoc\_overloading get immediately unfolded.\ declare [[show_variants]] subsection \Various Functions\ lemma insort_split: "x \ set (insort y xs) \ (x = y \ x \ set xs)" apply(induct xs) by(auto) lemma concat_map_distinct: "distinct (concat (map f xs)) \ y \ set (concat (map f xs)) \ \!x \ set xs. y \ set (f x)" apply(induct xs) by(auto) lemma concat_map_all_distinct: "distinct (concat (map f xs)) \ x \ set xs \ distinct (f x)" apply(induct xs) by(auto) lemma distinct_concat_map_I: assumes "distinct xs" and "\x. x \ set xs \ distinct (f x)" and "\x y. x \ set xs \ y \ set xs \ x \ y \ (set (f x)) \ (set (f y)) = {}" shows "distinct (concat ((map f xs)))" using assms apply(induct xs) by(auto) lemma distinct_concat_map_E: assumes "distinct (concat ((map f xs)))" shows "\x y. x \ set xs \ y \ set xs \ x \ y \ (set (f x)) \ (set (f y)) = {}" and "\x. x \ set xs \ distinct (f x)" using assms apply(induct xs) by(auto) lemma bind_is_OK_E3 [elim]: assumes "h \ ok (f \ g)" and "pure f h" obtains x where "h \ f \\<^sub>r x" and "h \ ok (g x)" using assms by(auto simp add: bind_def returns_result_def returns_heap_def is_OK_def execute_def pure_def split: sum.splits) subsection \Basic Functions\ subsubsection \get\_child\_nodes\ locale l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs begin definition get_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r :: "(_) element_ptr \ unit \ (_, (_) node_ptr list) dom_prog" where "get_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r element_ptr _ = get_M element_ptr RElement.child_nodes" definition get_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r :: "(_) character_data_ptr \ unit \ (_, (_) node_ptr list) dom_prog" where "get_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r _ _ = return []" definition get_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r :: "(_) document_ptr \ unit \ (_, (_) node_ptr list) dom_prog" where "get_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r document_ptr _ = do { doc_elem \ get_M document_ptr document_element; (case doc_elem of Some element_ptr \ return [cast element_ptr] | None \ return []) }" definition a_get_child_nodes_tups :: "(((_) object_ptr \ bool) \ ((_) object_ptr \ unit \ (_, (_) node_ptr list) dom_prog)) list" where "a_get_child_nodes_tups = [ (is_element_ptr, get_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast), (is_character_data_ptr, get_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast), (is_document_ptr, get_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast) ]" definition a_get_child_nodes :: "(_) object_ptr \ (_, (_) node_ptr list) dom_prog" where "a_get_child_nodes ptr = invoke a_get_child_nodes_tups ptr ()" definition a_get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" where "a_get_child_nodes_locs ptr \ (if is_element_ptr_kind ptr then {preserved (get_M (the (cast ptr)) RElement.child_nodes)} else {}) \ (if is_document_ptr_kind ptr then {preserved (get_M (the (cast ptr)) RDocument.document_element)} else {}) \ {preserved (get_M ptr RObject.nothing)}" definition first_child :: "(_) object_ptr \ (_, (_) node_ptr option) dom_prog" where "first_child ptr = do { children \ a_get_child_nodes ptr; return (case children of [] \ None | child#_ \ Some child)}" end locale l_get_child_nodes_defs = fixes get_child_nodes :: "(_) object_ptr \ (_, (_) node_ptr list) dom_prog" fixes get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" locale l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_type_wf type_wf + l_known_ptr known_ptr + l_get_child_nodes_defs get_child_nodes get_child_nodes_locs + l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs for type_wf :: "(_) heap \ bool" and known_ptr :: "(_) object_ptr \ bool" and get_child_nodes :: "(_) object_ptr \ (_, (_) node_ptr list) dom_prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" + assumes known_ptr_impl: "known_ptr = DocumentClass.known_ptr" assumes type_wf_impl: "type_wf = DocumentClass.type_wf" assumes get_child_nodes_impl: "get_child_nodes = a_get_child_nodes" assumes get_child_nodes_locs_impl: "get_child_nodes_locs = a_get_child_nodes_locs" begin lemmas get_child_nodes_def = get_child_nodes_impl[unfolded a_get_child_nodes_def] lemmas get_child_nodes_locs_def = get_child_nodes_locs_impl[unfolded a_get_child_nodes_locs_def] lemma get_child_nodes_split: "P (invoke (a_get_child_nodes_tups @ xs) ptr ()) = ((known_ptr ptr \ P (get_child_nodes ptr)) \ (\(known_ptr ptr) \ P (invoke xs ptr ())))" by(auto simp add: known_ptr_impl get_child_nodes_impl a_get_child_nodes_def a_get_child_nodes_tups_def known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: invoke_splits) lemma get_child_nodes_split_asm: "P (invoke (a_get_child_nodes_tups @ xs) ptr ()) = (\((known_ptr ptr \ \P (get_child_nodes ptr)) \ (\(known_ptr ptr) \ \P (invoke xs ptr ()))))" by(auto simp add: known_ptr_impl get_child_nodes_impl a_get_child_nodes_def a_get_child_nodes_tups_def known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: invoke_splits) lemmas get_child_nodes_splits = get_child_nodes_split get_child_nodes_split_asm lemma get_child_nodes_ok [simp]: assumes "known_ptr ptr" assumes "type_wf h" assumes "ptr |\| object_ptr_kinds h" shows "h \ ok (get_child_nodes ptr)" using assms(1) assms(2) assms(3) apply(auto simp add: known_ptr_impl type_wf_impl get_child_nodes_def a_get_child_nodes_tups_def)[1] apply(split invoke_splits, rule conjI)+ apply((rule impI)+, drule(1) known_ptr_not_document_ptr, drule(1) known_ptr_not_character_data_ptr, drule(1) known_ptr_not_element_ptr) apply(auto simp add: NodeClass.known_ptr_defs)[1] apply(auto simp add: get_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def dest: get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok split: list.splits option.splits intro!: bind_is_OK_I2)[1] apply(auto simp add: get_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def)[1] apply (auto simp add: get_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def CharacterDataClass.type_wf_defs DocumentClass.type_wf_defs intro!: bind_is_OK_I2 split: option.splits)[1] using get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok \type_wf h\[unfolded type_wf_impl] by blast lemma get_child_nodes_ptr_in_heap [simp]: assumes "h \ get_child_nodes ptr \\<^sub>r children" shows "ptr |\| object_ptr_kinds h" using assms by(auto simp add: get_child_nodes_impl a_get_child_nodes_def invoke_ptr_in_heap dest: is_OK_returns_result_I) lemma get_child_nodes_pure [simp]: "pure (get_child_nodes ptr) h" apply (auto simp add: get_child_nodes_impl a_get_child_nodes_def a_get_child_nodes_tups_def)[1] apply(split invoke_splits, rule conjI)+ by(auto simp add: get_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def get_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def get_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro!: bind_pure_I split: option.splits) lemma get_child_nodes_reads: "reads (get_child_nodes_locs ptr) (get_child_nodes ptr) h h'" apply(simp add: get_child_nodes_locs_impl get_child_nodes_impl a_get_child_nodes_def a_get_child_nodes_tups_def a_get_child_nodes_locs_def) apply(split invoke_splits, rule conjI)+ apply(auto)[1] apply(auto simp add: get_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro: reads_subset[OF reads_singleton] reads_subset[OF check_in_heap_reads] intro!: reads_bind_pure reads_subset[OF return_reads] split: option.splits)[1] (* slow: ca 1min *) apply(auto simp add: get_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro: reads_subset[OF check_in_heap_reads] intro!: reads_bind_pure reads_subset[OF return_reads] )[1] apply(auto simp add: get_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro: reads_subset[OF reads_singleton] reads_subset[OF check_in_heap_reads] intro!: reads_bind_pure reads_subset[OF return_reads] - split: option.splits) + split: option.splits)[1] done end locale l_get_child_nodes = l_type_wf + l_known_ptr + l_get_child_nodes_defs + assumes get_child_nodes_reads: "reads (get_child_nodes_locs ptr) (get_child_nodes ptr) h h'" assumes get_child_nodes_ok: "type_wf h \ known_ptr ptr \ ptr |\| object_ptr_kinds h \ h \ ok (get_child_nodes ptr)" assumes get_child_nodes_ptr_in_heap: "h \ ok (get_child_nodes ptr) \ ptr |\| object_ptr_kinds h" assumes get_child_nodes_pure [simp]: "pure (get_child_nodes ptr) h" global_interpretation l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs defines get_child_nodes = l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_child_nodes and get_child_nodes_locs = l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_child_nodes_locs . interpretation i_get_child_nodes?: l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr get_child_nodes get_child_nodes_locs by(auto simp add: l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def get_child_nodes_def get_child_nodes_locs_def) declare l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma get_child_nodes_is_l_get_child_nodes [instances]: "l_get_child_nodes type_wf known_ptr get_child_nodes get_child_nodes_locs" apply(unfold_locales) using get_child_nodes_reads get_child_nodes_ok get_child_nodes_ptr_in_heap get_child_nodes_pure by blast+ paragraph \new\_element\ locale l_new_element_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr get_child_nodes get_child_nodes_locs for type_wf :: "(_) heap \ bool" and known_ptr :: "(_) object_ptr \ bool" and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" begin lemma get_child_nodes_new_element: "ptr' \ cast new_element_ptr \ h \ new_element \\<^sub>r new_element_ptr \ h \ new_element \\<^sub>h h' \ r \ get_child_nodes_locs ptr' \ r h h'" by (auto simp add: get_child_nodes_locs_def new_element_get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t new_element_get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t new_element_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t split: prod.splits if_splits option.splits elim!: bind_returns_result_E bind_returns_heap_E intro: is_element_ptr_kind_obtains) lemma new_element_no_child_nodes: "h \ new_element \\<^sub>r new_element_ptr \ h \ new_element \\<^sub>h h' \ h' \ get_child_nodes (cast new_element_ptr) \\<^sub>r []" apply(auto simp add: get_child_nodes_def a_get_child_nodes_tups_def split: prod.splits elim!: bind_returns_result_E bind_returns_heap_E)[1] apply(split invoke_splits, rule conjI)+ apply(auto intro: new_element_is_element_ptr)[1] by(auto simp add: new_element_ptr_in_heap get_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def check_in_heap_def new_element_child_nodes intro!: bind_pure_returns_result_I intro: new_element_is_element_ptr elim!: new_element_ptr_in_heap) end locale l_new_element_get_child_nodes = l_new_element + l_get_child_nodes + assumes get_child_nodes_new_element: "ptr' \ cast new_element_ptr \ h \ new_element \\<^sub>r new_element_ptr \ h \ new_element \\<^sub>h h' \ r \ get_child_nodes_locs ptr' \ r h h'" assumes new_element_no_child_nodes: "h \ new_element \\<^sub>r new_element_ptr \ h \ new_element \\<^sub>h h' \ h' \ get_child_nodes (cast new_element_ptr) \\<^sub>r []" interpretation i_new_element_get_child_nodes?: l_new_element_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr get_child_nodes get_child_nodes_locs by(unfold_locales) declare l_new_element_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma new_element_get_child_nodes_is_l_new_element_get_child_nodes [instances]: "l_new_element_get_child_nodes type_wf known_ptr get_child_nodes get_child_nodes_locs" using new_element_is_l_new_element get_child_nodes_is_l_get_child_nodes apply(auto simp add: l_new_element_get_child_nodes_def l_new_element_get_child_nodes_axioms_def)[1] using get_child_nodes_new_element new_element_no_child_nodes by fast+ paragraph \new\_character\_data\ locale l_new_character_data_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr get_child_nodes get_child_nodes_locs for type_wf :: "(_) heap \ bool" and known_ptr :: "(_) object_ptr \ bool" and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" begin lemma get_child_nodes_new_character_data: "ptr' \ cast new_character_data_ptr \ h \ new_character_data \\<^sub>r new_character_data_ptr \ h \ new_character_data \\<^sub>h h' \ r \ get_child_nodes_locs ptr' \ r h h'" by (auto simp add: get_child_nodes_locs_def new_character_data_get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t new_character_data_get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t new_character_data_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t split: prod.splits if_splits option.splits elim!: bind_returns_result_E bind_returns_heap_E intro: is_character_data_ptr_kind_obtains) lemma new_character_data_no_child_nodes: "h \ new_character_data \\<^sub>r new_character_data_ptr \ h \ new_character_data \\<^sub>h h' \ h' \ get_child_nodes (cast new_character_data_ptr) \\<^sub>r []" apply(auto simp add: get_child_nodes_def a_get_child_nodes_tups_def split: prod.splits elim!: bind_returns_result_E bind_returns_heap_E)[1] apply(split invoke_splits, rule conjI)+ apply(auto intro: new_character_data_is_character_data_ptr)[1] by(auto simp add: new_character_data_ptr_in_heap get_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def check_in_heap_def new_character_data_child_nodes intro!: bind_pure_returns_result_I intro: new_character_data_is_character_data_ptr elim!: new_character_data_ptr_in_heap) end locale l_new_character_data_get_child_nodes = l_new_character_data + l_get_child_nodes + assumes get_child_nodes_new_character_data: "ptr' \ cast new_character_data_ptr \ h \ new_character_data \\<^sub>r new_character_data_ptr \ h \ new_character_data \\<^sub>h h' \ r \ get_child_nodes_locs ptr' \ r h h'" assumes new_character_data_no_child_nodes: "h \ new_character_data \\<^sub>r new_character_data_ptr \ h \ new_character_data \\<^sub>h h' \ h' \ get_child_nodes (cast new_character_data_ptr) \\<^sub>r []" interpretation i_new_character_data_get_child_nodes?: l_new_character_data_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr get_child_nodes get_child_nodes_locs by(unfold_locales) declare l_new_character_data_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma new_character_data_get_child_nodes_is_l_new_character_data_get_child_nodes [instances]: "l_new_character_data_get_child_nodes type_wf known_ptr get_child_nodes get_child_nodes_locs" using new_character_data_is_l_new_character_data get_child_nodes_is_l_get_child_nodes apply(simp add: l_new_character_data_get_child_nodes_def l_new_character_data_get_child_nodes_axioms_def) using get_child_nodes_new_character_data new_character_data_no_child_nodes by fast paragraph \new\_document\ locale l_new_document_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr get_child_nodes get_child_nodes_locs for type_wf :: "(_) heap \ bool" and known_ptr :: "(_) object_ptr \ bool" and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" begin lemma get_child_nodes_new_document: "ptr' \ cast new_document_ptr \ h \ new_document \\<^sub>r new_document_ptr \ h \ new_document \\<^sub>h h' \ r \ get_child_nodes_locs ptr' \ r h h'" by (auto simp add: get_child_nodes_locs_def new_document_get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t new_document_get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t new_document_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t split: prod.splits if_splits option.splits elim!: bind_returns_result_E bind_returns_heap_E intro: is_document_ptr_kind_obtains) lemma new_document_no_child_nodes: "h \ new_document \\<^sub>r new_document_ptr \ h \ new_document \\<^sub>h h' \ h' \ get_child_nodes (cast new_document_ptr) \\<^sub>r []" apply(auto simp add: get_child_nodes_def a_get_child_nodes_tups_def split: prod.splits elim!: bind_returns_result_E bind_returns_heap_E)[1] apply(split invoke_splits, rule conjI)+ apply(auto intro: new_document_is_document_ptr)[1] by(auto simp add: new_document_ptr_in_heap get_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def check_in_heap_def new_document_document_element intro!: bind_pure_returns_result_I intro: new_document_is_document_ptr elim!: new_document_ptr_in_heap split: option.splits) end locale l_new_document_get_child_nodes = l_new_document + l_get_child_nodes + assumes get_child_nodes_new_document: "ptr' \ cast new_document_ptr \ h \ new_document \\<^sub>r new_document_ptr \ h \ new_document \\<^sub>h h' \ r \ get_child_nodes_locs ptr' \ r h h'" assumes new_document_no_child_nodes: "h \ new_document \\<^sub>r new_document_ptr \ h \ new_document \\<^sub>h h' \ h' \ get_child_nodes (cast new_document_ptr) \\<^sub>r []" interpretation i_new_document_get_child_nodes?: l_new_document_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr get_child_nodes get_child_nodes_locs by(unfold_locales) declare l_new_document_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma new_document_get_child_nodes_is_l_new_document_get_child_nodes [instances]: "l_new_document_get_child_nodes type_wf known_ptr get_child_nodes get_child_nodes_locs" using new_document_is_l_new_document get_child_nodes_is_l_get_child_nodes apply(simp add: l_new_document_get_child_nodes_def l_new_document_get_child_nodes_axioms_def) using get_child_nodes_new_document new_document_no_child_nodes by fast subsubsection \set\_child\_nodes\ locale l_set_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs begin definition set_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r :: "(_) element_ptr \ (_) node_ptr list \ (_, unit) dom_prog" where "set_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r element_ptr children = put_M element_ptr RElement.child_nodes_update children" definition set_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r :: "(_) character_data_ptr \ (_) node_ptr list \ (_, unit) dom_prog" where "set_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r _ _ = error HierarchyRequestError" definition set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r :: "(_) document_ptr \ (_) node_ptr list \ (_, unit) dom_prog" where "set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r document_ptr children = do { (case children of [] \ put_M document_ptr document_element_update None | child # [] \ (case cast child of Some element_ptr \ put_M document_ptr document_element_update (Some element_ptr) | None \ error HierarchyRequestError) | _ \ error HierarchyRequestError) }" definition a_set_child_nodes_tups :: "(((_) object_ptr \ bool) \ ((_) object_ptr \ (_) node_ptr list \ (_, unit) dom_prog)) list" where "a_set_child_nodes_tups \ [ (is_element_ptr, set_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast), (is_character_data_ptr, set_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast), (is_document_ptr, set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast) ]" definition a_set_child_nodes :: "(_) object_ptr \ (_) node_ptr list \ (_, unit) dom_prog" where "a_set_child_nodes ptr children = invoke a_set_child_nodes_tups ptr (children)" lemmas set_child_nodes_defs = a_set_child_nodes_def definition a_set_child_nodes_locs :: "(_) object_ptr \ (_, unit) dom_prog set" where "a_set_child_nodes_locs ptr \ (if is_element_ptr_kind ptr then all_args (put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t (the (cast ptr)) RElement.child_nodes_update) else {}) \ (if is_document_ptr_kind ptr then all_args (put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t (the (cast ptr)) document_element_update) else {})" end locale l_set_child_nodes_defs = fixes set_child_nodes :: "(_) object_ptr \ (_) node_ptr list \ (_, unit) dom_prog" fixes set_child_nodes_locs :: "(_) object_ptr \ (_, unit) dom_prog set" locale l_set_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_type_wf type_wf + l_known_ptr known_ptr + l_set_child_nodes_defs set_child_nodes set_child_nodes_locs + l_set_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs for type_wf :: "(_) heap \ bool" and known_ptr :: "(_) object_ptr \ bool" and set_child_nodes :: "(_) object_ptr \ (_) node_ptr list \ (_, unit) dom_prog" and set_child_nodes_locs :: "(_) object_ptr \ (_, unit) dom_prog set" + assumes known_ptr_impl: "known_ptr = DocumentClass.known_ptr" assumes type_wf_impl: "type_wf = DocumentClass.type_wf" assumes set_child_nodes_impl: "set_child_nodes = a_set_child_nodes" assumes set_child_nodes_locs_impl: "set_child_nodes_locs = a_set_child_nodes_locs" begin lemmas set_child_nodes_def = set_child_nodes_impl[unfolded a_set_child_nodes_def] lemmas set_child_nodes_locs_def = set_child_nodes_locs_impl[unfolded a_set_child_nodes_locs_def] lemma set_child_nodes_split: "P (invoke (a_set_child_nodes_tups @ xs) ptr (children)) = ((known_ptr ptr \ P (set_child_nodes ptr children)) \ (\(known_ptr ptr) \ P (invoke xs ptr (children))))" by(auto simp add: known_ptr_impl set_child_nodes_impl a_set_child_nodes_def a_set_child_nodes_tups_def known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: invoke_splits) lemma set_child_nodes_split_asm: "P (invoke (a_set_child_nodes_tups @ xs) ptr (children)) = (\((known_ptr ptr \ \P (set_child_nodes ptr children)) \ (\(known_ptr ptr) \ \P (invoke xs ptr (children)))))" by(auto simp add: known_ptr_impl set_child_nodes_impl a_set_child_nodes_def a_set_child_nodes_tups_def known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: invoke_splits)[1] lemmas set_child_nodes_splits = set_child_nodes_split set_child_nodes_split_asm lemma set_child_nodes_writes: "writes (set_child_nodes_locs ptr) (set_child_nodes ptr children) h h'" apply(simp add: set_child_nodes_locs_impl set_child_nodes_impl a_set_child_nodes_def a_set_child_nodes_tups_def a_set_child_nodes_locs_def) apply(split invoke_splits, rule conjI)+ apply(auto)[1] apply(auto simp add: set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro!: writes_bind_pure intro: writes_union_right_I split: list.splits)[1] apply(auto intro: writes_union_right_I split: option.splits)[1] apply(auto intro: writes_union_right_I split: option.splits)[1] apply(auto intro: writes_union_right_I split: option.splits)[1] apply(auto intro: writes_union_right_I split: option.splits)[1] apply(auto intro: writes_union_right_I split: option.splits)[1] apply(auto intro: writes_union_right_I split: option.splits)[1] (*slow: ca. 1min *) apply(auto simp add: set_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro!: writes_bind_pure)[1] apply(auto simp add: set_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro: writes_union_left_I intro!: writes_bind_pure split: list.splits option.splits)[1] done lemma set_child_nodes_pointers_preserved: assumes "w \ set_child_nodes_locs object_ptr" assumes "h \ w \\<^sub>h h'" shows "object_ptr_kinds h = object_ptr_kinds h'" using assms(1) object_ptr_kinds_preserved[OF writes_singleton2 assms(2)] by(auto simp add: set_child_nodes_locs_impl all_args_def a_set_child_nodes_locs_def split: if_splits) lemma set_child_nodes_typess_preserved: assumes "w \ set_child_nodes_locs object_ptr" assumes "h \ w \\<^sub>h h'" shows "type_wf h = type_wf h'" using assms(1) type_wf_preserved[OF writes_singleton2 assms(2)] by(auto simp add: set_child_nodes_locs_impl type_wf_impl all_args_def a_set_child_nodes_locs_def split: if_splits) end locale l_set_child_nodes = l_type_wf + l_set_child_nodes_defs + assumes set_child_nodes_writes: "writes (set_child_nodes_locs ptr) (set_child_nodes ptr children) h h'" assumes set_child_nodes_pointers_preserved: "w \ set_child_nodes_locs object_ptr \ h \ w \\<^sub>h h' \ object_ptr_kinds h = object_ptr_kinds h'" assumes set_child_nodes_types_preserved: "w \ set_child_nodes_locs object_ptr \ h \ w \\<^sub>h h' \ type_wf h = type_wf h'" global_interpretation l_set_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs defines set_child_nodes = l_set_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_child_nodes and set_child_nodes_locs = l_set_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_child_nodes_locs . interpretation i_set_child_nodes?: l_set_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr set_child_nodes set_child_nodes_locs apply(unfold_locales) by (auto simp add: set_child_nodes_def set_child_nodes_locs_def) declare l_set_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_child_nodes_is_l_set_child_nodes [instances]: "l_set_child_nodes type_wf set_child_nodes set_child_nodes_locs" apply(unfold_locales) using set_child_nodes_pointers_preserved set_child_nodes_typess_preserved set_child_nodes_writes by blast+ paragraph \get\_child\_nodes\ locale l_set_child_nodes_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_set_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma set_child_nodes_get_child_nodes: assumes "known_ptr ptr" assumes "type_wf h" assumes "h \ set_child_nodes ptr children \\<^sub>h h'" shows "h' \ get_child_nodes ptr \\<^sub>r children" proof - have "h \ check_in_heap ptr \\<^sub>r ()" using assms set_child_nodes_impl[unfolded a_set_child_nodes_def] invoke_ptr_in_heap by (metis (full_types) check_in_heap_ptr_in_heap is_OK_returns_heap_I is_OK_returns_result_E old.unit.exhaust) then have ptr_in_h: "ptr |\| object_ptr_kinds h" by (simp add: check_in_heap_ptr_in_heap is_OK_returns_result_I) have "type_wf h'" apply(unfold type_wf_impl) apply(rule subst[where P=id, OF type_wf_preserved[OF set_child_nodes_writes assms(3), unfolded all_args_def], simplified]) by(auto simp add: all_args_def assms(2)[unfolded type_wf_impl] set_child_nodes_locs_impl[unfolded a_set_child_nodes_locs_def] split: if_splits) have "h' \ check_in_heap ptr \\<^sub>r ()" using check_in_heap_reads set_child_nodes_writes assms(3) \h \ check_in_heap ptr \\<^sub>r ()\ apply(rule reads_writes_separate_forwards) by(auto simp add: all_args_def set_child_nodes_locs_impl[unfolded a_set_child_nodes_locs_def]) then have "ptr |\| object_ptr_kinds h'" using check_in_heap_ptr_in_heap by blast with assms ptr_in_h \type_wf h'\ show ?thesis apply(auto simp add: get_child_nodes_impl set_child_nodes_impl type_wf_impl known_ptr_impl a_get_child_nodes_def a_get_child_nodes_tups_def a_set_child_nodes_def a_set_child_nodes_tups_def del: bind_pure_returns_result_I2 intro!: bind_pure_returns_result_I2)[1] apply(split invoke_splits, rule conjI) apply(split invoke_splits, rule conjI) apply(split invoke_splits, rule conjI) apply(auto simp add: NodeClass.known_ptr_defs dest!: known_ptr_not_document_ptr known_ptr_not_character_data_ptr known_ptr_not_element_ptr)[1] apply(auto simp add: NodeClass.known_ptr_defs dest!: known_ptr_not_document_ptr known_ptr_not_character_data_ptr known_ptr_not_element_ptr)[1] apply(auto simp add: get_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok split: list.splits option.splits intro!: bind_pure_returns_result_I2 dest: get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok; auto dest: returns_result_eq dest!: document_put_get[where getter = document_element])[1] (* slow, ca 1min *) apply(auto simp add: get_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def set_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def)[1] by(auto simp add: get_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def set_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def dest: element_put_get) qed lemma set_child_nodes_get_child_nodes_different_pointers: assumes "ptr \ ptr'" assumes "w \ set_child_nodes_locs ptr" assumes "h \ w \\<^sub>h h'" assumes "r \ get_child_nodes_locs ptr'" shows "r h h'" using assms apply(auto simp add: get_child_nodes_locs_impl set_child_nodes_locs_impl all_args_def a_set_child_nodes_locs_def a_get_child_nodes_locs_def split: if_splits option.splits )[1] apply(rule is_document_ptr_kind_obtains) apply(simp) apply(rule is_document_ptr_kind_obtains) apply(auto)[1] apply(auto)[1] apply(rule is_element_ptr_kind_obtains) apply(auto)[1] apply(auto)[1] apply(rule is_element_ptr_kind_obtains) - apply(auto) + apply(auto)[1] + apply(auto)[1] done lemma set_child_nodes_element_ok [simp]: assumes "known_ptr ptr" assumes "type_wf h" assumes "ptr |\| object_ptr_kinds h" assumes "is_element_ptr_kind ptr" shows "h \ ok (set_child_nodes ptr children)" proof - have "is_element_ptr ptr" using \known_ptr ptr\ assms(4) - by(auto simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) then show ?thesis using assms - apply(auto simp add: set_child_nodes_def a_set_child_nodes_tups_def set_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def split: option.splits)[1] + apply(auto simp add: set_child_nodes_def a_set_child_nodes_tups_def set_child_nodes\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def + split: option.splits)[1] by (simp add: DocumentMonad.put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok local.type_wf_impl) qed lemma set_child_nodes_document1_ok [simp]: assumes "known_ptr ptr" assumes "type_wf h" assumes "ptr |\| object_ptr_kinds h" assumes "is_document_ptr_kind ptr" assumes "children = []" shows "h \ ok (set_child_nodes ptr children)" proof - have "is_document_ptr ptr" using \known_ptr ptr\ assms(4) - by(auto simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) then show ?thesis using assms - apply(auto simp add: set_child_nodes_def a_set_child_nodes_tups_def set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def split: option.splits)[1] + apply(auto simp add: set_child_nodes_def a_set_child_nodes_tups_def set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def + split: option.splits)[1] by (simp add: DocumentMonad.put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok local.type_wf_impl) qed lemma set_child_nodes_document2_ok [simp]: assumes "known_ptr ptr" assumes "type_wf h" assumes "ptr |\| object_ptr_kinds h" assumes "is_document_ptr_kind ptr" assumes "children = [child]" assumes "is_element_ptr_kind child" shows "h \ ok (set_child_nodes ptr children)" proof - have "is_document_ptr ptr" using \known_ptr ptr\ assms(4) - by(auto simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) then show ?thesis using assms - apply(auto simp add: set_child_nodes_def a_set_child_nodes_tups_def set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def) + apply(auto simp add: set_child_nodes_def a_set_child_nodes_tups_def set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def)[1] apply(split invoke_splits, rule conjI)+ apply(auto simp add: is_element_ptr_kind\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def split: option.splits)[1] apply(auto simp add: is_element_ptr_kind\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def split: option.splits)[1] apply (simp add: local.type_wf_impl put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok) apply(auto simp add: is_element_ptr_kind\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def split: option.splits)[1] by(auto simp add: is_element_ptr_kind\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def set_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def split: option.splits)[1] qed end locale l_set_child_nodes_get_child_nodes = l_get_child_nodes + l_set_child_nodes + assumes set_child_nodes_get_child_nodes: "type_wf h \ known_ptr ptr \ h \ set_child_nodes ptr children \\<^sub>h h' \ h' \ get_child_nodes ptr \\<^sub>r children" assumes set_child_nodes_get_child_nodes_different_pointers: "ptr \ ptr' \ w \ set_child_nodes_locs ptr \ h \ w \\<^sub>h h' \ r \ get_child_nodes_locs ptr' \ r h h'" interpretation i_set_child_nodes_get_child_nodes?: l_set_child_nodes_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr get_child_nodes get_child_nodes_locs set_child_nodes set_child_nodes_locs by unfold_locales declare l_set_child_nodes_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_child_nodes_get_child_nodes_is_l_set_child_nodes_get_child_nodes [instances]: "l_set_child_nodes_get_child_nodes type_wf known_ptr get_child_nodes get_child_nodes_locs set_child_nodes set_child_nodes_locs" using get_child_nodes_is_l_get_child_nodes set_child_nodes_is_l_set_child_nodes apply(auto simp add: l_set_child_nodes_get_child_nodes_def l_set_child_nodes_get_child_nodes_axioms_def)[1] using set_child_nodes_get_child_nodes apply blast using set_child_nodes_get_child_nodes_different_pointers apply metis done subsubsection \get\_attribute\ locale l_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs begin definition a_get_attribute :: "(_) element_ptr \ attr_key \ (_, attr_value option) dom_prog" where "a_get_attribute ptr k = do {m \ get_M ptr attrs; return (fmlookup m k)}" lemmas get_attribute_defs = a_get_attribute_def definition a_get_attribute_locs :: "(_) element_ptr \ ((_) heap \ (_) heap \ bool) set" where "a_get_attribute_locs element_ptr = {preserved (get_M element_ptr attrs)}" end locale l_get_attribute_defs = fixes get_attribute :: "(_) element_ptr \ attr_key \ (_, attr_value option) dom_prog" fixes get_attribute_locs :: "(_) element_ptr \ ((_) heap \ (_) heap \ bool) set" locale l_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_type_wf type_wf + l_get_attribute_defs get_attribute get_attribute_locs + l_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs for type_wf :: "(_) heap \ bool" and get_attribute :: "(_) element_ptr \ attr_key \ (_, attr_value option) dom_prog" and get_attribute_locs :: "(_) element_ptr \ ((_) heap \ (_) heap \ bool) set" + assumes type_wf_impl: "type_wf = DocumentClass.type_wf" assumes get_attribute_impl: "get_attribute = a_get_attribute" assumes get_attribute_locs_impl: "get_attribute_locs = a_get_attribute_locs" begin lemma get_attribute_pure [simp]: "pure (get_attribute ptr k) h" by (auto simp add: bind_pure_I get_attribute_impl[unfolded a_get_attribute_def]) lemma get_attribute_ok: "type_wf h \ element_ptr |\| element_ptr_kinds h \ h \ ok (get_attribute element_ptr k)" apply(unfold type_wf_impl) unfolding get_attribute_impl[unfolded a_get_attribute_def] using get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok by (metis bind_is_OK_pure_I return_ok ElementMonad.get_M_pure) lemma get_attribute_ptr_in_heap: "h \ ok (get_attribute element_ptr k) \ element_ptr |\| element_ptr_kinds h" unfolding get_attribute_impl[unfolded a_get_attribute_def] by (meson DocumentMonad.get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap bind_is_OK_E is_OK_returns_result_I) lemma get_attribute_reads: "reads (get_attribute_locs element_ptr) (get_attribute element_ptr k) h h'" by(auto simp add: get_attribute_impl[unfolded a_get_attribute_def] get_attribute_locs_impl[unfolded a_get_attribute_locs_def] reads_insert_writes_set_right intro!: reads_bind_pure) end locale l_get_attribute = l_type_wf + l_get_attribute_defs + assumes get_attribute_reads: "reads (get_attribute_locs element_ptr) (get_attribute element_ptr k) h h'" assumes get_attribute_ok: "type_wf h \ element_ptr |\| element_ptr_kinds h \ h \ ok (get_attribute element_ptr k)" assumes get_attribute_ptr_in_heap: "h \ ok (get_attribute element_ptr k) \ element_ptr |\| element_ptr_kinds h" assumes get_attribute_pure [simp]: "pure (get_attribute element_ptr k) h" global_interpretation l_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs defines get_attribute = l_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_attribute and get_attribute_locs = l_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_attribute_locs . interpretation i_get_attribute?: l_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf get_attribute get_attribute_locs apply(unfold_locales) by (auto simp add: get_attribute_def get_attribute_locs_def) declare l_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma get_attribute_is_l_get_attribute [instances]: "l_get_attribute type_wf get_attribute get_attribute_locs" apply(unfold_locales) using get_attribute_reads get_attribute_ok get_attribute_ptr_in_heap get_attribute_pure by blast+ subsubsection \set\_attribute\ locale l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs begin definition a_set_attribute :: "(_) element_ptr \ attr_key \ attr_value option \ (_, unit) dom_prog" where "a_set_attribute ptr k v = do { m \ get_M ptr attrs; put_M ptr attrs_update (if v = None then fmdrop k m else fmupd k (the v) m) }" definition a_set_attribute_locs :: "(_) element_ptr \ (_, unit) dom_prog set" where "a_set_attribute_locs element_ptr \ all_args (put_M element_ptr attrs_update)" end locale l_set_attribute_defs = fixes set_attribute :: "(_) element_ptr \ attr_key \ attr_value option \ (_, unit) dom_prog" fixes set_attribute_locs :: "(_) element_ptr \ (_, unit) dom_prog set" locale l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_type_wf type_wf + l_set_attribute_defs set_attribute set_attribute_locs + l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs for type_wf :: "(_) heap \ bool" and set_attribute :: "(_) element_ptr \ attr_key \ attr_value option \ (_, unit) dom_prog" and set_attribute_locs :: "(_) element_ptr \ (_, unit) dom_prog set" + assumes type_wf_impl: "type_wf = DocumentClass.type_wf" assumes set_attribute_impl: "set_attribute = a_set_attribute" assumes set_attribute_locs_impl: "set_attribute_locs = a_set_attribute_locs" begin lemmas set_attribute_def = set_attribute_impl[folded a_set_attribute_def] lemmas set_attribute_locs_def = set_attribute_locs_impl[unfolded a_set_attribute_locs_def] lemma set_attribute_ok: "type_wf h \ element_ptr |\| element_ptr_kinds h \ h \ ok (set_attribute element_ptr k v)" apply(unfold type_wf_impl) unfolding set_attribute_impl[unfolded a_set_attribute_def] using get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok by(metis (no_types, lifting) DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ElementMonad.get_M_pure bind_is_OK_E bind_is_OK_pure_I is_OK_returns_result_I) lemma set_attribute_writes: "writes (set_attribute_locs element_ptr) (set_attribute element_ptr k v) h h'" by(auto simp add: set_attribute_impl[unfolded a_set_attribute_def] set_attribute_locs_impl[unfolded a_set_attribute_locs_def] intro: writes_bind_pure) end locale l_set_attribute = l_type_wf + l_set_attribute_defs + assumes set_attribute_writes: "writes (set_attribute_locs element_ptr) (set_attribute element_ptr k v) h h'" assumes set_attribute_ok: "type_wf h \ element_ptr |\| element_ptr_kinds h \ h \ ok (set_attribute element_ptr k v)" global_interpretation l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs defines set_attribute = l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_attribute and set_attribute_locs = l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_attribute_locs . interpretation i_set_attribute?: l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_attribute set_attribute_locs apply(unfold_locales) by (auto simp add: set_attribute_def set_attribute_locs_def) declare l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_attribute_is_l_set_attribute [instances]: "l_set_attribute type_wf set_attribute set_attribute_locs" apply(unfold_locales) using set_attribute_ok set_attribute_writes by blast+ paragraph \get\_attribute\ locale l_set_attribute_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma set_attribute_get_attribute: "h \ set_attribute ptr k v \\<^sub>h h' \ h' \ get_attribute ptr k \\<^sub>r v" by(auto simp add: set_attribute_impl[unfolded a_set_attribute_def] get_attribute_impl[unfolded a_get_attribute_def] elim!: bind_returns_heap_E2 intro!: bind_pure_returns_result_I elim: element_put_get) end locale l_set_attribute_get_attribute = l_get_attribute + l_set_attribute + assumes set_attribute_get_attribute: "h \ set_attribute ptr k v \\<^sub>h h' \ h' \ get_attribute ptr k \\<^sub>r v" interpretation i_set_attribute_get_attribute?: l_set_attribute_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf get_attribute get_attribute_locs set_attribute set_attribute_locs by(unfold_locales) declare l_set_attribute_get_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_attribute_get_attribute_is_l_set_attribute_get_attribute [instances]: "l_set_attribute_get_attribute type_wf get_attribute get_attribute_locs set_attribute set_attribute_locs" using get_attribute_is_l_get_attribute set_attribute_is_l_set_attribute apply(simp add: l_set_attribute_get_attribute_def l_set_attribute_get_attribute_axioms_def) using set_attribute_get_attribute by blast paragraph \get\_child\_nodes\ locale l_set_attribute_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma set_attribute_get_child_nodes: "\w \ set_attribute_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_child_nodes_locs ptr'. r h h'))" by(auto simp add: set_attribute_locs_def get_child_nodes_locs_def all_args_def intro: element_put_get_preserved[where setter=attrs_update]) end locale l_set_attribute_get_child_nodes = l_set_attribute + l_get_child_nodes + assumes set_attribute_get_child_nodes: "\w \ set_attribute_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_child_nodes_locs ptr'. r h h'))" interpretation i_set_attribute_get_child_nodes?: l_set_attribute_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_attribute set_attribute_locs known_ptr get_child_nodes get_child_nodes_locs by unfold_locales declare l_set_attribute_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_attribute_get_child_nodes_is_l_set_attribute_get_child_nodes [instances]: "l_set_attribute_get_child_nodes type_wf set_attribute set_attribute_locs known_ptr get_child_nodes get_child_nodes_locs" using set_attribute_is_l_set_attribute get_child_nodes_is_l_get_child_nodes apply(simp add: l_set_attribute_get_child_nodes_def l_set_attribute_get_child_nodes_axioms_def) using set_attribute_get_child_nodes by blast subsubsection \get\_disconnected\_nodes\ locale l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs begin definition a_get_disconnected_nodes :: "(_) document_ptr \ (_, (_) node_ptr list) dom_prog" where "a_get_disconnected_nodes document_ptr = get_M document_ptr disconnected_nodes" lemmas get_disconnected_nodes_defs = a_get_disconnected_nodes_def definition a_get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" where "a_get_disconnected_nodes_locs document_ptr = {preserved (get_M document_ptr disconnected_nodes)}" end locale l_get_disconnected_nodes_defs = fixes get_disconnected_nodes :: "(_) document_ptr \ (_, (_) node_ptr list) dom_prog" fixes get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" locale l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_type_wf type_wf + l_get_disconnected_nodes_defs get_disconnected_nodes get_disconnected_nodes_locs + l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs for type_wf :: "(_) heap \ bool" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" + assumes type_wf_impl: "type_wf = DocumentClass.type_wf" assumes get_disconnected_nodes_impl: "get_disconnected_nodes = a_get_disconnected_nodes" assumes get_disconnected_nodes_locs_impl: "get_disconnected_nodes_locs = a_get_disconnected_nodes_locs" begin lemmas get_disconnected_nodes_def = get_disconnected_nodes_impl[unfolded a_get_disconnected_nodes_def] lemmas get_disconnected_nodes_locs_def = get_disconnected_nodes_locs_impl[unfolded a_get_disconnected_nodes_locs_def] lemma get_disconnected_nodes_ok: "type_wf h \ document_ptr |\| document_ptr_kinds h \ h \ ok (get_disconnected_nodes document_ptr)" apply(unfold type_wf_impl) unfolding get_disconnected_nodes_impl[unfolded a_get_disconnected_nodes_def] using get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok by fast lemma get_disconnected_nodes_ptr_in_heap: "h \ ok (get_disconnected_nodes document_ptr) \ document_ptr |\| document_ptr_kinds h" unfolding get_disconnected_nodes_impl[unfolded a_get_disconnected_nodes_def] by (simp add: DocumentMonad.get_M_ptr_in_heap) lemma get_disconnected_nodes_pure [simp]: "pure (get_disconnected_nodes document_ptr) h" unfolding get_disconnected_nodes_impl[unfolded a_get_disconnected_nodes_def] by simp lemma get_disconnected_nodes_reads: "reads (get_disconnected_nodes_locs document_ptr) (get_disconnected_nodes document_ptr) h h'" by(simp add: get_disconnected_nodes_impl[unfolded a_get_disconnected_nodes_def] get_disconnected_nodes_locs_impl[unfolded a_get_disconnected_nodes_locs_def] reads_bind_pure reads_insert_writes_set_right) end locale l_get_disconnected_nodes = l_type_wf + l_get_disconnected_nodes_defs + assumes get_disconnected_nodes_reads: "reads (get_disconnected_nodes_locs document_ptr) (get_disconnected_nodes document_ptr) h h'" assumes get_disconnected_nodes_ok: "type_wf h \ document_ptr |\| document_ptr_kinds h \ h \ ok (get_disconnected_nodes document_ptr)" assumes get_disconnected_nodes_ptr_in_heap: "h \ ok (get_disconnected_nodes document_ptr) \ document_ptr |\| document_ptr_kinds h" assumes get_disconnected_nodes_pure [simp]: "pure (get_disconnected_nodes document_ptr) h" global_interpretation l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs defines get_disconnected_nodes = l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_disconnected_nodes and get_disconnected_nodes_locs = l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_disconnected_nodes_locs . interpretation i_get_disconnected_nodes?: l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf get_disconnected_nodes get_disconnected_nodes_locs apply(unfold_locales) by (auto simp add: get_disconnected_nodes_def get_disconnected_nodes_locs_def) declare l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma get_disconnected_nodes_is_l_get_disconnected_nodes [instances]: "l_get_disconnected_nodes type_wf get_disconnected_nodes get_disconnected_nodes_locs" apply(simp add: l_get_disconnected_nodes_def) using get_disconnected_nodes_reads get_disconnected_nodes_ok get_disconnected_nodes_ptr_in_heap get_disconnected_nodes_pure by blast+ paragraph \set\_child\_nodes\ locale l_set_child_nodes_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_set_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + CD: l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma set_child_nodes_get_disconnected_nodes: "\w \ a_set_child_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ a_get_disconnected_nodes_locs ptr'. r h h'))" by(auto simp add: a_set_child_nodes_locs_def a_get_disconnected_nodes_locs_def all_args_def) end locale l_set_child_nodes_get_disconnected_nodes = l_set_child_nodes + l_get_disconnected_nodes + assumes set_child_nodes_get_disconnected_nodes: "\w \ set_child_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_disconnected_nodes_locs ptr'. r h h'))" interpretation i_set_child_nodes_get_disconnected_nodes?: l_set_child_nodes_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr set_child_nodes set_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs by(unfold_locales) declare l_set_child_nodes_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_child_nodes_get_disconnected_nodes_is_l_set_child_nodes_get_disconnected_nodes [instances]: "l_set_child_nodes_get_disconnected_nodes type_wf set_child_nodes set_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs" using set_child_nodes_is_l_set_child_nodes get_disconnected_nodes_is_l_get_disconnected_nodes apply(simp add: l_set_child_nodes_get_disconnected_nodes_def l_set_child_nodes_get_disconnected_nodes_axioms_def) using set_child_nodes_get_disconnected_nodes by fast paragraph \set\_attribute\ locale l_set_attribute_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma set_attribute_get_disconnected_nodes: "\w \ a_set_attribute_locs ptr. (h \ w \\<^sub>h h' \ (\r \ a_get_disconnected_nodes_locs ptr'. r h h'))" by(auto simp add: a_set_attribute_locs_def a_get_disconnected_nodes_locs_def all_args_def) end locale l_set_attribute_get_disconnected_nodes = l_set_attribute + l_get_disconnected_nodes + assumes set_attribute_get_disconnected_nodes: "\w \ set_attribute_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_disconnected_nodes_locs ptr'. r h h'))" interpretation i_set_attribute_get_disconnected_nodes?: l_set_attribute_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_attribute set_attribute_locs get_disconnected_nodes get_disconnected_nodes_locs by(unfold_locales) declare l_set_attribute_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_attribute_get_disconnected_nodes_is_l_set_attribute_get_disconnected_nodes [instances]: "l_set_attribute_get_disconnected_nodes type_wf set_attribute set_attribute_locs get_disconnected_nodes get_disconnected_nodes_locs" using set_attribute_is_l_set_attribute get_disconnected_nodes_is_l_get_disconnected_nodes apply(simp add: l_set_attribute_get_disconnected_nodes_def l_set_attribute_get_disconnected_nodes_axioms_def) using set_attribute_get_disconnected_nodes by fast paragraph \new\_element\ locale l_new_element_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf get_disconnected_nodes get_disconnected_nodes_locs for type_wf :: "(_) heap \ bool" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" begin lemma get_disconnected_nodes_new_element: "h \ new_element \\<^sub>r new_element_ptr \ h \ new_element \\<^sub>h h' \ r \ get_disconnected_nodes_locs ptr' \ r h h'" by(auto simp add: get_disconnected_nodes_locs_def new_element_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t) end locale l_new_element_get_disconnected_nodes = l_get_disconnected_nodes_defs + assumes get_disconnected_nodes_new_element: "h \ new_element \\<^sub>r new_element_ptr \ h \ new_element \\<^sub>h h' \ r \ get_disconnected_nodes_locs ptr' \ r h h'" interpretation i_new_element_get_disconnected_nodes?: l_new_element_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf get_disconnected_nodes get_disconnected_nodes_locs by unfold_locales declare l_new_element_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma new_element_get_disconnected_nodes_is_l_new_element_get_disconnected_nodes [instances]: "l_new_element_get_disconnected_nodes get_disconnected_nodes_locs" by (simp add: get_disconnected_nodes_new_element l_new_element_get_disconnected_nodes_def) paragraph \new\_character\_data\ locale l_new_character_data_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf get_disconnected_nodes get_disconnected_nodes_locs for type_wf :: "(_) heap \ bool" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" begin lemma get_disconnected_nodes_new_character_data: "h \ new_character_data \\<^sub>r new_character_data_ptr \ h \ new_character_data \\<^sub>h h' \ r \ get_disconnected_nodes_locs ptr' \ r h h'" by(auto simp add: get_disconnected_nodes_locs_def new_character_data_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t) end locale l_new_character_data_get_disconnected_nodes = l_get_disconnected_nodes_defs + assumes get_disconnected_nodes_new_character_data: "h \ new_character_data \\<^sub>r new_character_data_ptr \ h \ new_character_data \\<^sub>h h' \ r \ get_disconnected_nodes_locs ptr' \ r h h'" interpretation i_new_character_data_get_disconnected_nodes?: l_new_character_data_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf get_disconnected_nodes get_disconnected_nodes_locs by unfold_locales declare l_new_character_data_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma new_character_data_get_disconnected_nodes_is_l_new_character_data_get_disconnected_nodes [instances]: "l_new_character_data_get_disconnected_nodes get_disconnected_nodes_locs" by (simp add: get_disconnected_nodes_new_character_data l_new_character_data_get_disconnected_nodes_def) paragraph \new\_document\ locale l_new_document_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf get_disconnected_nodes get_disconnected_nodes_locs for type_wf :: "(_) heap \ bool" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" begin lemma get_disconnected_nodes_new_document_different_pointers: "new_document_ptr \ ptr' \ h \ new_document \\<^sub>r new_document_ptr \ h \ new_document \\<^sub>h h' \ r \ get_disconnected_nodes_locs ptr' \ r h h'" by(auto simp add: get_disconnected_nodes_locs_def new_document_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t) lemma new_document_no_disconnected_nodes: "h \ new_document \\<^sub>r new_document_ptr \ h \ new_document \\<^sub>h h' \ h' \ get_disconnected_nodes new_document_ptr \\<^sub>r []" by(simp add: get_disconnected_nodes_def new_document_disconnected_nodes) end interpretation i_new_document_get_disconnected_nodes?: l_new_document_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf get_disconnected_nodes get_disconnected_nodes_locs by unfold_locales declare l_new_document_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] locale l_new_document_get_disconnected_nodes = l_get_disconnected_nodes_defs + assumes get_disconnected_nodes_new_document_different_pointers: "new_document_ptr \ ptr' \ h \ new_document \\<^sub>r new_document_ptr \ h \ new_document \\<^sub>h h' \ r \ get_disconnected_nodes_locs ptr' \ r h h'" assumes new_document_no_disconnected_nodes: "h \ new_document \\<^sub>r new_document_ptr \ h \ new_document \\<^sub>h h' \ h' \ get_disconnected_nodes new_document_ptr \\<^sub>r []" lemma new_document_get_disconnected_nodes_is_l_new_document_get_disconnected_nodes [instances]: "l_new_document_get_disconnected_nodes get_disconnected_nodes get_disconnected_nodes_locs" apply (auto simp add: l_new_document_get_disconnected_nodes_def)[1] using get_disconnected_nodes_new_document_different_pointers apply fast using new_document_no_disconnected_nodes apply blast done subsubsection \set\_disconnected\_nodes\ locale l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs begin definition a_set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ (_, unit) dom_prog" where - "a_set_disconnected_nodes document_ptr disc_nodes = put_M document_ptr disconnected_nodes_update disc_nodes" + "a_set_disconnected_nodes document_ptr disc_nodes = +put_M document_ptr disconnected_nodes_update disc_nodes" lemmas set_disconnected_nodes_defs = a_set_disconnected_nodes_def definition a_set_disconnected_nodes_locs :: "(_) document_ptr \ (_, unit) dom_prog set" where "a_set_disconnected_nodes_locs document_ptr \ all_args (put_M document_ptr disconnected_nodes_update)" end locale l_set_disconnected_nodes_defs = fixes set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ (_, unit) dom_prog" fixes set_disconnected_nodes_locs :: "(_) document_ptr \ (_, unit) dom_prog set" locale l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_type_wf type_wf + l_set_disconnected_nodes_defs set_disconnected_nodes set_disconnected_nodes_locs + l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs for type_wf :: "(_) heap \ bool" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ (_, unit) dom_prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ (_, unit) dom_prog set" + assumes type_wf_impl: "type_wf = DocumentClass.type_wf" assumes set_disconnected_nodes_impl: "set_disconnected_nodes = a_set_disconnected_nodes" assumes set_disconnected_nodes_locs_impl: "set_disconnected_nodes_locs = a_set_disconnected_nodes_locs" begin lemmas set_disconnected_nodes_def = set_disconnected_nodes_impl[unfolded a_set_disconnected_nodes_def] -lemmas set_disconnected_nodes_locs_def = set_disconnected_nodes_locs_impl[unfolded a_set_disconnected_nodes_locs_def] +lemmas set_disconnected_nodes_locs_def = + set_disconnected_nodes_locs_impl[unfolded a_set_disconnected_nodes_locs_def] lemma set_disconnected_nodes_ok: - "type_wf h \ document_ptr |\| document_ptr_kinds h \ h \ ok (set_disconnected_nodes document_ptr node_ptrs)" - by (simp add: type_wf_impl put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok set_disconnected_nodes_impl[unfolded a_set_disconnected_nodes_def]) + "type_wf h \ document_ptr |\| document_ptr_kinds h \ +h \ ok (set_disconnected_nodes document_ptr node_ptrs)" + by (simp add: type_wf_impl put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok + set_disconnected_nodes_impl[unfolded a_set_disconnected_nodes_def]) lemma set_disconnected_nodes_ptr_in_heap: "h \ ok (set_disconnected_nodes document_ptr disc_nodes) \ document_ptr |\| document_ptr_kinds h" by (simp add: set_disconnected_nodes_impl[unfolded a_set_disconnected_nodes_def] DocumentMonad.put_M_ptr_in_heap) lemma set_disconnected_nodes_writes: "writes (set_disconnected_nodes_locs document_ptr) (set_disconnected_nodes document_ptr disc_nodes) h h'" by(auto simp add: set_disconnected_nodes_impl[unfolded a_set_disconnected_nodes_def] set_disconnected_nodes_locs_impl[unfolded a_set_disconnected_nodes_locs_def] intro: writes_bind_pure) lemma set_disconnected_nodes_pointers_preserved: assumes "w \ set_disconnected_nodes_locs object_ptr" assumes "h \ w \\<^sub>h h'" shows "object_ptr_kinds h = object_ptr_kinds h'" using assms(1) object_ptr_kinds_preserved[OF writes_singleton2 assms(2)] by(auto simp add: all_args_def set_disconnected_nodes_locs_impl[unfolded a_set_disconnected_nodes_locs_def] split: if_splits) lemma set_disconnected_nodes_typess_preserved: assumes "w \ set_disconnected_nodes_locs object_ptr" assumes "h \ w \\<^sub>h h'" shows "type_wf h = type_wf h'" using assms(1) type_wf_preserved[OF writes_singleton2 assms(2)] apply(unfold type_wf_impl) by(auto simp add: all_args_def set_disconnected_nodes_locs_impl[unfolded a_set_disconnected_nodes_locs_def] split: if_splits) end locale l_set_disconnected_nodes = l_type_wf + l_set_disconnected_nodes_defs + assumes set_disconnected_nodes_writes: - "writes (set_disconnected_nodes_locs document_ptr) (set_disconnected_nodes document_ptr disc_nodes) h h'" + "writes (set_disconnected_nodes_locs document_ptr) +(set_disconnected_nodes document_ptr disc_nodes) h h'" assumes set_disconnected_nodes_ok: - "type_wf h \ document_ptr |\| document_ptr_kinds h \ h \ ok (set_disconnected_nodes document_ptr disc_noded)" + "type_wf h \ document_ptr |\| document_ptr_kinds h \ +h \ ok (set_disconnected_nodes document_ptr disc_noded)" assumes set_disconnected_nodes_ptr_in_heap: - "h \ ok (set_disconnected_nodes document_ptr disc_noded) \ document_ptr |\| document_ptr_kinds h" + "h \ ok (set_disconnected_nodes document_ptr disc_noded) \ +document_ptr |\| document_ptr_kinds h" assumes set_disconnected_nodes_pointers_preserved: - "w \ set_disconnected_nodes_locs document_ptr \ h \ w \\<^sub>h h' \ object_ptr_kinds h = object_ptr_kinds h'" + "w \ set_disconnected_nodes_locs document_ptr \ h \ w \\<^sub>h h' \ +object_ptr_kinds h = object_ptr_kinds h'" assumes set_disconnected_nodes_types_preserved: "w \ set_disconnected_nodes_locs document_ptr \ h \ w \\<^sub>h h' \ type_wf h = type_wf h'" global_interpretation l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs defines set_disconnected_nodes = l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_disconnected_nodes and set_disconnected_nodes_locs = l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_disconnected_nodes_locs . interpretation i_set_disconnected_nodes?: l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_disconnected_nodes set_disconnected_nodes_locs apply unfold_locales by (auto simp add: set_disconnected_nodes_def set_disconnected_nodes_locs_def) declare l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_disconnected_nodes_is_l_set_disconnected_nodes [instances]: "l_set_disconnected_nodes type_wf set_disconnected_nodes set_disconnected_nodes_locs" apply(simp add: l_set_disconnected_nodes_def) - using set_disconnected_nodes_ok set_disconnected_nodes_writes set_disconnected_nodes_pointers_preserved + using set_disconnected_nodes_ok set_disconnected_nodes_writes + set_disconnected_nodes_pointers_preserved set_disconnected_nodes_ptr_in_heap set_disconnected_nodes_typess_preserved by blast+ paragraph \get\_disconnected\_nodes\ locale l_set_disconnected_nodes_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma set_disconnected_nodes_get_disconnected_nodes: assumes "h \ a_set_disconnected_nodes document_ptr disc_nodes \\<^sub>h h'" shows "h' \ a_get_disconnected_nodes document_ptr \\<^sub>r disc_nodes" using assms by(auto simp add: a_get_disconnected_nodes_def a_set_disconnected_nodes_def) lemma set_disconnected_nodes_get_disconnected_nodes_different_pointers: assumes "ptr \ ptr'" assumes "w \ a_set_disconnected_nodes_locs ptr" assumes "h \ w \\<^sub>h h'" assumes "r \ a_get_disconnected_nodes_locs ptr'" shows "r h h'" using assms by(auto simp add: all_args_def a_set_disconnected_nodes_locs_def a_get_disconnected_nodes_locs_def split: if_splits option.splits ) end locale l_set_disconnected_nodes_get_disconnected_nodes = l_get_disconnected_nodes + l_set_disconnected_nodes + assumes set_disconnected_nodes_get_disconnected_nodes: "h \ set_disconnected_nodes document_ptr disc_nodes \\<^sub>h h' \ h' \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes" assumes set_disconnected_nodes_get_disconnected_nodes_different_pointers: "ptr \ ptr' \ w \ set_disconnected_nodes_locs ptr \ h \ w \\<^sub>h h' \ r \ get_disconnected_nodes_locs ptr' \ r h h'" interpretation i_set_disconnected_nodes_get_disconnected_nodes?: l_set_disconnected_nodes_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs by unfold_locales declare l_set_disconnected_nodes_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] -lemma set_disconnected_nodes_get_disconnected_nodes_is_l_set_disconnected_nodes_get_disconnected_nodes [instances]: +lemma set_disconnected_nodes_get_disconnected_nodes_is_l_set_disconnected_nodes_get_disconnected_nodes + [instances]: "l_set_disconnected_nodes_get_disconnected_nodes type_wf get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs" using set_disconnected_nodes_is_l_set_disconnected_nodes get_disconnected_nodes_is_l_get_disconnected_nodes apply(simp add: l_set_disconnected_nodes_get_disconnected_nodes_def l_set_disconnected_nodes_get_disconnected_nodes_axioms_def) using set_disconnected_nodes_get_disconnected_nodes set_disconnected_nodes_get_disconnected_nodes_different_pointers by fast+ paragraph \get\_child\_nodes\ locale l_set_disconnected_nodes_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma set_disconnected_nodes_get_child_nodes: "\w \ set_disconnected_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_child_nodes_locs ptr'. r h h'))" by(auto simp add: set_disconnected_nodes_locs_impl[unfolded a_set_disconnected_nodes_locs_def] get_child_nodes_locs_impl[unfolded a_get_child_nodes_locs_def] all_args_def) end locale l_set_disconnected_nodes_get_child_nodes = l_set_disconnected_nodes_defs + l_get_child_nodes_defs + assumes set_disconnected_nodes_get_child_nodes [simp]: "\w \ set_disconnected_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_child_nodes_locs ptr'. r h h'))" interpretation i_set_disconnected_nodes_get_child_nodes?: l_set_disconnected_nodes_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_disconnected_nodes set_disconnected_nodes_locs known_ptr get_child_nodes get_child_nodes_locs by unfold_locales declare l_set_disconnected_nodes_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_disconnected_nodes_get_child_nodes_is_l_set_disconnected_nodes_get_child_nodes [instances]: "l_set_disconnected_nodes_get_child_nodes set_disconnected_nodes_locs get_child_nodes_locs" using set_disconnected_nodes_is_l_set_disconnected_nodes get_child_nodes_is_l_get_child_nodes apply(simp add: l_set_disconnected_nodes_get_child_nodes_def) using set_disconnected_nodes_get_child_nodes by fast subsubsection \get\_tag\_name\ locale l_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs begin -definition a_get_tag_name :: "(_) element_ptr \ (_, tag_type) dom_prog" +definition a_get_tag_name :: "(_) element_ptr \ (_, tag_name) dom_prog" where - "a_get_tag_name element_ptr = get_M element_ptr tag_type" + "a_get_tag_name element_ptr = get_M element_ptr tag_name" definition a_get_tag_name_locs :: "(_) element_ptr \ ((_) heap \ (_) heap \ bool) set" where - "a_get_tag_name_locs element_ptr \ {preserved (get_M element_ptr tag_type)}" + "a_get_tag_name_locs element_ptr \ {preserved (get_M element_ptr tag_name)}" end locale l_get_tag_name_defs = - fixes get_tag_name :: "(_) element_ptr \ (_, tag_type) dom_prog" + fixes get_tag_name :: "(_) element_ptr \ (_, tag_name) dom_prog" fixes get_tag_name_locs :: "(_) element_ptr \ ((_) heap \ (_) heap \ bool) set" locale l_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_type_wf type_wf + l_get_tag_name_defs get_tag_name get_tag_name_locs + l_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs for type_wf :: "(_) heap \ bool" - and get_tag_name :: "(_) element_ptr \ (_, tag_type) dom_prog" + and get_tag_name :: "(_) element_ptr \ (_, tag_name) dom_prog" and get_tag_name_locs :: "(_) element_ptr \ ((_) heap \ (_) heap \ bool) set" + assumes type_wf_impl: "type_wf = DocumentClass.type_wf" assumes get_tag_name_impl: "get_tag_name = a_get_tag_name" assumes get_tag_name_locs_impl: "get_tag_name_locs = a_get_tag_name_locs" begin lemmas get_tag_name_def = get_tag_name_impl[unfolded a_get_tag_name_def] lemmas get_tag_name_locs_def = get_tag_name_locs_impl[unfolded a_get_tag_name_locs_def] lemma get_tag_name_ok: "type_wf h \ element_ptr |\| element_ptr_kinds h \ h \ ok (get_tag_name element_ptr)" apply(unfold type_wf_impl get_tag_name_impl[unfolded a_get_tag_name_def]) using get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok by blast lemma get_tag_name_pure [simp]: "pure (get_tag_name element_ptr) h" unfolding get_tag_name_impl[unfolded a_get_tag_name_def] by simp lemma get_tag_name_ptr_in_heap [simp]: assumes "h \ get_tag_name element_ptr \\<^sub>r children" shows "element_ptr |\| element_ptr_kinds h" using assms by(auto simp add: get_tag_name_impl[unfolded a_get_tag_name_def] get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap dest: is_OK_returns_result_I) lemma get_tag_name_reads: "reads (get_tag_name_locs element_ptr) (get_tag_name element_ptr) h h'" by(simp add: get_tag_name_impl[unfolded a_get_tag_name_def] get_tag_name_locs_impl[unfolded a_get_tag_name_locs_def] reads_bind_pure reads_insert_writes_set_right) end locale l_get_tag_name = l_type_wf + l_get_tag_name_defs + assumes get_tag_name_reads: "reads (get_tag_name_locs element_ptr) (get_tag_name element_ptr) h h'" assumes get_tag_name_ok: "type_wf h \ element_ptr |\| element_ptr_kinds h \ h \ ok (get_tag_name element_ptr)" assumes get_tag_name_ptr_in_heap: "h \ ok (get_tag_name element_ptr) \ element_ptr |\| element_ptr_kinds h" assumes get_tag_name_pure [simp]: "pure (get_tag_name element_ptr) h" global_interpretation l_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs defines get_tag_name = l_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_tag_name and get_tag_name_locs = l_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_tag_name_locs . interpretation i_get_tag_name?: l_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf get_tag_name get_tag_name_locs apply(unfold_locales) by (auto simp add: get_tag_name_def get_tag_name_locs_def) declare l_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma get_tag_name_is_l_get_tag_name [instances]: "l_get_tag_name type_wf get_tag_name get_tag_name_locs" apply(unfold_locales) using get_tag_name_reads get_tag_name_ok get_tag_name_ptr_in_heap get_tag_name_pure by blast+ paragraph \set\_disconnected\_nodes\ locale l_set_disconnected_nodes_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma set_disconnected_nodes_get_tag_name: "\w \ a_set_disconnected_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ a_get_tag_name_locs ptr'. r h h'))" by(auto simp add: a_set_disconnected_nodes_locs_def a_get_tag_name_locs_def all_args_def) end locale l_set_disconnected_nodes_get_tag_name = l_set_disconnected_nodes + l_get_tag_name + assumes set_disconnected_nodes_get_tag_name: "\w \ set_disconnected_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_tag_name_locs ptr'. r h h'))" interpretation i_set_disconnected_nodes_get_tag_name?: l_set_disconnected_nodes_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_disconnected_nodes set_disconnected_nodes_locs get_tag_name get_tag_name_locs by unfold_locales declare l_set_disconnected_nodes_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_disconnected_nodes_get_tag_name_is_l_set_disconnected_nodes_get_tag_name [instances]: "l_set_disconnected_nodes_get_tag_name type_wf set_disconnected_nodes set_disconnected_nodes_locs get_tag_name get_tag_name_locs" using set_disconnected_nodes_is_l_set_disconnected_nodes get_tag_name_is_l_get_tag_name apply(simp add: l_set_disconnected_nodes_get_tag_name_def l_set_disconnected_nodes_get_tag_name_axioms_def) using set_disconnected_nodes_get_tag_name by fast paragraph \set\_child\_nodes\ locale l_set_child_nodes_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_set_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma set_child_nodes_get_tag_name: "\w \ set_child_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_tag_name_locs ptr'. r h h'))" by(auto simp add: set_child_nodes_locs_def get_tag_name_locs_def all_args_def - intro: element_put_get_preserved[where getter=tag_type and setter=child_nodes_update]) + intro: element_put_get_preserved[where getter=tag_name and setter=child_nodes_update]) end locale l_set_child_nodes_get_tag_name = l_set_child_nodes + l_get_tag_name + assumes set_child_nodes_get_tag_name: "\w \ set_child_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_tag_name_locs ptr'. r h h'))" interpretation i_set_child_nodes_get_tag_name?: l_set_child_nodes_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr set_child_nodes set_child_nodes_locs get_tag_name get_tag_name_locs by unfold_locales declare l_set_child_nodes_get_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_child_nodes_get_tag_name_is_l_set_child_nodes_get_tag_name [instances]: "l_set_child_nodes_get_tag_name type_wf set_child_nodes set_child_nodes_locs get_tag_name get_tag_name_locs" using set_child_nodes_is_l_set_child_nodes get_tag_name_is_l_get_tag_name apply(simp add: l_set_child_nodes_get_tag_name_def l_set_child_nodes_get_tag_name_axioms_def) using set_child_nodes_get_tag_name by fast subsubsection \set\_tag\_type\ -locale l_set_tag_type\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs +locale l_set_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs begin -definition a_set_tag_type :: "(_) element_ptr \ tag_type \ (_, unit) dom_prog" +definition a_set_tag_name :: "(_) element_ptr \ tag_name \ (_, unit) dom_prog" where - "a_set_tag_type ptr tag = do { + "a_set_tag_name ptr tag = do { m \ get_M ptr attrs; - put_M ptr tag_type_update tag + put_M ptr tag_name_update tag }" -lemmas set_tag_type_defs = a_set_tag_type_def - -definition a_set_tag_type_locs :: "(_) element_ptr \ (_, unit) dom_prog set" +lemmas set_tag_name_defs = a_set_tag_name_def + +definition a_set_tag_name_locs :: "(_) element_ptr \ (_, unit) dom_prog set" where - "a_set_tag_type_locs element_ptr \ all_args (put_M element_ptr tag_type_update)" + "a_set_tag_name_locs element_ptr \ all_args (put_M element_ptr tag_name_update)" end -locale l_set_tag_type_defs = - fixes set_tag_type :: "(_) element_ptr \ tag_type \ (_, unit) dom_prog" - fixes set_tag_type_locs :: "(_) element_ptr \ (_, unit) dom_prog set" - -locale l_set_tag_type\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = +locale l_set_tag_name_defs = + fixes set_tag_name :: "(_) element_ptr \ tag_name \ (_, unit) dom_prog" + fixes set_tag_name_locs :: "(_) element_ptr \ (_, unit) dom_prog set" + +locale l_set_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_type_wf type_wf + - l_set_tag_type_defs set_tag_type set_tag_type_locs + - l_set_tag_type\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs + l_set_tag_name_defs set_tag_name set_tag_name_locs + + l_set_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs for type_wf :: "(_) heap \ bool" - and set_tag_type :: "(_) element_ptr \ char list \ (_, unit) dom_prog" - and set_tag_type_locs :: "(_) element_ptr \ (_, unit) dom_prog set" + + and set_tag_name :: "(_) element_ptr \ char list \ (_, unit) dom_prog" + and set_tag_name_locs :: "(_) element_ptr \ (_, unit) dom_prog set" + assumes type_wf_impl: "type_wf = DocumentClass.type_wf" - assumes set_tag_type_impl: "set_tag_type = a_set_tag_type" - assumes set_tag_type_locs_impl: "set_tag_type_locs = a_set_tag_type_locs" + assumes set_tag_name_impl: "set_tag_name = a_set_tag_name" + assumes set_tag_name_locs_impl: "set_tag_name_locs = a_set_tag_name_locs" begin -lemma set_tag_type_ok: - "type_wf h \ element_ptr |\| element_ptr_kinds h \ h \ ok (set_tag_type element_ptr tag)" +lemma set_tag_name_ok: + "type_wf h \ element_ptr |\| element_ptr_kinds h \ h \ ok (set_tag_name element_ptr tag)" apply(unfold type_wf_impl) - unfolding set_tag_type_impl[unfolded a_set_tag_type_def] using get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok + unfolding set_tag_name_impl[unfolded a_set_tag_name_def] using get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok by (metis (no_types, lifting) DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ElementMonad.get_M_pure bind_is_OK_E bind_is_OK_pure_I is_OK_returns_result_I) -lemma set_tag_type_writes: - "writes (set_tag_type_locs element_ptr) (set_tag_type element_ptr tag) h h'" - by(auto simp add: set_tag_type_impl[unfolded a_set_tag_type_def] - set_tag_type_locs_impl[unfolded a_set_tag_type_locs_def] intro: writes_bind_pure) - -lemma set_tag_type_pointers_preserved: - assumes "w \ set_tag_type_locs element_ptr" +lemma set_tag_name_writes: + "writes (set_tag_name_locs element_ptr) (set_tag_name element_ptr tag) h h'" + by(auto simp add: set_tag_name_impl[unfolded a_set_tag_name_def] + set_tag_name_locs_impl[unfolded a_set_tag_name_locs_def] intro: writes_bind_pure) + +lemma set_tag_name_pointers_preserved: + assumes "w \ set_tag_name_locs element_ptr" assumes "h \ w \\<^sub>h h'" shows "object_ptr_kinds h = object_ptr_kinds h'" using assms(1) object_ptr_kinds_preserved[OF writes_singleton2 assms(2)] - by(auto simp add: all_args_def set_tag_type_locs_impl[unfolded a_set_tag_type_locs_def] + by(auto simp add: all_args_def set_tag_name_locs_impl[unfolded a_set_tag_name_locs_def] split: if_splits) -lemma set_tag_type_typess_preserved: - assumes "w \ set_tag_type_locs element_ptr" +lemma set_tag_name_typess_preserved: + assumes "w \ set_tag_name_locs element_ptr" assumes "h \ w \\<^sub>h h'" shows "type_wf h = type_wf h'" apply(unfold type_wf_impl) using assms(1) type_wf_preserved[OF writes_singleton2 assms(2)] - by(auto simp add: all_args_def set_tag_type_locs_impl[unfolded a_set_tag_type_locs_def] + by(auto simp add: all_args_def set_tag_name_locs_impl[unfolded a_set_tag_name_locs_def] split: if_splits) end -locale l_set_tag_type = l_type_wf + l_set_tag_type_defs + - assumes set_tag_type_writes: - "writes (set_tag_type_locs element_ptr) (set_tag_type element_ptr tag) h h'" - assumes set_tag_type_ok: - "type_wf h \ element_ptr |\| element_ptr_kinds h \ h \ ok (set_tag_type element_ptr tag)" - assumes set_tag_type_pointers_preserved: - "w \ set_tag_type_locs element_ptr \ h \ w \\<^sub>h h' \ object_ptr_kinds h = object_ptr_kinds h'" - assumes set_tag_type_types_preserved: - "w \ set_tag_type_locs element_ptr \ h \ w \\<^sub>h h' \ type_wf h = type_wf h'" - - -global_interpretation l_set_tag_type\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs defines - set_tag_type = l_set_tag_type\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_tag_type and - set_tag_type_locs = l_set_tag_type\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_tag_type_locs . +locale l_set_tag_name = l_type_wf + l_set_tag_name_defs + + assumes set_tag_name_writes: + "writes (set_tag_name_locs element_ptr) (set_tag_name element_ptr tag) h h'" + assumes set_tag_name_ok: + "type_wf h \ element_ptr |\| element_ptr_kinds h \ h \ ok (set_tag_name element_ptr tag)" + assumes set_tag_name_pointers_preserved: + "w \ set_tag_name_locs element_ptr \ h \ w \\<^sub>h h' \ object_ptr_kinds h = object_ptr_kinds h'" + assumes set_tag_name_types_preserved: + "w \ set_tag_name_locs element_ptr \ h \ w \\<^sub>h h' \ type_wf h = type_wf h'" + + +global_interpretation l_set_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs defines + set_tag_name = l_set_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_tag_name and + set_tag_name_locs = l_set_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_tag_name_locs . interpretation - i_set_tag_type?: l_set_tag_type\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_tag_type set_tag_type_locs + i_set_tag_name?: l_set_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_tag_name set_tag_name_locs apply(unfold_locales) - by (auto simp add: set_tag_type_def set_tag_type_locs_def) -declare l_set_tag_type\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] - -lemma set_tag_type_is_l_set_tag_type [instances]: - "l_set_tag_type type_wf set_tag_type set_tag_type_locs" - apply(simp add: l_set_tag_type_def) - using set_tag_type_ok set_tag_type_writes set_tag_type_pointers_preserved - set_tag_type_typess_preserved + by (auto simp add: set_tag_name_def set_tag_name_locs_def) +declare l_set_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] + +lemma set_tag_name_is_l_set_tag_name [instances]: + "l_set_tag_name type_wf set_tag_name set_tag_name_locs" + apply(simp add: l_set_tag_name_def) + using set_tag_name_ok set_tag_name_writes set_tag_name_pointers_preserved + set_tag_name_typess_preserved by blast paragraph \get\_child\_nodes\ -locale l_set_tag_type_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = - l_set_tag_type\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + +locale l_set_tag_name_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = + l_set_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin -lemma set_tag_type_get_child_nodes: - "\w \ set_tag_type_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_child_nodes_locs ptr'. r h h'))" - by(auto simp add: set_tag_type_locs_impl[unfolded a_set_tag_type_locs_def] +lemma set_tag_name_get_child_nodes: + "\w \ set_tag_name_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_child_nodes_locs ptr'. r h h'))" + by(auto simp add: set_tag_name_locs_impl[unfolded a_set_tag_name_locs_def] get_child_nodes_locs_impl[unfolded a_get_child_nodes_locs_def] all_args_def - intro: element_put_get_preserved[where setter=tag_type_update and getter=child_nodes]) + intro: element_put_get_preserved[where setter=tag_name_update and getter=child_nodes]) end -locale l_set_tag_type_get_child_nodes = l_set_tag_type + l_get_child_nodes + - assumes set_tag_type_get_child_nodes: - "\w \ set_tag_type_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_child_nodes_locs ptr'. r h h'))" +locale l_set_tag_name_get_child_nodes = l_set_tag_name + l_get_child_nodes + + assumes set_tag_name_get_child_nodes: + "\w \ set_tag_name_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_child_nodes_locs ptr'. r h h'))" interpretation - i_set_tag_type_get_child_nodes?: l_set_tag_type_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf - set_tag_type set_tag_type_locs known_ptr + i_set_tag_name_get_child_nodes?: l_set_tag_name_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf + set_tag_name set_tag_name_locs known_ptr get_child_nodes get_child_nodes_locs by unfold_locales -declare l_set_tag_type_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] - -lemma set_tag_type_get_child_nodes_is_l_set_tag_type_get_child_nodes [instances]: - "l_set_tag_type_get_child_nodes type_wf set_tag_type set_tag_type_locs known_ptr get_child_nodes +declare l_set_tag_name_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] + +lemma set_tag_name_get_child_nodes_is_l_set_tag_name_get_child_nodes [instances]: + "l_set_tag_name_get_child_nodes type_wf set_tag_name set_tag_name_locs known_ptr get_child_nodes get_child_nodes_locs" - using set_tag_type_is_l_set_tag_type get_child_nodes_is_l_get_child_nodes - apply(simp add: l_set_tag_type_get_child_nodes_def l_set_tag_type_get_child_nodes_axioms_def) - using set_tag_type_get_child_nodes + using set_tag_name_is_l_set_tag_name get_child_nodes_is_l_get_child_nodes + apply(simp add: l_set_tag_name_get_child_nodes_def l_set_tag_name_get_child_nodes_axioms_def) + using set_tag_name_get_child_nodes by fast paragraph \get\_disconnected\_nodes\ -locale l_set_tag_type_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = - l_set_tag_type\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + +locale l_set_tag_name_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = + l_set_tag_name\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin -lemma set_tag_type_get_disconnected_nodes: - "\w \ set_tag_type_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_disconnected_nodes_locs ptr'. r h h'))" - by(auto simp add: set_tag_type_locs_impl[unfolded a_set_tag_type_locs_def] +lemma set_tag_name_get_disconnected_nodes: + "\w \ set_tag_name_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_disconnected_nodes_locs ptr'. r h h'))" + by(auto simp add: set_tag_name_locs_impl[unfolded a_set_tag_name_locs_def] get_disconnected_nodes_locs_impl[unfolded a_get_disconnected_nodes_locs_def] all_args_def) end -locale l_set_tag_type_get_disconnected_nodes = l_set_tag_type + l_get_disconnected_nodes + - assumes set_tag_type_get_disconnected_nodes: - "\w \ set_tag_type_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_disconnected_nodes_locs ptr'. r h h'))" +locale l_set_tag_name_get_disconnected_nodes = l_set_tag_name + l_get_disconnected_nodes + + assumes set_tag_name_get_disconnected_nodes: + "\w \ set_tag_name_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_disconnected_nodes_locs ptr'. r h h'))" interpretation - i_set_tag_type_get_disconnected_nodes?: l_set_tag_type_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf - set_tag_type set_tag_type_locs get_disconnected_nodes + i_set_tag_name_get_disconnected_nodes?: l_set_tag_name_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf + set_tag_name set_tag_name_locs get_disconnected_nodes get_disconnected_nodes_locs by unfold_locales -declare l_set_tag_type_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] - -lemma set_tag_type_get_disconnected_nodes_is_l_set_tag_type_get_disconnected_nodes [instances]: - "l_set_tag_type_get_disconnected_nodes type_wf set_tag_type set_tag_type_locs get_disconnected_nodes +declare l_set_tag_name_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] + +lemma set_tag_name_get_disconnected_nodes_is_l_set_tag_name_get_disconnected_nodes [instances]: + "l_set_tag_name_get_disconnected_nodes type_wf set_tag_name set_tag_name_locs get_disconnected_nodes get_disconnected_nodes_locs" - using set_tag_type_is_l_set_tag_type get_disconnected_nodes_is_l_get_disconnected_nodes - apply(simp add: l_set_tag_type_get_disconnected_nodes_def - l_set_tag_type_get_disconnected_nodes_axioms_def) - using set_tag_type_get_disconnected_nodes + using set_tag_name_is_l_set_tag_name get_disconnected_nodes_is_l_get_disconnected_nodes + apply(simp add: l_set_tag_name_get_disconnected_nodes_def + l_set_tag_name_get_disconnected_nodes_axioms_def) + using set_tag_name_get_disconnected_nodes by fast subsubsection \set\_val\ locale l_set_val\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs begin definition a_set_val :: "(_) character_data_ptr \ DOMString \ (_, unit) dom_prog" where "a_set_val ptr v = do { m \ get_M ptr val; put_M ptr val_update v }" lemmas set_val_defs = a_set_val_def definition a_set_val_locs :: "(_) character_data_ptr \ (_, unit) dom_prog set" where "a_set_val_locs character_data_ptr \ all_args (put_M character_data_ptr val_update)" end locale l_set_val_defs = fixes set_val :: "(_) character_data_ptr \ DOMString \ (_, unit) dom_prog" fixes set_val_locs :: "(_) character_data_ptr \ (_, unit) dom_prog set" locale l_set_val\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_type_wf type_wf + l_set_val_defs set_val set_val_locs + l_set_val\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs for type_wf :: "(_) heap \ bool" and set_val :: "(_) character_data_ptr \ char list \ (_, unit) dom_prog" and set_val_locs :: "(_) character_data_ptr \ (_, unit) dom_prog set" + assumes type_wf_impl: "type_wf = DocumentClass.type_wf" assumes set_val_impl: "set_val = a_set_val" assumes set_val_locs_impl: "set_val_locs = a_set_val_locs" begin lemma set_val_ok: "type_wf h \ character_data_ptr |\| character_data_ptr_kinds h \ h \ ok (set_val character_data_ptr tag)" apply(unfold type_wf_impl) unfolding set_val_impl[unfolded a_set_val_def] using get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ok put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ok by (metis (no_types, lifting) DocumentClass.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a CharacterDataMonad.get_M_pure bind_is_OK_E bind_is_OK_pure_I is_OK_returns_result_I) lemma set_val_writes: "writes (set_val_locs character_data_ptr) (set_val character_data_ptr tag) h h'" by(auto simp add: set_val_impl[unfolded a_set_val_def] set_val_locs_impl[unfolded a_set_val_locs_def] intro: writes_bind_pure) lemma set_val_pointers_preserved: assumes "w \ set_val_locs character_data_ptr" assumes "h \ w \\<^sub>h h'" shows "object_ptr_kinds h = object_ptr_kinds h'" using assms(1) object_ptr_kinds_preserved[OF writes_singleton2 assms(2)] by(auto simp add: all_args_def set_val_locs_impl[unfolded a_set_val_locs_def] split: if_splits) lemma set_val_typess_preserved: assumes "w \ set_val_locs character_data_ptr" assumes "h \ w \\<^sub>h h'" shows "type_wf h = type_wf h'" apply(unfold type_wf_impl) using assms(1) type_wf_preserved[OF writes_singleton2 assms(2)] by(auto simp add: all_args_def set_val_locs_impl[unfolded a_set_val_locs_def] split: if_splits) end locale l_set_val = l_type_wf + l_set_val_defs + assumes set_val_writes: "writes (set_val_locs character_data_ptr) (set_val character_data_ptr tag) h h'" assumes set_val_ok: "type_wf h \ character_data_ptr |\| character_data_ptr_kinds h \ h \ ok (set_val character_data_ptr tag)" assumes set_val_pointers_preserved: "w \ set_val_locs character_data_ptr \ h \ w \\<^sub>h h' \ object_ptr_kinds h = object_ptr_kinds h'" assumes set_val_types_preserved: "w \ set_val_locs character_data_ptr \ h \ w \\<^sub>h h' \ type_wf h = type_wf h'" global_interpretation l_set_val\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs defines set_val = l_set_val\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_val and set_val_locs = l_set_val\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_set_val_locs . interpretation i_set_val?: l_set_val\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_val set_val_locs apply(unfold_locales) by (auto simp add: set_val_def set_val_locs_def) declare l_set_val\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_val_is_l_set_val [instances]: "l_set_val type_wf set_val set_val_locs" apply(simp add: l_set_val_def) using set_val_ok set_val_writes set_val_pointers_preserved set_val_typess_preserved by blast paragraph \get\_child\_nodes\ locale l_set_val_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_set_val\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma set_val_get_child_nodes: "\w \ set_val_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_child_nodes_locs ptr'. r h h'))" by(auto simp add: set_val_locs_impl[unfolded a_set_val_locs_def] get_child_nodes_locs_impl[unfolded a_get_child_nodes_locs_def] all_args_def) end locale l_set_val_get_child_nodes = l_set_val + l_get_child_nodes + assumes set_val_get_child_nodes: "\w \ set_val_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_child_nodes_locs ptr'. r h h'))" interpretation i_set_val_get_child_nodes?: l_set_val_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_val set_val_locs known_ptr get_child_nodes get_child_nodes_locs by unfold_locales declare l_set_val_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_val_get_child_nodes_is_l_set_val_get_child_nodes [instances]: "l_set_val_get_child_nodes type_wf set_val set_val_locs known_ptr get_child_nodes get_child_nodes_locs" using set_val_is_l_set_val get_child_nodes_is_l_get_child_nodes apply(simp add: l_set_val_get_child_nodes_def l_set_val_get_child_nodes_axioms_def) using set_val_get_child_nodes by fast paragraph \get\_disconnected\_nodes\ locale l_set_val_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_set_val\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma set_val_get_disconnected_nodes: "\w \ set_val_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_disconnected_nodes_locs ptr'. r h h'))" by(auto simp add: set_val_locs_impl[unfolded a_set_val_locs_def] get_disconnected_nodes_locs_impl[unfolded a_get_disconnected_nodes_locs_def] all_args_def) end locale l_set_val_get_disconnected_nodes = l_set_val + l_get_disconnected_nodes + assumes set_val_get_disconnected_nodes: "\w \ set_val_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_disconnected_nodes_locs ptr'. r h h'))" interpretation i_set_val_get_disconnected_nodes?: l_set_val_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_val set_val_locs get_disconnected_nodes get_disconnected_nodes_locs by unfold_locales declare l_set_val_get_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_val_get_disconnected_nodes_is_l_set_val_get_disconnected_nodes [instances]: - "l_set_val_get_disconnected_nodes type_wf set_val set_val_locs get_disconnected_nodes get_disconnected_nodes_locs" + "l_set_val_get_disconnected_nodes type_wf set_val set_val_locs get_disconnected_nodes +get_disconnected_nodes_locs" using set_val_is_l_set_val get_disconnected_nodes_is_l_get_disconnected_nodes apply(simp add: l_set_val_get_disconnected_nodes_def l_set_val_get_disconnected_nodes_axioms_def) using set_val_get_disconnected_nodes by fast subsubsection \get\_parent\ locale l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_get_child_nodes_defs get_child_nodes get_child_nodes_locs for get_child_nodes :: "(_::linorder) object_ptr \ (_, (_) node_ptr list) dom_prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" begin definition a_get_parent :: "(_) node_ptr \ (_, (_::linorder) object_ptr option) dom_prog" where "a_get_parent node_ptr = do { check_in_heap (cast node_ptr); parent_ptrs \ object_ptr_kinds_M \ filter_M (\ptr. do { children \ get_child_nodes ptr; return (node_ptr \ set children) }); (if parent_ptrs = [] then return None else return (Some (hd parent_ptrs))) }" definition "a_get_parent_locs \ (\ptr. get_child_nodes_locs ptr \ {preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr RObject.nothing)})" end locale l_get_parent_defs = fixes get_parent :: "(_) node_ptr \ (_, (_::linorder) object_ptr option) dom_prog" fixes get_parent_locs :: "((_) heap \ (_) heap \ bool) set" locale l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_child_nodes type_wf known_ptr get_child_nodes get_child_nodes_locs + l_known_ptrs known_ptr known_ptrs + l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_child_nodes get_child_nodes_locs + l_get_parent_defs get_parent get_parent_locs for known_ptr :: "(_::linorder) object_ptr \ bool" and type_wf :: "(_) heap \ bool" and get_child_nodes (* :: "(_) object_ptr \ (_, (_) node_ptr list) dom_prog" *) and get_child_nodes_locs (* :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" *) and known_ptrs :: "(_) heap \ bool" and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" and get_parent_locs (* :: "((_) heap \ (_) heap \ bool) set" *) + assumes get_parent_impl: "get_parent = a_get_parent" assumes get_parent_locs_impl: "get_parent_locs = a_get_parent_locs" begin lemmas get_parent_def = get_parent_impl[unfolded a_get_parent_def] lemmas get_parent_locs_def = get_parent_locs_impl[unfolded a_get_parent_locs_def] lemma get_parent_pure [simp]: "pure (get_parent ptr) h" using get_child_nodes_pure by(auto simp add: get_parent_def intro!: bind_pure_I filter_M_pure_I) lemma get_parent_ok [simp]: assumes "type_wf h" assumes "known_ptrs h" assumes "ptr |\| node_ptr_kinds h" shows "h \ ok (get_parent ptr)" using assms get_child_nodes_ok get_child_nodes_pure by(auto simp add: get_parent_impl[unfolded a_get_parent_def] known_ptrs_known_ptr intro!: bind_is_OK_pure_I filter_M_pure_I filter_M_is_OK_I bind_pure_I) lemma get_parent_ptr_in_heap [simp]: "h \ ok (get_parent node_ptr) \ node_ptr |\| node_ptr_kinds h" using get_parent_def is_OK_returns_result_I check_in_heap_ptr_in_heap by (metis (no_types, lifting) bind_returns_heap_E get_parent_pure node_ptr_kinds_commutes pure_pure) lemma get_parent_parent_in_heap: assumes "h \ get_parent child_node \\<^sub>r Some parent" shows "parent |\| object_ptr_kinds h" using assms get_child_nodes_pure by(auto simp add: get_parent_def elim!: bind_returns_result_E2 dest!: filter_M_not_more_elements[where x=parent] intro!: filter_M_pure_I bind_pure_I split: if_splits) lemma get_parent_child_dual: assumes "h \ get_parent child \\<^sub>r Some ptr" obtains children where "h \ get_child_nodes ptr \\<^sub>r children" and "child \ set children" using assms get_child_nodes_pure by(auto simp add: get_parent_def bind_pure_I dest!: filter_M_holds_for_result elim!: bind_returns_result_E2 intro!: filter_M_pure_I split: if_splits) lemma get_parent_reads: "reads get_parent_locs (get_parent node_ptr) h h'" using get_child_nodes_reads[unfolded reads_def] by(auto simp add: get_parent_def get_parent_locs_def intro!: reads_bind_pure reads_subset[OF check_in_heap_reads] reads_subset[OF get_child_nodes_reads] reads_subset[OF return_reads] reads_subset[OF object_ptr_kinds_M_reads] filter_M_reads filter_M_pure_I bind_pure_I) lemma get_parent_reads_pointers: "preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr RObject.nothing) \ get_parent_locs" by(auto simp add: get_parent_locs_def) end locale l_get_parent = l_type_wf + l_known_ptrs + l_get_parent_defs + l_get_child_nodes + assumes get_parent_reads: "reads get_parent_locs (get_parent node_ptr) h h'" assumes get_parent_ok: "type_wf h \ known_ptrs h \ node_ptr |\| node_ptr_kinds h \ h \ ok (get_parent node_ptr)" assumes get_parent_ptr_in_heap: "h \ ok (get_parent node_ptr) \ node_ptr |\| node_ptr_kinds h" assumes get_parent_pure [simp]: "pure (get_parent node_ptr) h" assumes get_parent_parent_in_heap: "h \ get_parent child_node \\<^sub>r Some parent \ parent |\| object_ptr_kinds h" assumes get_parent_child_dual: "h \ get_parent child \\<^sub>r Some ptr \ (\children. h \ get_child_nodes ptr \\<^sub>r children \ child \ set children \ thesis) \ thesis" assumes get_parent_reads_pointers: "preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr RObject.nothing) \ get_parent_locs" global_interpretation l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_child_nodes get_child_nodes_locs defines get_parent = "l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_parent get_child_nodes" and get_parent_locs = "l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_parent_locs get_child_nodes_locs" . interpretation i_get_parent?: l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes get_child_nodes_locs known_ptrs get_parent get_parent_locs using instances apply(simp add: l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms_def) apply(simp add: get_parent_def get_parent_locs_def) done declare l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma get_parent_is_l_get_parent [instances]: "l_get_parent type_wf known_ptr known_ptrs get_parent get_parent_locs get_child_nodes get_child_nodes_locs" using instances apply(auto simp add: l_get_parent_def l_get_parent_axioms_def)[1] using get_parent_reads get_parent_ok get_parent_ptr_in_heap get_parent_pure get_parent_parent_in_heap get_parent_child_dual using get_parent_reads_pointers by blast+ paragraph \set\_disconnected\_nodes\ locale l_set_disconnected_nodes_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_set_disconnected_nodes_get_child_nodes set_disconnected_nodes set_disconnected_nodes_locs get_child_nodes get_child_nodes_locs + l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_disconnected_nodes set_disconnected_nodes_locs + l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes get_child_nodes_locs known_ptrs get_parent get_parent_locs for known_ptr :: "(_::linorder) object_ptr \ bool" and type_wf :: "(_) heap \ bool" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" and known_ptrs :: "(_) heap \ bool" and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" begin lemma set_disconnected_nodes_get_parent [simp]: "\w \ set_disconnected_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_parent_locs. r h h'))" by(auto simp add: get_parent_locs_def set_disconnected_nodes_locs_def all_args_def) end locale l_set_disconnected_nodes_get_parent = l_set_disconnected_nodes_defs + l_get_parent_defs + assumes set_disconnected_nodes_get_parent [simp]: "\w \ set_disconnected_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_parent_locs. r h h'))" interpretation i_set_disconnected_nodes_get_parent?: l_set_disconnected_nodes_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf set_disconnected_nodes set_disconnected_nodes_locs get_child_nodes get_child_nodes_locs known_ptrs get_parent get_parent_locs using instances by (simp add: l_set_disconnected_nodes_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) declare l_set_disconnected_nodes_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_disconnected_nodes_get_parent_is_l_set_disconnected_nodes_get_parent [instances]: "l_set_disconnected_nodes_get_parent set_disconnected_nodes_locs get_parent_locs" by(simp add: l_set_disconnected_nodes_get_parent_def) subsubsection \get\_root\_node\ locale l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_get_parent_defs get_parent get_parent_locs for get_parent :: "(_) node_ptr \ ((_) heap, exception, (_::linorder) object_ptr option) prog" and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" begin partial_function (dom_prog) a_get_ancestors :: "(_::linorder) object_ptr \ (_, (_) object_ptr list) dom_prog" where "a_get_ancestors ptr = do { check_in_heap ptr; ancestors \ (case cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr of Some node_ptr \ do { parent_ptr_opt \ get_parent node_ptr; (case parent_ptr_opt of Some parent_ptr \ a_get_ancestors parent_ptr | None \ return []) } | None \ return []); return (ptr # ancestors) }" definition "a_get_ancestors_locs = get_parent_locs" definition a_get_root_node :: "(_) object_ptr \ (_, (_) object_ptr) dom_prog" where "a_get_root_node ptr = do { ancestors \ a_get_ancestors ptr; return (last ancestors) }" definition "a_get_root_node_locs = a_get_ancestors_locs" end locale l_get_ancestors_defs = fixes get_ancestors :: "(_::linorder) object_ptr \ (_, (_) object_ptr list) dom_prog" fixes get_ancestors_locs :: "((_) heap \ (_) heap \ bool) set" locale l_get_root_node_defs = fixes get_root_node :: "(_) object_ptr \ (_, (_) object_ptr) dom_prog" fixes get_root_node_locs :: "((_) heap \ (_) heap \ bool) set" locale l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_parent + l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs + l_get_ancestors_defs + l_get_root_node_defs + assumes get_ancestors_impl: "get_ancestors = a_get_ancestors" assumes get_ancestors_locs_impl: "get_ancestors_locs = a_get_ancestors_locs" assumes get_root_node_impl: "get_root_node = a_get_root_node" assumes get_root_node_locs_impl: "get_root_node_locs = a_get_root_node_locs" begin lemmas get_ancestors_def = a_get_ancestors.simps[folded get_ancestors_impl] lemmas get_ancestors_locs_def = a_get_ancestors_locs_def[folded get_ancestors_locs_impl] lemmas get_root_node_def = a_get_root_node_def[folded get_root_node_impl get_ancestors_impl] lemmas get_root_node_locs_def = a_get_root_node_locs_def[folded get_root_node_locs_impl get_ancestors_locs_impl] lemma get_ancestors_pure [simp]: "pure (get_ancestors ptr) h" proof - have "\ptr h h' x. h \ get_ancestors ptr \\<^sub>r x \ h \ get_ancestors ptr \\<^sub>h h' \ h = h'" proof (induct rule: a_get_ancestors.fixp_induct[folded get_ancestors_impl]) case 1 then show ?case by(rule admissible_dom_prog) next case 2 then show ?case by simp next case (3 f) then show ?case using get_parent_pure apply(auto simp add: pure_returns_heap_eq pure_def split: option.splits elim!: bind_returns_heap_E bind_returns_result_E dest!: pure_returns_heap_eq[rotated, OF check_in_heap_pure])[1] apply (meson option.simps(3) returns_result_eq) by (metis get_parent_pure pure_returns_heap_eq) qed then show ?thesis by (meson pure_eq_iff) qed lemma get_root_node_pure [simp]: "pure (get_root_node ptr) h" by(auto simp add: get_root_node_def bind_pure_I) lemma get_ancestors_ptr_in_heap: assumes "h \ ok (get_ancestors ptr)" shows "ptr |\| object_ptr_kinds h" using assms by(auto simp add: get_ancestors_def check_in_heap_ptr_in_heap elim!: bind_is_OK_E dest: is_OK_returns_result_I) lemma get_ancestors_ptr: assumes "h \ get_ancestors ptr \\<^sub>r ancestors" shows "ptr \ set ancestors" using assms apply(simp add: get_ancestors_def) by(auto elim!: bind_returns_result_E2 split: option.splits intro!: bind_pure_I) lemma get_ancestors_not_node: assumes "h \ get_ancestors ptr \\<^sub>r ancestors" assumes "\is_node_ptr_kind ptr" shows "ancestors = [ptr]" using assms apply(simp add: get_ancestors_def) by(auto elim!: bind_returns_result_E2 split: option.splits) lemma get_root_node_no_parent: "h \ get_parent node_ptr \\<^sub>r None \ h \ get_root_node (cast node_ptr) \\<^sub>r cast node_ptr" apply(auto simp add: check_in_heap_def get_root_node_def get_ancestors_def intro!: bind_pure_returns_result_I )[1] using get_parent_ptr_in_heap by blast end locale l_get_ancestors = l_get_ancestors_defs + assumes get_ancestors_pure [simp]: "pure (get_ancestors node_ptr) h" assumes get_ancestors_ptr_in_heap: "h \ ok (get_ancestors ptr) \ ptr |\| object_ptr_kinds h" assumes get_ancestors_ptr: "h \ get_ancestors ptr \\<^sub>r ancestors \ ptr \ set ancestors" locale l_get_root_node = l_get_root_node_defs + l_get_parent_defs + assumes get_root_node_pure[simp]: "pure (get_root_node ptr) h" assumes get_root_node_no_parent: "h \ get_parent node_ptr \\<^sub>r None \ h \ get_root_node (cast node_ptr) \\<^sub>r cast node_ptr" global_interpretation l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_parent get_parent_locs defines get_root_node = "l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_root_node get_parent" and get_root_node_locs = "l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_root_node_locs get_parent_locs" and get_ancestors = "l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_ancestors get_parent" and get_ancestors_locs = "l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_ancestors_locs get_parent_locs" . declare a_get_ancestors.simps [code] interpretation i_get_root_node?: l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr known_ptrs get_parent get_parent_locs get_child_nodes get_child_nodes_locs get_ancestors get_ancestors_locs get_root_node get_root_node_locs using instances apply(simp add: l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms_def) by(simp add: get_root_node_def get_root_node_locs_def get_ancestors_def get_ancestors_locs_def) declare l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma get_ancestors_is_l_get_ancestors [instances]: "l_get_ancestors get_ancestors" unfolding l_get_ancestors_def using get_ancestors_pure get_ancestors_ptr get_ancestors_ptr_in_heap by blast lemma get_root_node_is_l_get_root_node [instances]: "l_get_root_node get_root_node get_parent" apply(simp add: l_get_root_node_def) using get_root_node_no_parent by fast paragraph \set\_disconnected\_nodes\ locale l_set_disconnected_nodes_get_ancestors\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_set_disconnected_nodes_get_parent set_disconnected_nodes set_disconnected_nodes_locs get_parent get_parent_locs + l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr known_ptrs get_parent get_parent_locs get_child_nodes get_child_nodes_locs get_ancestors get_ancestors_locs get_root_node get_root_node_locs + l_set_disconnected_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf set_disconnected_nodes set_disconnected_nodes_locs for known_ptr :: "(_::linorder) object_ptr \ bool" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" and type_wf :: "(_) heap \ bool" and known_ptrs :: "(_) heap \ bool" and get_ancestors :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr list) prog" and get_ancestors_locs :: "((_) heap \ (_) heap \ bool) set" and get_root_node :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr) prog" and get_root_node_locs :: "((_) heap \ (_) heap \ bool) set" begin lemma set_disconnected_nodes_get_ancestors: "\w \ set_disconnected_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_ancestors_locs. r h h'))" by(auto simp add: get_parent_locs_def set_disconnected_nodes_locs_def get_ancestors_locs_def all_args_def) end locale l_set_disconnected_nodes_get_ancestors = l_set_disconnected_nodes_defs + l_get_ancestors_defs + assumes set_disconnected_nodes_get_ancestors: "\w \ set_disconnected_nodes_locs ptr. (h \ w \\<^sub>h h' \ (\r \ get_ancestors_locs. r h h'))" interpretation i_set_disconnected_nodes_get_ancestors?: l_set_disconnected_nodes_get_ancestors\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr set_disconnected_nodes set_disconnected_nodes_locs get_child_nodes get_child_nodes_locs get_parent get_parent_locs type_wf known_ptrs get_ancestors get_ancestors_locs get_root_node get_root_node_locs using instances by (simp add: l_set_disconnected_nodes_get_ancestors\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) declare l_set_disconnected_nodes_get_ancestors\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma set_disconnected_nodes_get_ancestors_is_l_set_disconnected_nodes_get_ancestors [instances]: "l_set_disconnected_nodes_get_ancestors set_disconnected_nodes_locs get_ancestors_locs" using instances apply(simp add: l_set_disconnected_nodes_get_ancestors_def) using set_disconnected_nodes_get_ancestors by fast subsubsection \get\_owner\_document\ locale l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_get_disconnected_nodes_defs get_disconnected_nodes get_disconnected_nodes_locs + l_get_root_node_defs get_root_node get_root_node_locs for get_root_node :: "(_::linorder) object_ptr \ ((_) heap, exception, (_) object_ptr) prog" and get_root_node_locs :: "((_) heap \ (_) heap \ bool) set" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" begin definition a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r :: "(_) node_ptr \ unit \ (_, (_) document_ptr) dom_prog" where "a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr _ = do { root \ get_root_node (cast node_ptr); (case cast root of Some document_ptr \ return document_ptr | None \ do { ptrs \ document_ptr_kinds_M; candidates \ filter_M (\document_ptr. do { disconnected_nodes \ get_disconnected_nodes document_ptr; return (root \ cast ` set disconnected_nodes) }) ptrs; return (hd candidates) }) }" definition a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r :: "(_) document_ptr \ unit \ (_, (_) document_ptr) dom_prog" where "a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r document_ptr _ = do { document_ptrs \ document_ptr_kinds_M; (if document_ptr \ set document_ptrs then return document_ptr else error SegmentationFault)}" definition a_get_owner_document_tups :: "(((_) object_ptr \ bool) \ ((_) object_ptr \ unit \ (_, (_) document_ptr) dom_prog)) list" where "a_get_owner_document_tups = [ (is_element_ptr, a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast), (is_character_data_ptr, a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast), (is_document_ptr, a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast) ]" definition a_get_owner_document :: "(_) object_ptr \ (_, (_) document_ptr) dom_prog" where "a_get_owner_document ptr = invoke a_get_owner_document_tups ptr ()" end locale l_get_owner_document_defs = fixes get_owner_document :: "(_::linorder) object_ptr \ (_, (_) document_ptr) dom_prog" locale l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_known_ptr known_ptr + l_get_disconnected_nodes type_wf get_disconnected_nodes get_disconnected_nodes_locs + l_get_root_node get_root_node get_root_node_locs + l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_root_node get_root_node_locs get_disconnected_nodes get_disconnected_nodes_locs + l_get_owner_document_defs get_owner_document for known_ptr :: "(_::linorder) object_ptr \ bool" and type_wf :: "(_) heap \ bool" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" and get_root_node :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr) prog" and get_root_node_locs :: "((_) heap \ (_) heap \ bool) set" and get_owner_document :: "(_) object_ptr \ ((_) heap, exception, (_) document_ptr) prog" + assumes known_ptr_impl: "known_ptr = a_known_ptr" assumes get_owner_document_impl: "get_owner_document = a_get_owner_document" begin lemmas known_ptr_def = known_ptr_impl[unfolded a_known_ptr_def] lemmas get_owner_document_def = a_get_owner_document_def[folded get_owner_document_impl] lemma get_owner_document_split: "P (invoke (a_get_owner_document_tups @ xs) ptr ()) = ((known_ptr ptr \ P (get_owner_document ptr)) \ (\(known_ptr ptr) \ P (invoke xs ptr ())))" by(auto simp add: get_owner_document_def a_get_owner_document_tups_def known_ptr_def CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: invoke_splits option.splits) lemma get_owner_document_split_asm: "P (invoke (a_get_owner_document_tups @ xs) ptr ()) = (\((known_ptr ptr \ \P (get_owner_document ptr)) \ (\(known_ptr ptr) \ \P (invoke xs ptr ()))))" by(auto simp add: get_owner_document_def a_get_owner_document_tups_def known_ptr_def CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: invoke_splits) lemmas get_owner_document_splits = get_owner_document_split get_owner_document_split_asm lemma get_owner_document_pure [simp]: "pure (get_owner_document ptr) h" proof - have "\node_ptr. pure (a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr ()) h" by(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro!: bind_pure_I filter_M_pure_I split: option.splits) moreover have "\document_ptr. pure (a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r document_ptr ()) h" by(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def bind_pure_I) ultimately show ?thesis by(auto simp add: get_owner_document_def a_get_owner_document_tups_def intro!: bind_pure_I split: invoke_splits) qed lemma get_owner_document_ptr_in_heap: assumes "h \ ok (get_owner_document ptr)" shows "ptr |\| object_ptr_kinds h" using assms by(auto simp add: get_owner_document_def invoke_ptr_in_heap dest: is_OK_returns_heap_I) end locale l_get_owner_document = l_get_owner_document_defs + assumes get_owner_document_ptr_in_heap: "h \ ok (get_owner_document ptr) \ ptr |\| object_ptr_kinds h" assumes get_owner_document_pure [simp]: "pure (get_owner_document ptr) h" global_interpretation l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_root_node get_root_node_locs get_disconnected_nodes get_disconnected_nodes_locs defines get_owner_document_tups = "l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_owner_document_tups get_root_node get_disconnected_nodes" and get_owner_document = "l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_owner_document get_root_node get_disconnected_nodes" and get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r = "l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r get_root_node get_disconnected_nodes" . interpretation i_get_owner_document?: l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_parent get_parent_locs known_ptr type_wf get_disconnected_nodes get_disconnected_nodes_locs get_root_node get_root_node_locs get_owner_document using instances apply(auto simp add: l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms_def)[1] by(auto simp add: get_owner_document_tups_def get_owner_document_def get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def)[1] declare l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma get_owner_document_is_l_get_owner_document [instances]: "l_get_owner_document get_owner_document" using get_owner_document_ptr_in_heap by(auto simp add: l_get_owner_document_def) subsubsection \remove\_child\ locale l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_get_child_nodes_defs get_child_nodes get_child_nodes_locs + l_set_child_nodes_defs set_child_nodes set_child_nodes_locs + l_get_parent_defs get_parent get_parent_locs + l_get_owner_document_defs get_owner_document + l_get_disconnected_nodes_defs get_disconnected_nodes get_disconnected_nodes_locs + l_set_disconnected_nodes_defs set_disconnected_nodes set_disconnected_nodes_locs for get_child_nodes :: "(_::linorder) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" and set_child_nodes :: "(_) object_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_child_nodes_locs :: "(_) object_ptr \ ((_) heap, exception, unit) prog set" and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" and get_owner_document :: "(_) object_ptr \ ((_) heap, exception, (_) document_ptr) prog" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" begin definition a_remove_child :: "(_) object_ptr \ (_) node_ptr \ (_, unit) dom_prog" where "a_remove_child ptr child = do { children \ get_child_nodes ptr; if child \ set children then error NotFoundError else do { owner_document \ get_owner_document (cast child); disc_nodes \ get_disconnected_nodes owner_document; set_disconnected_nodes owner_document (child # disc_nodes); set_child_nodes ptr (remove1 child children) } }" definition a_remove_child_locs :: "(_) object_ptr \ (_) document_ptr \ (_, unit) dom_prog set" where "a_remove_child_locs ptr owner_document = set_child_nodes_locs ptr \ set_disconnected_nodes_locs owner_document" definition a_remove :: "(_) node_ptr \ (_, unit) dom_prog" where "a_remove node_ptr = do { parent_opt \ get_parent node_ptr; (case parent_opt of Some parent \ do { a_remove_child parent node_ptr; return () } | None \ return ()) }" end locale l_remove_child_defs = fixes remove_child :: "(_::linorder) object_ptr \ (_) node_ptr \ (_, unit) dom_prog" fixes remove_child_locs :: "(_) object_ptr \ (_) document_ptr \ (_, unit) dom_prog set" locale l_remove_defs = fixes remove :: "(_) node_ptr \ (_, unit) dom_prog" locale l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs + l_remove_child_defs + l_remove_defs + l_get_parent + l_get_owner_document + l_set_child_nodes_get_child_nodes + l_set_child_nodes_get_disconnected_nodes + l_set_disconnected_nodes_get_disconnected_nodes + l_set_disconnected_nodes_get_child_nodes + assumes remove_child_impl: "remove_child = a_remove_child" assumes remove_child_locs_impl: "remove_child_locs = a_remove_child_locs" assumes remove_impl: "remove = a_remove" begin lemmas remove_child_def = a_remove_child_def[folded remove_child_impl] lemmas remove_child_locs_def = a_remove_child_locs_def[folded remove_child_locs_impl] lemmas remove_def = a_remove_def[folded remove_child_impl remove_impl] lemma remove_child_ptr_in_heap: assumes "h \ ok (remove_child ptr child)" shows "ptr |\| object_ptr_kinds h" proof - obtain children where children: "h \ get_child_nodes ptr \\<^sub>r children" using assms by(auto simp add: remove_child_def) moreover have "children \ []" using assms calculation by(auto simp add: remove_child_def elim!: bind_is_OK_E2) ultimately show ?thesis using assms(1) get_child_nodes_ptr_in_heap by blast qed lemma remove_child_child_in_heap: assumes "h \ remove_child ptr' child \\<^sub>h h'" shows "child |\| node_ptr_kinds h" using assms - apply(auto simp add: remove_child_def elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] split: if_splits)[1] + apply(auto simp add: remove_child_def + elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] + split: if_splits)[1] by (meson is_OK_returns_result_I local.get_owner_document_ptr_in_heap node_ptr_kinds_commutes) lemma remove_child_in_disconnected_nodes: (* assumes "known_ptrs h" *) assumes "h \ remove_child ptr child \\<^sub>h h'" assumes "h \ get_owner_document (cast child) \\<^sub>r owner_document" assumes "h' \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes" shows "child \ set disc_nodes" proof - obtain prev_disc_nodes h2 children where disc_nodes: "h \ get_disconnected_nodes owner_document \\<^sub>r prev_disc_nodes" and h2: "h \ set_disconnected_nodes owner_document (child # prev_disc_nodes) \\<^sub>h h2" and h': "h2 \ set_child_nodes ptr (remove1 child children) \\<^sub>h h'" using assms(1) apply(auto simp add: remove_child_def elim!: bind_returns_heap_E - dest!: returns_result_eq[OF assms(2)] pure_returns_heap_eq[rotated, OF get_owner_document_pure] + dest!: returns_result_eq[OF assms(2)] + pure_returns_heap_eq[rotated, OF get_owner_document_pure] pure_returns_heap_eq[rotated, OF get_child_nodes_pure] split: if_splits)[1] by (metis get_disconnected_nodes_pure pure_returns_heap_eq) have "h2 \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes" apply(rule reads_writes_separate_backwards[OF get_disconnected_nodes_reads set_child_nodes_writes h' assms(3)]) by (simp add: set_child_nodes_get_disconnected_nodes) then show ?thesis by (metis (no_types, lifting) h2 set_disconnected_nodes_get_disconnected_nodes list.set_intros(1) select_result_I2) qed lemma remove_child_writes [simp]: "writes (remove_child_locs ptr |h \ get_owner_document (cast child)|\<^sub>r) (remove_child ptr child) h h'" apply(auto simp add: remove_child_def intro!: writes_bind_pure[OF get_child_nodes_pure] writes_bind_pure[OF get_owner_document_pure] writes_bind_pure[OF get_disconnected_nodes_pure])[1] by(auto simp add: remove_child_locs_def set_disconnected_nodes_writes writes_union_right_I set_child_nodes_writes writes_union_left_I intro!: writes_bind) lemma remove_writes: - "writes (remove_child_locs (the |h \ get_parent child|\<^sub>r) |h \ get_owner_document (cast child)|\<^sub>r) (remove child) h h'" + "writes (remove_child_locs (the |h \ get_parent child|\<^sub>r) |h \ get_owner_document (cast child)|\<^sub>r) +(remove child) h h'" by(auto simp add: remove_def intro!: writes_bind_pure split: option.splits) lemma remove_child_children_subset: assumes "h \ remove_child parent child \\<^sub>h h'" and "h \ get_child_nodes ptr \\<^sub>r children" and "h' \ get_child_nodes ptr \\<^sub>r children'" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" shows "set children' \ set children" proof - obtain ptr_children owner_document h2 disc_nodes where owner_document: "h \ get_owner_document (cast child) \\<^sub>r owner_document" and ptr_children: "h \ get_child_nodes parent \\<^sub>r ptr_children" and disc_nodes: "h \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes" and h2: "h \ set_disconnected_nodes owner_document (child # disc_nodes) \\<^sub>h h2" and h': "h2 \ set_child_nodes parent (remove1 child ptr_children) \\<^sub>h h'" using assms(1) by(auto simp add: remove_child_def elim!: bind_returns_heap_E dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] pure_returns_heap_eq[rotated, OF get_disconnected_nodes_pure] pure_returns_heap_eq[rotated, OF get_child_nodes_pure] split: if_splits) have "parent |\| object_ptr_kinds h" using get_child_nodes_ptr_in_heap ptr_children by blast have "object_ptr_kinds h = object_ptr_kinds h2" apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", OF set_disconnected_nodes_writes h2]) using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) have "type_wf h2" using type_wf writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h2] using set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) have "h2 \ get_child_nodes ptr \\<^sub>r children" using get_child_nodes_reads set_disconnected_nodes_writes h2 assms(2) apply(rule reads_writes_separate_forwards) by (simp add: set_disconnected_nodes_get_child_nodes) moreover have "h2 \ get_child_nodes parent \\<^sub>r ptr_children" using get_child_nodes_reads set_disconnected_nodes_writes h2 ptr_children apply(rule reads_writes_separate_forwards) by (simp add: set_disconnected_nodes_get_child_nodes) moreover have "ptr \ parent \ h2 \ get_child_nodes ptr \\<^sub>r children = h' \ get_child_nodes ptr \\<^sub>r children" using get_child_nodes_reads set_child_nodes_writes h' apply(rule reads_writes_preserved) by (metis set_child_nodes_get_child_nodes_different_pointers) moreover have "h' \ get_child_nodes parent \\<^sub>r remove1 child ptr_children" using h' set_child_nodes_get_child_nodes known_ptrs type_wf known_ptrs_known_ptr \parent |\| object_ptr_kinds h\ \object_ptr_kinds h = object_ptr_kinds h2\ \type_wf h2\ by fast moreover have "set ( remove1 child ptr_children) \ set ptr_children" by (simp add: set_remove1_subset) ultimately show ?thesis by (metis assms(3) order_refl returns_result_eq) qed lemma remove_child_pointers_preserved: assumes "w \ remove_child_locs ptr owner_document" assumes "h \ w \\<^sub>h h'" shows "object_ptr_kinds h = object_ptr_kinds h'" using assms using set_child_nodes_pointers_preserved using set_disconnected_nodes_pointers_preserved unfolding remove_child_locs_def by auto lemma remove_child_types_preserved: assumes "w \ remove_child_locs ptr owner_document" assumes "h \ w \\<^sub>h h'" shows "type_wf h = type_wf h'" using assms using set_child_nodes_types_preserved using set_disconnected_nodes_types_preserved unfolding remove_child_locs_def by auto end locale l_remove_child = l_type_wf + l_known_ptrs + l_remove_child_defs + l_get_owner_document_defs + l_get_child_nodes_defs + l_get_disconnected_nodes_defs + assumes remove_child_writes: - "writes (remove_child_locs object_ptr |h \ get_owner_document (cast child)|\<^sub>r) (remove_child object_ptr child) h h'" + "writes (remove_child_locs object_ptr |h \ get_owner_document (cast child)|\<^sub>r) +(remove_child object_ptr child) h h'" assumes remove_child_pointers_preserved: "w \ remove_child_locs ptr owner_document \ h \ w \\<^sub>h h' \ object_ptr_kinds h = object_ptr_kinds h'" assumes remove_child_types_preserved: "w \ remove_child_locs ptr owner_document \ h \ w \\<^sub>h h' \ type_wf h = type_wf h'" assumes remove_child_in_disconnected_nodes: "known_ptrs h \ h \ remove_child ptr child \\<^sub>h h' \ h \ get_owner_document (cast child) \\<^sub>r owner_document \ h' \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes \ child \ set disc_nodes" assumes remove_child_ptr_in_heap: "h \ ok (remove_child ptr child) \ ptr |\| object_ptr_kinds h" assumes remove_child_child_in_heap: "h \ remove_child ptr' child \\<^sub>h h' \ child |\| node_ptr_kinds h" assumes remove_child_children_subset: "known_ptrs h \ type_wf h \ h \ remove_child parent child \\<^sub>h h' \ h \ get_child_nodes ptr \\<^sub>r children \ h' \ get_child_nodes ptr \\<^sub>r children' \ set children' \ set children" locale l_remove global_interpretation l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_child_nodes get_child_nodes_locs set_child_nodes set_child_nodes_locs get_parent get_parent_locs get_owner_document get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs defines remove = "l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_remove get_child_nodes set_child_nodes get_parent get_owner_document get_disconnected_nodes set_disconnected_nodes" and remove_child = "l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_remove_child get_child_nodes set_child_nodes get_owner_document get_disconnected_nodes set_disconnected_nodes" and remove_child_locs = "l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_remove_child_locs set_child_nodes_locs set_disconnected_nodes_locs" . interpretation i_remove_child?: l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_child_nodes get_child_nodes_locs set_child_nodes set_child_nodes_locs get_parent get_parent_locs get_owner_document get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs remove_child remove_child_locs remove type_wf known_ptr known_ptrs using instances apply(simp add: l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms_def) by(simp add: remove_child_def remove_child_locs_def remove_def) declare l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma remove_child_is_l_remove_child [instances]: "l_remove_child type_wf known_ptr known_ptrs remove_child remove_child_locs get_owner_document get_child_nodes get_disconnected_nodes" using instances apply(auto simp add: l_remove_child_def l_remove_child_axioms_def)[1] (*slow, ca 1min *) using remove_child_pointers_preserved apply(blast) using remove_child_pointers_preserved apply(blast) using remove_child_types_preserved apply(blast) using remove_child_types_preserved apply(blast) using remove_child_in_disconnected_nodes apply(blast) using remove_child_ptr_in_heap apply(blast) using remove_child_child_in_heap apply(blast) using remove_child_children_subset apply(blast) done subsubsection \adopt\_node\ locale l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_get_owner_document_defs get_owner_document + l_get_parent_defs get_parent get_parent_locs + l_remove_child_defs remove_child remove_child_locs + l_get_disconnected_nodes_defs get_disconnected_nodes get_disconnected_nodes_locs + l_set_disconnected_nodes_defs set_disconnected_nodes set_disconnected_nodes_locs for get_owner_document :: "(_::linorder) object_ptr \ ((_) heap, exception, (_) document_ptr) prog" and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" and remove_child :: "(_) object_ptr \ (_) node_ptr \ ((_) heap, exception, unit) prog" and remove_child_locs :: "(_) object_ptr \ (_) document_ptr \ ((_) heap, exception, unit) prog set" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" begin definition a_adopt_node :: "(_) document_ptr \ (_) node_ptr \ (_, unit) dom_prog" where "a_adopt_node document node = do { old_document \ get_owner_document (cast node); parent_opt \ get_parent node; (case parent_opt of Some parent \ do { remove_child parent node } | None \ do { return () }); (if document \ old_document then do { old_disc_nodes \ get_disconnected_nodes old_document; set_disconnected_nodes old_document (remove1 node old_disc_nodes); disc_nodes \ get_disconnected_nodes document; set_disconnected_nodes document (node # disc_nodes) } else do { return () }) }" definition a_adopt_node_locs :: "(_) object_ptr option \ (_) document_ptr \ (_) document_ptr \ (_, unit) dom_prog set" where "a_adopt_node_locs parent owner_document document_ptr = ((if parent = None then {} else remove_child_locs (the parent) owner_document) \ set_disconnected_nodes_locs document_ptr \ set_disconnected_nodes_locs owner_document)" end locale l_adopt_node_defs = fixes adopt_node :: "(_) document_ptr \ (_) node_ptr \ (_, unit) dom_prog" fixes adopt_node_locs :: "(_) object_ptr option \ (_) document_ptr \ (_) document_ptr \ (_, unit) dom_prog set" global_interpretation l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_owner_document get_parent get_parent_locs remove_child remove_child_locs get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs defines adopt_node = "l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_adopt_node get_owner_document get_parent remove_child get_disconnected_nodes set_disconnected_nodes" and adopt_node_locs = "l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_adopt_node_locs remove_child_locs set_disconnected_nodes_locs" . locale l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_owner_document get_parent get_parent_locs remove_child remove_child_locs get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs + l_adopt_node_defs adopt_node adopt_node_locs + l_get_owner_document get_owner_document + l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes get_child_nodes_locs known_ptrs get_parent get_parent_locs + l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_child_nodes get_child_nodes_locs set_child_nodes set_child_nodes_locs get_parent get_parent_locs get_owner_document get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs remove_child remove_child_locs remove type_wf known_ptr known_ptrs + l_set_disconnected_nodes_get_disconnected_nodes type_wf get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs for get_owner_document :: "(_::linorder) object_ptr \ ((_) heap, exception, (_) document_ptr) prog" and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" and remove_child :: "(_) object_ptr \ (_) node_ptr \ ((_) heap, exception, unit) prog" and remove_child_locs :: "(_) object_ptr \ (_) document_ptr \ ((_) heap, exception, unit) prog set" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" and adopt_node :: "(_) document_ptr \ (_) node_ptr \ ((_) heap, exception, unit) prog" and adopt_node_locs :: "(_) object_ptr option \ (_) document_ptr \ (_) document_ptr \ ((_) heap, exception, unit) prog set" and known_ptr :: "(_) object_ptr \ bool" and type_wf :: "(_) heap \ bool" and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" and known_ptrs :: "(_) heap \ bool" and set_child_nodes :: "(_) object_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_child_nodes_locs :: "(_) object_ptr \ ((_) heap, exception, unit) prog set" and remove :: "(_) node_ptr \ ((_) heap, exception, unit) prog" + assumes adopt_node_impl: "adopt_node = a_adopt_node" assumes adopt_node_locs_impl: "adopt_node_locs = a_adopt_node_locs" begin lemmas adopt_node_def = a_adopt_node_def[folded adopt_node_impl] lemmas adopt_node_locs_def = a_adopt_node_locs_def[folded adopt_node_locs_impl] lemma adopt_node_writes: shows "writes (adopt_node_locs |h \ get_parent node|\<^sub>r |h \ get_owner_document (cast node)|\<^sub>r document_ptr) (adopt_node document_ptr node) h h'" apply(auto simp add: adopt_node_def adopt_node_locs_def intro!: writes_bind_pure[OF get_owner_document_pure] writes_bind_pure[OF get_parent_pure] writes_bind_pure[OF get_disconnected_nodes_pure] split: option.splits)[1] apply(auto intro!: writes_bind)[1] apply (simp add: set_disconnected_nodes_writes writes_union_right_I) apply (simp add: set_disconnected_nodes_writes writes_union_left_I writes_union_right_I) apply(auto intro!: writes_bind)[1] apply (metis (no_types, lifting) remove_child_writes select_result_I2 writes_union_left_I) apply (simp add: set_disconnected_nodes_writes writes_union_right_I) by(auto intro: writes_subset[OF set_disconnected_nodes_writes] writes_subset[OF remove_child_writes]) lemma adopt_node_children_subset: assumes "h \ adopt_node owner_document node \\<^sub>h h'" and "h \ get_child_nodes ptr \\<^sub>r children" and "h' \ get_child_nodes ptr \\<^sub>r children'" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" shows "set children' \ set children" proof - obtain old_document parent_opt h2 where old_document: "h \ get_owner_document (cast node) \\<^sub>r old_document" and parent_opt: "h \ get_parent node \\<^sub>r parent_opt" and - h2: "h \ (case parent_opt of Some parent \ do { remove_child parent node } | None \ do { return ()}) \\<^sub>h h2" + h2: "h \ (case parent_opt of Some parent \ do { remove_child parent node } | +None \ do { return ()}) \\<^sub>h h2" and h': "h2 \ (if owner_document \ old_document then do { old_disc_nodes \ get_disconnected_nodes old_document; set_disconnected_nodes old_document (remove1 node old_disc_nodes); disc_nodes \ get_disconnected_nodes owner_document; set_disconnected_nodes owner_document (node # disc_nodes) } else do { return () }) \\<^sub>h h'" using assms(1) by(auto simp add: adopt_node_def elim!: bind_returns_heap_E dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] pure_returns_heap_eq[rotated, OF get_parent_pure]) have "h2 \ get_child_nodes ptr \\<^sub>r children'" proof (cases "owner_document \ old_document") case True then obtain h3 old_disc_nodes disc_nodes where old_disc_nodes: "h2 \ get_disconnected_nodes old_document \\<^sub>r old_disc_nodes" and h3: "h2 \ set_disconnected_nodes old_document (remove1 node old_disc_nodes) \\<^sub>h h3" and old_disc_nodes: "h3 \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes" and h': "h3 \ set_disconnected_nodes owner_document (node # disc_nodes) \\<^sub>h h'" using h' by(auto elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] ) have "h3 \ get_child_nodes ptr \\<^sub>r children'" using get_child_nodes_reads set_disconnected_nodes_writes h' assms(3) apply(rule reads_writes_separate_backwards) by (simp add: set_disconnected_nodes_get_child_nodes) show ?thesis using get_child_nodes_reads set_disconnected_nodes_writes h3 \h3 \ get_child_nodes ptr \\<^sub>r children'\ apply(rule reads_writes_separate_backwards) by (simp add: set_disconnected_nodes_get_child_nodes) next case False then show ?thesis using h' assms(3) by(auto) qed show ?thesis proof (insert h2, induct parent_opt) case None then show ?case using assms by(auto dest!: returns_result_eq[OF \h2 \ get_child_nodes ptr \\<^sub>r children'\]) next case (Some option) then show ?case - using assms(2) \h2 \ get_child_nodes ptr \\<^sub>r children'\ remove_child_children_subset known_ptrs type_wf + using assms(2) \h2 \ get_child_nodes ptr \\<^sub>r children'\ remove_child_children_subset known_ptrs + type_wf by simp qed qed lemma adopt_node_child_in_heap: assumes "h \ ok (adopt_node document_ptr child)" shows "child |\| node_ptr_kinds h" using assms apply(auto simp add: adopt_node_def elim!: bind_is_OK_E)[1] using get_owner_document_pure get_parent_ptr_in_heap pure_returns_heap_eq by fast lemma adopt_node_pointers_preserved: assumes "w \ adopt_node_locs parent owner_document document_ptr" assumes "h \ w \\<^sub>h h'" shows "object_ptr_kinds h = object_ptr_kinds h'" using assms using set_disconnected_nodes_pointers_preserved using remove_child_pointers_preserved unfolding adopt_node_locs_def by (auto split: if_splits) lemma adopt_node_types_preserved: assumes "w \ adopt_node_locs parent owner_document document_ptr" assumes "h \ w \\<^sub>h h'" shows "type_wf h = type_wf h'" using assms using remove_child_types_preserved using set_disconnected_nodes_types_preserved unfolding adopt_node_locs_def by (auto split: if_splits) end -locale l_adopt_node = l_type_wf + l_known_ptrs + l_get_parent_defs + l_adopt_node_defs + l_get_child_nodes_defs + l_get_owner_document_defs + +locale l_adopt_node = l_type_wf + l_known_ptrs + l_get_parent_defs + l_adopt_node_defs + + l_get_child_nodes_defs + l_get_owner_document_defs + assumes adopt_node_writes: "writes (adopt_node_locs |h \ get_parent node|\<^sub>r |h \ get_owner_document (cast node)|\<^sub>r document_ptr) (adopt_node document_ptr node) h h'" assumes adopt_node_pointers_preserved: "w \ adopt_node_locs parent owner_document document_ptr \ h \ w \\<^sub>h h' \ object_ptr_kinds h = object_ptr_kinds h'" assumes adopt_node_types_preserved: "w \ adopt_node_locs parent owner_document document_ptr \ h \ w \\<^sub>h h' \ type_wf h = type_wf h'" assumes adopt_node_child_in_heap: "h \ ok (adopt_node document_ptr child) \ child |\| node_ptr_kinds h" assumes adopt_node_children_subset: "h \ adopt_node owner_document node \\<^sub>h h' \ h \ get_child_nodes ptr \\<^sub>r children \ h' \ get_child_nodes ptr \\<^sub>r children' \ known_ptrs h \ type_wf h \ set children' \ set children" interpretation i_adopt_node?: l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_owner_document get_parent get_parent_locs remove_child remove_child_locs get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs adopt_node adopt_node_locs known_ptr type_wf get_child_nodes get_child_nodes_locs known_ptrs set_child_nodes set_child_nodes_locs remove apply(unfold_locales) by(auto simp add: adopt_node_def adopt_node_locs_def) declare l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma adopt_node_is_l_adopt_node [instances]: "l_adopt_node type_wf known_ptr known_ptrs get_parent adopt_node adopt_node_locs get_child_nodes get_owner_document" using instances by (simp add: l_adopt_node_axioms_def adopt_node_child_in_heap adopt_node_children_subset adopt_node_pointers_preserved adopt_node_types_preserved adopt_node_writes l_adopt_node_def) subsubsection \insert\_before\ locale l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_get_parent_defs get_parent get_parent_locs + l_get_child_nodes_defs get_child_nodes get_child_nodes_locs + l_set_child_nodes_defs set_child_nodes set_child_nodes_locs + l_get_ancestors_defs get_ancestors get_ancestors_locs + l_adopt_node_defs adopt_node adopt_node_locs + l_set_disconnected_nodes_defs set_disconnected_nodes set_disconnected_nodes_locs + l_get_disconnected_nodes_defs get_disconnected_nodes get_disconnected_nodes_locs + l_get_owner_document_defs get_owner_document for get_parent :: "(_) node_ptr \ ((_) heap, exception, (_::linorder) object_ptr option) prog" and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" and set_child_nodes :: "(_) object_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_child_nodes_locs :: "(_) object_ptr \ ((_) heap, exception, unit) prog set" and get_ancestors :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr list) prog" and get_ancestors_locs :: "((_) heap \ (_) heap \ bool) set" and adopt_node :: "(_) document_ptr \ (_) node_ptr \ ((_) heap, exception, unit) prog" and adopt_node_locs :: "(_) object_ptr option \ (_) document_ptr \ (_) document_ptr \ ((_) heap, exception, unit) prog set" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" and get_owner_document :: "(_) object_ptr \ ((_) heap, exception, (_) document_ptr) prog" begin definition a_next_sibling :: "(_) node_ptr \ (_, (_) node_ptr option) dom_prog" where "a_next_sibling node_ptr = do { parent_opt \ get_parent node_ptr; (case parent_opt of Some parent \ do { children \ get_child_nodes parent; (case (dropWhile (\ptr. ptr = node_ptr) (dropWhile (\ptr. ptr \ node_ptr) children)) of x#_ \ return (Some x) | [] \ return None)} | None \ return None) }" fun insert_before_list :: "'xyz \ 'xyz option \ 'xyz list \ 'xyz list" where "insert_before_list v (Some reference) (x#xs) = (if reference = x then v#x#xs else x # insert_before_list v (Some reference) xs)" | "insert_before_list v (Some _) [] = [v]" | "insert_before_list v None xs = xs @ [v]" definition a_insert_node :: "(_) object_ptr \ (_) node_ptr \ (_) node_ptr option \ (_, unit) dom_prog" where "a_insert_node ptr new_child reference_child_opt = do { children \ get_child_nodes ptr; set_child_nodes ptr (insert_before_list new_child reference_child_opt children) }" definition a_ensure_pre_insertion_validity :: "(_) node_ptr \ (_) object_ptr \ (_) node_ptr option \ (_, unit) dom_prog" where "a_ensure_pre_insertion_validity node parent child_opt = do { (if is_character_data_ptr_kind parent then error HierarchyRequestError else return ()); ancestors \ get_ancestors parent; (if cast node \ set ancestors then error HierarchyRequestError else return ()); (case child_opt of Some child \ do { child_parent \ get_parent child; (if child_parent \ Some parent then error NotFoundError else return ())} | None \ return ()); children \ get_child_nodes parent; (if children \ [] \ is_document_ptr parent then error HierarchyRequestError else return ()); (if is_character_data_ptr node \ is_document_ptr parent then error HierarchyRequestError else return ()) }" definition a_insert_before :: "(_) object_ptr \ (_) node_ptr \ (_) node_ptr option \ (_, unit) dom_prog" where "a_insert_before ptr node child = do { a_ensure_pre_insertion_validity node ptr child; reference_child \ (if Some node = child then a_next_sibling node else return child); owner_document \ get_owner_document ptr; adopt_node owner_document node; disc_nodes \ get_disconnected_nodes owner_document; set_disconnected_nodes owner_document (remove1 node disc_nodes); a_insert_node ptr node reference_child }" definition a_insert_before_locs :: "(_) object_ptr \ (_) object_ptr option \ (_) document_ptr \ (_) document_ptr \ (_, unit) dom_prog set" where "a_insert_before_locs ptr old_parent child_owner_document ptr_owner_document = adopt_node_locs old_parent child_owner_document ptr_owner_document \ set_child_nodes_locs ptr \ set_disconnected_nodes_locs ptr_owner_document" end locale l_insert_before_defs = fixes insert_before :: "(_) object_ptr \ (_) node_ptr \ (_) node_ptr option \ (_, unit) dom_prog" fixes insert_before_locs :: "(_) object_ptr \ (_) object_ptr option \ (_) document_ptr \ (_) document_ptr \ (_, unit) dom_prog set" locale l_append_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_insert_before_defs begin definition "a_append_child ptr child = insert_before ptr child None" end locale l_append_child_defs = fixes append_child :: "(_) object_ptr \ (_) node_ptr \ (_, unit) dom_prog" locale l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_parent get_parent_locs get_child_nodes get_child_nodes_locs set_child_nodes set_child_nodes_locs get_ancestors get_ancestors_locs adopt_node adopt_node_locs set_disconnected_nodes set_disconnected_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs get_owner_document + l_insert_before_defs insert_before insert_before_locs + l_append_child_defs append_child + l_set_child_nodes_get_child_nodes type_wf known_ptr get_child_nodes get_child_nodes_locs set_child_nodes set_child_nodes_locs + l_get_ancestors get_ancestors get_ancestors_locs + l_adopt_node type_wf known_ptr known_ptrs get_parent get_parent_locs adopt_node adopt_node_locs get_child_nodes get_child_nodes_locs get_owner_document + l_set_disconnected_nodes type_wf set_disconnected_nodes set_disconnected_nodes_locs + l_get_disconnected_nodes type_wf get_disconnected_nodes get_disconnected_nodes_locs + l_get_owner_document get_owner_document + l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes get_child_nodes_locs known_ptrs get_parent get_parent_locs + l_set_disconnected_nodes_get_child_nodes set_disconnected_nodes set_disconnected_nodes_locs get_child_nodes get_child_nodes_locs for get_parent :: "(_) node_ptr \ ((_) heap, exception, (_::linorder) object_ptr option) prog" and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" and set_child_nodes :: "(_) object_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_child_nodes_locs :: "(_) object_ptr \ ((_) heap, exception, unit) prog set" and get_ancestors :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr list) prog" and get_ancestors_locs :: "((_) heap \ (_) heap \ bool) set" and adopt_node :: "(_) document_ptr \ (_) node_ptr \ ((_) heap, exception, unit) prog" and adopt_node_locs :: "(_) object_ptr option \ (_) document_ptr \ (_) document_ptr \ ((_) heap, exception, unit) prog set" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" and get_owner_document :: "(_) object_ptr \ ((_) heap, exception, (_) document_ptr) prog" - and insert_before :: "(_) object_ptr \ (_) node_ptr \ (_) node_ptr option \ ((_) heap, exception, unit) prog" + and insert_before :: + "(_) object_ptr \ (_) node_ptr \ (_) node_ptr option \ ((_) heap, exception, unit) prog" and insert_before_locs :: "(_) object_ptr \ (_) object_ptr option \ (_) document_ptr \ (_) document_ptr \ (_, unit) dom_prog set" and append_child :: "(_) object_ptr \ (_) node_ptr \ ((_) heap, exception, unit) prog" and type_wf :: "(_) heap \ bool" and known_ptr :: "(_) object_ptr \ bool" and known_ptrs :: "(_) heap \ bool" + assumes insert_before_impl: "insert_before = a_insert_before" assumes insert_before_locs_impl: "insert_before_locs = a_insert_before_locs" begin lemmas insert_before_def = a_insert_before_def[folded insert_before_impl] lemmas insert_before_locs_def = a_insert_before_locs_def[folded insert_before_locs_impl] lemma next_sibling_pure [simp]: "pure (a_next_sibling new_child) h" by(auto simp add: a_next_sibling_def get_parent_pure intro!: bind_pure_I split: option.splits list.splits) lemma insert_before_list_in_set: "x \ set (insert_before_list v ref xs) \ x = v \ x \ set xs" apply(induct v ref xs rule: insert_before_list.induct) by(auto) lemma insert_before_list_distinct: "x \ set xs \ distinct xs \ distinct (insert_before_list x ref xs)" apply(induct x ref xs rule: insert_before_list.induct) by(auto simp add: insert_before_list_in_set) lemma insert_before_list_subset: "set xs \ set (insert_before_list x ref xs)" apply(induct x ref xs rule: insert_before_list.induct) by(auto) lemma insert_before_list_node_in_set: "x \ set (insert_before_list x ref xs)" apply(induct x ref xs rule: insert_before_list.induct) by(auto) lemma insert_node_writes: "writes (set_child_nodes_locs ptr) (a_insert_node ptr new_child reference_child_opt) h h'" by(auto simp add: a_insert_node_def set_child_nodes_writes intro!: writes_bind_pure[OF get_child_nodes_pure]) lemma ensure_pre_insertion_validity_pure [simp]: "pure (a_ensure_pre_insertion_validity node ptr child) h" by(auto simp add: a_ensure_pre_insertion_validity_def intro!: bind_pure_I split: option.splits) lemma insert_before_reference_child_not_in_children: assumes "h \ get_parent child \\<^sub>r Some parent" and "ptr \ parent" and "\is_character_data_ptr_kind ptr" and "h \ get_ancestors ptr \\<^sub>r ancestors" and "cast node \ set ancestors" shows "h \ insert_before ptr node (Some child) \\<^sub>e NotFoundError" proof - have "h \ a_ensure_pre_insertion_validity node ptr (Some child) \\<^sub>e NotFoundError" using assms unfolding insert_before_def a_ensure_pre_insertion_validity_def by auto (simp | rule bind_returns_error_I2)+ then show ?thesis unfolding insert_before_def by auto qed lemma insert_before_ptr_in_heap: assumes "h \ ok (insert_before ptr node reference_child)" shows "ptr |\| object_ptr_kinds h" using assms apply(auto simp add: insert_before_def elim!: bind_is_OK_E)[1] - by (metis (mono_tags, lifting) ensure_pre_insertion_validity_pure is_OK_returns_result_I local.get_owner_document_ptr_in_heap next_sibling_pure pure_returns_heap_eq return_returns_heap) + by (metis (mono_tags, lifting) ensure_pre_insertion_validity_pure is_OK_returns_result_I + local.get_owner_document_ptr_in_heap next_sibling_pure pure_returns_heap_eq return_returns_heap) lemma insert_before_child_in_heap: assumes "h \ ok (insert_before ptr node reference_child)" shows "node |\| node_ptr_kinds h" using assms apply(auto simp add: insert_before_def elim!: bind_is_OK_E)[1] by (metis (mono_tags, lifting) ensure_pre_insertion_validity_pure is_OK_returns_heap_I l_get_owner_document.get_owner_document_pure local.adopt_node_child_in_heap local.l_get_owner_document_axioms next_sibling_pure pure_returns_heap_eq return_pure) lemma insert_node_children_remain_distinct: assumes insert_node: "h \ a_insert_node ptr new_child reference_child_opt \\<^sub>h h2" and "h \ get_child_nodes ptr \\<^sub>r children" and "new_child \ set children" and "\ptr children. h \ get_child_nodes ptr \\<^sub>r children \ distinct children" and known_ptr: "known_ptr ptr" and type_wf: "type_wf h" shows "\ptr children. h2 \ get_child_nodes ptr \\<^sub>r children \ distinct children" proof - fix ptr' children' assume a1: "h2 \ get_child_nodes ptr' \\<^sub>r children'" then show "distinct children'" proof (cases "ptr = ptr'") case True have "h2 \ get_child_nodes ptr \\<^sub>r (insert_before_list new_child reference_child_opt children)" using assms(1) assms(2) apply(auto simp add: a_insert_node_def elim!: bind_returns_heap_E)[1] using returns_result_eq set_child_nodes_get_child_nodes known_ptr type_wf using pure_returns_heap_eq by fastforce then show ?thesis using True a1 assms(2) assms(3) assms(4) insert_before_list_distinct returns_result_eq by fastforce next case False have "h \ get_child_nodes ptr' \\<^sub>r children'" using get_child_nodes_reads insert_node_writes insert_node a1 apply(rule reads_writes_separate_backwards) by (meson False set_child_nodes_get_child_nodes_different_pointers) then show ?thesis using assms(4) by blast qed qed lemma insert_before_writes: "writes (insert_before_locs ptr |h \ get_parent child|\<^sub>r |h \ get_owner_document (cast child)|\<^sub>r |h \ get_owner_document ptr|\<^sub>r) (insert_before ptr child ref) h h'" apply(auto simp add: insert_before_def insert_before_locs_def a_insert_node_def intro!: writes_bind)[1] apply (metis (no_types, hide_lams) ensure_pre_insertion_validity_pure local.adopt_node_writes local.get_owner_document_pure next_sibling_pure pure_returns_heap_eq select_result_I2 sup_commute writes_union_right_I) apply (metis (no_types, hide_lams) ensure_pre_insertion_validity_pure next_sibling_pure pure_returns_heap_eq select_result_I2 set_disconnected_nodes_writes writes_union_right_I) apply (simp add: set_child_nodes_writes writes_union_left_I writes_union_right_I) apply (metis (no_types, hide_lams) adopt_node_writes ensure_pre_insertion_validity_pure get_owner_document_pure pure_returns_heap_eq select_result_I2 writes_union_left_I) apply (metis (no_types, hide_lams) ensure_pre_insertion_validity_pure pure_returns_heap_eq select_result_I2 set_disconnected_nodes_writes writes_union_right_I) by (simp add: set_child_nodes_writes writes_union_left_I writes_union_right_I) end locale l_append_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_append_child_defs + l_append_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs + assumes append_child_impl: "append_child = a_append_child" begin lemmas append_child_def = a_append_child_def[folded append_child_impl] end locale l_insert_before = l_insert_before_defs locale l_append_child = l_append_child_defs global_interpretation l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_parent get_parent_locs get_child_nodes get_child_nodes_locs set_child_nodes set_child_nodes_locs get_ancestors get_ancestors_locs adopt_node adopt_node_locs set_disconnected_nodes set_disconnected_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs get_owner_document defines next_sibling = "l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_next_sibling get_parent get_child_nodes" and insert_node = "l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_insert_node get_child_nodes set_child_nodes" and ensure_pre_insertion_validity = "l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_ensure_pre_insertion_validity get_parent get_child_nodes get_ancestors" and insert_before = "l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_insert_before get_parent get_child_nodes set_child_nodes get_ancestors adopt_node set_disconnected_nodes get_disconnected_nodes get_owner_document" and insert_before_locs = "l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_insert_before_locs set_child_nodes_locs adopt_node_locs set_disconnected_nodes_locs" . global_interpretation l_append_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs insert_before defines append_child = "l_append_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_append_child insert_before" . interpretation i_insert_before?: l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_parent get_parent_locs get_child_nodes get_child_nodes_locs set_child_nodes set_child_nodes_locs get_ancestors get_ancestors_locs adopt_node adopt_node_locs set_disconnected_nodes set_disconnected_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs get_owner_document insert_before insert_before_locs append_child type_wf known_ptr known_ptrs apply(simp add: l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms_def instances) by (simp add: insert_before_def insert_before_locs_def) declare l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] interpretation i_append_child?: l_append_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M append_child insert_before insert_before_locs apply(simp add: l_append_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def instances append_child_def) done declare l_append_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] subsubsection \create\_element\ locale l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_get_disconnected_nodes_defs get_disconnected_nodes get_disconnected_nodes_locs + l_set_disconnected_nodes_defs set_disconnected_nodes set_disconnected_nodes_locs + - l_set_tag_type_defs set_tag_type set_tag_type_locs + l_set_tag_name_defs set_tag_name set_tag_name_locs for get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" - and set_tag_type :: + and set_tag_name :: "(_) element_ptr \ char list \ ((_) heap, exception, unit) prog" - and set_tag_type_locs :: + and set_tag_name_locs :: "(_) element_ptr \ ((_) heap, exception, unit) prog set" begin -definition a_create_element :: "(_) document_ptr \ tag_type \ (_, (_) element_ptr) dom_prog" +definition a_create_element :: "(_) document_ptr \ tag_name \ (_, (_) element_ptr) dom_prog" where "a_create_element document_ptr tag = do { new_element_ptr \ new_element; - set_tag_type new_element_ptr tag; + set_tag_name new_element_ptr tag; disc_nodes \ get_disconnected_nodes document_ptr; set_disconnected_nodes document_ptr (cast new_element_ptr # disc_nodes); return new_element_ptr }" end locale l_create_element_defs = - fixes create_element :: "(_) document_ptr \ tag_type \ (_, (_) element_ptr) dom_prog" + fixes create_element :: "(_) document_ptr \ tag_name \ (_, (_) element_ptr) dom_prog" global_interpretation l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs - set_tag_type set_tag_type_locs + set_tag_name set_tag_name_locs defines create_element = "l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_create_element get_disconnected_nodes - set_disconnected_nodes set_tag_type" + set_disconnected_nodes set_tag_name" . locale l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = - l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs set_tag_type set_tag_type_locs + + l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_disconnected_nodes get_disconnected_nodes_locs + set_disconnected_nodes set_disconnected_nodes_locs set_tag_name set_tag_name_locs + l_get_disconnected_nodes type_wf get_disconnected_nodes get_disconnected_nodes_locs + - l_set_tag_type type_wf set_tag_type set_tag_type_locs + + l_set_tag_name type_wf set_tag_name set_tag_name_locs + l_create_element_defs create_element + l_known_ptr known_ptr for get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" - and set_tag_type :: "(_) element_ptr \ char list \ ((_) heap, exception, unit) prog" - and set_tag_type_locs :: "(_) element_ptr \ ((_) heap, exception, unit) prog set" + and set_tag_name :: "(_) element_ptr \ char list \ ((_) heap, exception, unit) prog" + and set_tag_name_locs :: "(_) element_ptr \ ((_) heap, exception, unit) prog set" and type_wf :: "(_) heap \ bool" and create_element :: "(_) document_ptr \ char list \ ((_) heap, exception, (_) element_ptr) prog" and known_ptr :: "(_) object_ptr \ bool" + assumes known_ptr_impl: "known_ptr = a_known_ptr" assumes create_element_impl: "create_element = a_create_element" begin lemmas create_element_def = a_create_element_def[folded create_element_impl] lemma create_element_document_in_heap: assumes "h \ ok (create_element document_ptr tag)" shows "document_ptr |\| document_ptr_kinds h" proof - obtain h' where "h \ create_element document_ptr tag \\<^sub>h h'" using assms(1) by auto then obtain new_element_ptr h2 h3 disc_nodes_h3 where new_element_ptr: "h \ new_element \\<^sub>r new_element_ptr" and h2: "h \ new_element \\<^sub>h h2" and - h3: "h2 \ set_tag_type new_element_ptr tag \\<^sub>h h3" and + h3: "h2 \ set_tag_name new_element_ptr tag \\<^sub>h h3" and disc_nodes_h3: "h3 \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_h3" and h': "h3 \ set_disconnected_nodes document_ptr (cast new_element_ptr # disc_nodes_h3) \\<^sub>h h'" by(auto simp add: create_element_def elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] ) have object_ptr_kinds_eq_h: "object_ptr_kinds h2 = object_ptr_kinds h |\| {|cast new_element_ptr|}" using new_element_new_ptr h2 new_element_ptr by blast moreover have object_ptr_kinds_eq_h2: "object_ptr_kinds h3 = object_ptr_kinds h2" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", OF set_tag_type_writes h3]) - using set_tag_type_pointers_preserved + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", + OF set_tag_name_writes h3]) + using set_tag_name_pointers_preserved by (auto simp add: reflp_def transp_def) moreover have "document_ptr |\| document_ptr_kinds h3" by (meson disc_nodes_h3 is_OK_returns_result_I local.get_disconnected_nodes_ptr_in_heap) ultimately show ?thesis by (auto simp add: document_ptr_kinds_def) qed lemma create_element_known_ptr: assumes "h \ create_element document_ptr tag \\<^sub>r new_element_ptr" shows "known_ptr (cast new_element_ptr)" proof - have "is_element_ptr new_element_ptr" using assms apply(auto simp add: create_element_def elim!: bind_returns_result_E)[1] using new_element_is_element_ptr by blast then show ?thesis - by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs) + by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs) qed end locale l_create_element = l_create_element_defs interpretation - i_create_element?: l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs set_tag_type set_tag_type_locs type_wf create_element known_ptr + i_create_element?: l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_disconnected_nodes get_disconnected_nodes_locs + set_disconnected_nodes set_disconnected_nodes_locs set_tag_name set_tag_name_locs type_wf + create_element known_ptr by(auto simp add: l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms_def create_element_def instances) declare l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] subsubsection \create\_character\_data\ locale l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_set_val_defs set_val set_val_locs + l_get_disconnected_nodes_defs get_disconnected_nodes get_disconnected_nodes_locs + l_set_disconnected_nodes_defs set_disconnected_nodes set_disconnected_nodes_locs for set_val :: "(_) character_data_ptr \ char list \ ((_) heap, exception, unit) prog" and set_val_locs :: "(_) character_data_ptr \ ((_) heap, exception, unit) prog set" and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" begin definition a_create_character_data :: "(_) document_ptr \ string \ (_, (_) character_data_ptr) dom_prog" where "a_create_character_data document_ptr text = do { new_character_data_ptr \ new_character_data; set_val new_character_data_ptr text; disc_nodes \ get_disconnected_nodes document_ptr; set_disconnected_nodes document_ptr (cast new_character_data_ptr # disc_nodes); return new_character_data_ptr }" end locale l_create_character_data_defs = fixes create_character_data :: "(_) document_ptr \ string \ (_, (_) character_data_ptr) dom_prog" global_interpretation l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs set_val set_val_locs get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs defines create_character_data = "l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_create_character_data set_val get_disconnected_nodes set_disconnected_nodes" . locale l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs set_val set_val_locs get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs + l_get_disconnected_nodes type_wf get_disconnected_nodes get_disconnected_nodes_locs + l_set_val type_wf set_val set_val_locs + l_create_character_data_defs create_character_data + l_known_ptr known_ptr for get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" and set_val :: "(_) character_data_ptr \ char list \ ((_) heap, exception, unit) prog" and set_val_locs :: "(_) character_data_ptr \ ((_) heap, exception, unit) prog set" and type_wf :: "(_) heap \ bool" and create_character_data :: "(_) document_ptr \ char list \ ((_) heap, exception, (_) character_data_ptr) prog" and known_ptr :: "(_) object_ptr \ bool" + assumes known_ptr_impl: "known_ptr = a_known_ptr" assumes create_character_data_impl: "create_character_data = a_create_character_data" begin lemmas create_character_data_def = a_create_character_data_def[folded create_character_data_impl] lemma create_character_data_document_in_heap: assumes "h \ ok (create_character_data document_ptr text)" shows "document_ptr |\| document_ptr_kinds h" proof - obtain h' where "h \ create_character_data document_ptr text \\<^sub>h h'" using assms(1) by auto then obtain new_character_data_ptr h2 h3 disc_nodes_h3 where new_character_data_ptr: "h \ new_character_data \\<^sub>r new_character_data_ptr" and h2: "h \ new_character_data \\<^sub>h h2" and h3: "h2 \ set_val new_character_data_ptr text \\<^sub>h h3" and disc_nodes_h3: "h3 \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_h3" and h': "h3 \ set_disconnected_nodes document_ptr (cast new_character_data_ptr # disc_nodes_h3) \\<^sub>h h'" by(auto simp add: create_character_data_def elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] ) have object_ptr_kinds_eq_h: "object_ptr_kinds h2 = object_ptr_kinds h |\| {|cast new_character_data_ptr|}" using new_character_data_new_ptr h2 new_character_data_ptr by blast moreover have object_ptr_kinds_eq_h2: "object_ptr_kinds h3 = object_ptr_kinds h2" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", OF set_val_writes h3]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", + OF set_val_writes h3]) using set_val_pointers_preserved by (auto simp add: reflp_def transp_def) moreover have "document_ptr |\| document_ptr_kinds h3" by (meson disc_nodes_h3 is_OK_returns_result_I local.get_disconnected_nodes_ptr_in_heap) ultimately show ?thesis by (auto simp add: document_ptr_kinds_def) qed lemma create_character_data_known_ptr: assumes "h \ create_character_data document_ptr text \\<^sub>r new_character_data_ptr" shows "known_ptr (cast new_character_data_ptr)" proof - have "is_character_data_ptr new_character_data_ptr" using assms apply(auto simp add: create_character_data_def elim!: bind_returns_result_E)[1] using new_character_data_is_character_data_ptr by blast then show ?thesis - by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs) + by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs) qed end locale l_create_character_data = l_create_character_data_defs interpretation - i_create_character_data?: l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs set_val set_val_locs type_wf create_character_data known_ptr - by(auto simp add: l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms_def create_character_data_def instances) + i_create_character_data?: l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_disconnected_nodes + get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs set_val set_val_locs + type_wf create_character_data known_ptr + by(auto simp add: l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms_def + create_character_data_def instances) declare l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms [instances] subsubsection \create\_character\_data\ locale l_create_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs begin definition a_create_document :: "(_, (_) document_ptr) dom_prog" where "a_create_document = new_document" end locale l_create_document_defs = fixes create_document :: "(_, (_) document_ptr) dom_prog" global_interpretation l_create_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs defines create_document = "l_create_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_create_document" . locale l_create_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_create_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs + l_create_document_defs + assumes create_document_impl: "create_document = a_create_document" begin lemmas create_document_def = create_document_impl[unfolded create_document_def, unfolded a_create_document_def] end locale l_create_document = l_create_document_defs interpretation i_create_document?: l_create_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M create_document by(simp add: l_create_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) declare l_create_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms [instances] subsubsection \tree\_order\ locale l_to_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_get_child_nodes_defs get_child_nodes get_child_nodes_locs for get_child_nodes :: "(_::linorder) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" begin partial_function (dom_prog) a_to_tree_order :: "(_) object_ptr \ (_, (_) object_ptr list) dom_prog" where "a_to_tree_order ptr = (do { children \ get_child_nodes ptr; treeorders \ map_M a_to_tree_order (map (cast) children); return (ptr # concat treeorders) })" end locale l_to_tree_order_defs = fixes to_tree_order :: "(_) object_ptr \ (_, (_) object_ptr list) dom_prog" global_interpretation l_to_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_child_nodes get_child_nodes_locs defines to_tree_order = "l_to_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_to_tree_order get_child_nodes" . declare a_to_tree_order.simps [code] locale l_to_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_child_nodes type_wf known_ptr get_child_nodes get_child_nodes_locs + l_to_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_child_nodes get_child_nodes_locs + l_to_tree_order_defs to_tree_order for known_ptr :: "(_::linorder) object_ptr \ bool" and type_wf :: "(_) heap \ bool" and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" and to_tree_order :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr list) prog" + assumes to_tree_order_impl: "to_tree_order = a_to_tree_order" begin lemmas to_tree_order_def = a_to_tree_order.simps[folded to_tree_order_impl] lemma to_tree_order_pure [simp]: "pure (to_tree_order ptr) h" proof - have "\ptr h h' x. h \ to_tree_order ptr \\<^sub>r x \ h \ to_tree_order ptr \\<^sub>h h' \ h = h'" proof (induct rule: a_to_tree_order.fixp_induct[folded to_tree_order_impl]) case 1 then show ?case by (rule admissible_dom_prog) next case 2 then show ?case by simp next case (3 f) then have "\x h. pure (f x) h" by (metis is_OK_returns_heap_E is_OK_returns_result_E pure_def) then have "\xs h. pure (map_M f xs) h" by(rule map_M_pure_I) then show ?case by(auto elim!: bind_returns_heap_E2) qed then show ?thesis unfolding pure_def by (metis is_OK_returns_heap_E is_OK_returns_result_E) qed end locale l_to_tree_order = fixes to_tree_order :: "(_) object_ptr \ (_, (_) object_ptr list) dom_prog" assumes to_tree_order_pure [simp]: "pure (to_tree_order ptr) h" interpretation i_to_tree_order?: l_to_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes get_child_nodes_locs to_tree_order apply(unfold_locales) by (simp add: to_tree_order_def) declare l_to_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma to_tree_order_is_l_to_tree_order [instances]: "l_to_tree_order to_tree_order" using to_tree_order_pure l_to_tree_order_def by blast subsubsection \first\_in\_tree\_order\ locale l_first_in_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_to_tree_order_defs to_tree_order for to_tree_order :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr list) prog" begin definition a_first_in_tree_order :: "(_) object_ptr \ ((_) object_ptr \ (_, 'result option) dom_prog) \ (_, 'result option) dom_prog" where "a_first_in_tree_order ptr f = (do { tree_order \ to_tree_order ptr; results \ map_filter_M f tree_order; (case results of [] \ return None | x#_\ return (Some x)) })" end locale l_first_in_tree_order_defs = fixes first_in_tree_order :: "(_) object_ptr \ ((_) object_ptr \ (_, 'result option) dom_prog) \ (_, 'result option) dom_prog" global_interpretation l_first_in_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs to_tree_order defines first_in_tree_order = "l_first_in_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_first_in_tree_order to_tree_order" . locale l_first_in_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_first_in_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs to_tree_order + l_first_in_tree_order_defs first_in_tree_order for to_tree_order :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr list) prog" and first_in_tree_order :: "(_) object_ptr \ ((_) object_ptr \ ((_) heap, exception, 'result option) prog) \ ((_) heap, exception, 'result option) prog" + assumes first_in_tree_order_impl: "first_in_tree_order = a_first_in_tree_order" begin lemmas first_in_tree_order_def = first_in_tree_order_impl[unfolded a_first_in_tree_order_def] end locale l_first_in_tree_order interpretation i_first_in_tree_order?: l_first_in_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M to_tree_order first_in_tree_order by unfold_locales (simp add: first_in_tree_order_def) declare l_first_in_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] subsubsection \get\_element\_by\ locale l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_first_in_tree_order_defs first_in_tree_order + l_to_tree_order_defs to_tree_order + l_get_attribute_defs get_attribute get_attribute_locs for to_tree_order :: "(_::linorder) object_ptr \ ((_) heap, exception, (_) object_ptr list) prog" and first_in_tree_order :: "(_) object_ptr \ ((_) object_ptr \ ((_) heap, exception, (_) element_ptr option) prog) \ ((_) heap, exception, (_) element_ptr option) prog" and get_attribute :: "(_) element_ptr \ char list \ ((_) heap, exception, char list option) prog" and get_attribute_locs :: "(_) element_ptr \ ((_) heap \ (_) heap \ bool) set" begin definition a_get_element_by_id :: "(_) object_ptr \ attr_value \ (_, (_) element_ptr option) dom_prog" where "a_get_element_by_id ptr iden = first_in_tree_order ptr (\ptr. (case cast ptr of Some element_ptr \ do { id_opt \ get_attribute element_ptr ''id''; (if id_opt = Some iden then return (Some element_ptr) else return None) } | _ \ return None ))" definition a_get_elements_by_class_name :: "(_) object_ptr \ attr_value \ (_, (_) element_ptr list) dom_prog" where "a_get_elements_by_class_name ptr class_name = to_tree_order ptr \ map_filter_M (\ptr. (case cast ptr of Some element_ptr \ do { class_name_opt \ get_attribute element_ptr ''class''; (if class_name_opt = Some class_name then return (Some element_ptr) else return None) } | _ \ return None))" definition a_get_elements_by_tag_name :: "(_) object_ptr \ attr_value \ (_, (_) element_ptr list) dom_prog" where - "a_get_elements_by_tag_name ptr tag_name = to_tree_order ptr \ + "a_get_elements_by_tag_name ptr tag = to_tree_order ptr \ map_filter_M (\ptr. (case cast ptr of Some element_ptr \ do { - this_tag_name \ get_M element_ptr tag_type; - (if this_tag_name = tag_name then return (Some element_ptr) else return None) + this_tag_name \ get_M element_ptr tag_name; + (if this_tag_name = tag then return (Some element_ptr) else return None) } | _ \ return None))" end locale l_get_element_by_defs = fixes get_element_by_id :: "(_) object_ptr \ attr_value \ (_, (_) element_ptr option) dom_prog" fixes get_elements_by_class_name :: "(_) object_ptr \ attr_value \ (_, (_) element_ptr list) dom_prog" fixes get_elements_by_tag_name :: "(_) object_ptr \ attr_value \ (_, (_) element_ptr list) dom_prog" global_interpretation l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs to_tree_order first_in_tree_order get_attribute get_attribute_locs defines get_element_by_id = "l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_element_by_id first_in_tree_order get_attribute" and - get_elements_by_class_name = "l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_elements_by_class_name to_tree_order get_attribute" + get_elements_by_class_name = "l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_elements_by_class_name +to_tree_order get_attribute" and get_elements_by_tag_name = "l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_get_elements_by_tag_name to_tree_order" . locale l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs to_tree_order first_in_tree_order get_attribute get_attribute_locs + l_get_element_by_defs get_element_by_id get_elements_by_class_name get_elements_by_tag_name + l_first_in_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M to_tree_order first_in_tree_order + l_to_tree_order to_tree_order + l_get_attribute type_wf get_attribute get_attribute_locs for to_tree_order :: "(_::linorder) object_ptr \ ((_) heap, exception, (_) object_ptr list) prog" - and first_in_tree_order :: "(_) object_ptr \ ((_) object_ptr \ ((_) heap, exception, (_) element_ptr option) prog) + and first_in_tree_order :: + "(_) object_ptr \ ((_) object_ptr \ ((_) heap, exception, (_) element_ptr option) prog) \ ((_) heap, exception, (_) element_ptr option) prog" and get_attribute :: "(_) element_ptr \ char list \ ((_) heap, exception, char list option) prog" and get_attribute_locs :: "(_) element_ptr \ ((_) heap \ (_) heap \ bool) set" - and get_element_by_id :: "(_) object_ptr \ char list \ ((_) heap, exception, (_) element_ptr option) prog" - and get_elements_by_class_name :: "(_) object_ptr \ char list \ ((_) heap, exception, (_) element_ptr list) prog" - and get_elements_by_tag_name :: "(_) object_ptr \ char list \ ((_) heap, exception, (_) element_ptr list) prog" + and get_element_by_id :: + "(_) object_ptr \ char list \ ((_) heap, exception, (_) element_ptr option) prog" + and get_elements_by_class_name :: + "(_) object_ptr \ char list \ ((_) heap, exception, (_) element_ptr list) prog" + and get_elements_by_tag_name :: + "(_) object_ptr \ char list \ ((_) heap, exception, (_) element_ptr list) prog" and type_wf :: "(_) heap \ bool" + assumes get_element_by_id_impl: "get_element_by_id = a_get_element_by_id" assumes get_elements_by_class_name_impl: "get_elements_by_class_name = a_get_elements_by_class_name" assumes get_elements_by_tag_name_impl: "get_elements_by_tag_name = a_get_elements_by_tag_name" begin lemmas get_element_by_id_def = get_element_by_id_impl[unfolded a_get_element_by_id_def] lemmas get_elements_by_class_name_def = get_elements_by_class_name_impl[unfolded a_get_elements_by_class_name_def] lemmas get_elements_by_tag_name_def = get_elements_by_tag_name_impl[unfolded a_get_elements_by_tag_name_def] lemma get_element_by_id_result_in_tree_order: assumes "h \ get_element_by_id ptr iden \\<^sub>r Some element_ptr" assumes "h \ to_tree_order ptr \\<^sub>r to" shows "cast element_ptr \ set to" using assms by(auto simp add: get_element_by_id_def first_in_tree_order_def elim!: map_filter_M_pure_E[where y=element_ptr] bind_returns_result_E2 dest!: bind_returns_result_E3[rotated, OF assms(2), rotated] intro!: map_filter_M_pure map_M_pure_I bind_pure_I split: option.splits list.splits if_splits) lemma get_elements_by_class_name_result_in_tree_order: assumes "h \ get_elements_by_class_name ptr name \\<^sub>r results" assumes "h \ to_tree_order ptr \\<^sub>r to" assumes "element_ptr \ set results" shows "cast element_ptr \ set to" using assms by(auto simp add: get_elements_by_class_name_def first_in_tree_order_def elim!: map_filter_M_pure_E[where y=element_ptr] bind_returns_result_E2 dest!: bind_returns_result_E3[rotated, OF assms(2), rotated] intro!: map_filter_M_pure map_M_pure_I bind_pure_I split: option.splits list.splits if_splits) lemma get_elements_by_tag_name_result_in_tree_order: assumes "h \ get_elements_by_tag_name ptr name \\<^sub>r results" assumes "h \ to_tree_order ptr \\<^sub>r to" assumes "element_ptr \ set results" shows "cast element_ptr \ set to" using assms by(auto simp add: get_elements_by_tag_name_def first_in_tree_order_def elim!: map_filter_M_pure_E[where y=element_ptr] bind_returns_result_E2 dest!: bind_returns_result_E3[rotated, OF assms(2), rotated] intro!: map_filter_M_pure map_M_pure_I bind_pure_I split: option.splits list.splits if_splits) -lemma get_elements_by_tag_name_pure [simp]: "pure (get_elements_by_tag_name ptr tag_name) h" +lemma get_elements_by_tag_name_pure [simp]: "pure (get_elements_by_tag_name ptr tag) h" by(auto simp add: get_elements_by_tag_name_def intro!: bind_pure_I map_filter_M_pure split: option.splits) end locale l_get_element_by = l_get_element_by_defs + l_to_tree_order_defs + assumes get_element_by_id_result_in_tree_order: "h \ get_element_by_id ptr iden \\<^sub>r Some element_ptr \ h \ to_tree_order ptr \\<^sub>r to \ cast element_ptr \ set to" - assumes get_elements_by_tag_name_pure [simp]: "pure (get_elements_by_tag_name ptr tag_name) h" + assumes get_elements_by_tag_name_pure [simp]: "pure (get_elements_by_tag_name ptr tag) h" interpretation i_get_element_by?: l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M to_tree_order first_in_tree_order get_attribute get_attribute_locs get_element_by_id get_elements_by_class_name get_elements_by_tag_name type_wf using instances apply(simp add: l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms_def) by(simp add: get_element_by_id_def get_elements_by_class_name_def get_elements_by_tag_name_def) declare l_get_element_by\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma get_element_by_is_l_get_element_by [instances]: "l_get_element_by get_element_by_id get_elements_by_tag_name to_tree_order" apply(unfold_locales) using get_element_by_id_result_in_tree_order get_elements_by_tag_name_pure by fast+ end diff --git a/thys/Core_DOM/common/classes/CharacterDataClass.thy b/thys/Core_DOM/common/classes/CharacterDataClass.thy --- a/thys/Core_DOM/common/classes/CharacterDataClass.thy +++ b/thys/Core_DOM/common/classes/CharacterDataClass.thy @@ -1,350 +1,355 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\CharacterData\ text\In this theory, we introduce the types for the CharacterData class.\ theory CharacterDataClass imports ElementClass begin subsubsection\CharacterData\ text\The type @{type "DOMString"} is a type synonym for @{type "string"}, defined \autoref{sec:Core_DOM_Basic_Datatypes}.\ record RCharacterData = RNode + nothing :: unit val :: DOMString register_default_tvars "'CharacterData RCharacterData_ext" type_synonym 'CharacterData CharacterData = "'CharacterData option RCharacterData_scheme" register_default_tvars "'CharacterData CharacterData" type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Node, 'Element, 'CharacterData) Node = "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'CharacterData option RCharacterData_ext + 'Node, 'Element) Node" register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Node, 'Element, 'CharacterData) Node" type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData) Object = "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Object, 'CharacterData option RCharacterData_ext + 'Node, 'Element) Object" register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData) Object" type_synonym ('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData) heap = "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'CharacterData option RCharacterData_ext + 'Node, 'Element) heap" register_default_tvars "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData) heap" type_synonym heap\<^sub>f\<^sub>i\<^sub>n\<^sub>a\<^sub>l = "(unit, unit, unit, unit, unit, unit, unit, unit, unit, unit) heap" definition character_data_ptr_kinds :: "(_) heap \ (_) character_data_ptr fset" where "character_data_ptr_kinds heap = the |`| (cast |`| (ffilter is_character_data_ptr_kind (node_ptr_kinds heap)))" lemma character_data_ptr_kinds_simp [simp]: "character_data_ptr_kinds (Heap (fmupd (cast character_data_ptr) character_data (the_heap h))) = {|character_data_ptr|} |\| character_data_ptr_kinds h" apply(auto simp add: character_data_ptr_kinds_def)[1] by force definition character_data_ptrs :: "(_) heap \ _ character_data_ptr fset" where "character_data_ptrs heap = ffilter is_character_data_ptr (character_data_ptr_kinds heap)" abbreviation "character_data_ptr_exts heap \ character_data_ptr_kinds heap - character_data_ptrs heap" definition cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a :: "(_) Node \ (_) CharacterData option" where "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a node = (case RNode.more node of Inr (Inl character_data) \ Some (RNode.extend (RNode.truncate node) character_data) | _ \ None)" adhoc_overloading cast cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a abbreviation cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a :: "(_) Object \ (_) CharacterData option" where "cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a obj \ (case cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e obj of Some node \ cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a node | None \ None)" adhoc_overloading cast cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a definition cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e :: "(_) CharacterData \ (_) Node" where "cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e character_data = RNode.extend (RNode.truncate character_data) (Inr (Inl (RNode.more character_data)))" adhoc_overloading cast cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e abbreviation cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t :: "(_) CharacterData \ (_) Object" where "cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr \ cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t (cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr)" adhoc_overloading cast cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t consts is_character_data_kind :: 'a definition is_character_data_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e :: "(_) Node \ bool" where "is_character_data_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr \ cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a ptr \ None" adhoc_overloading is_character_data_kind is_character_data_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e lemmas is_character_data_kind_def = is_character_data_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def abbreviation is_character_data_kind\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t :: "(_) Object \ bool" where "is_character_data_kind\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr \ cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a ptr \ None" adhoc_overloading is_character_data_kind is_character_data_kind\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t lemma character_data_ptr_kinds_commutes [simp]: "cast character_data_ptr |\| node_ptr_kinds h \ character_data_ptr |\| character_data_ptr_kinds h" apply(auto simp add: character_data_ptr_kinds_def)[1] by (metis character_data_ptr_casts_commute2 comp_eq_dest_lhs ffmember_filter fimage_eqI is_character_data_ptr_kind_none option.distinct(1) option.sel) definition get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a :: "(_) character_data_ptr \ (_) heap \ (_) CharacterData option" where "get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr h = Option.bind (get\<^sub>N\<^sub>o\<^sub>d\<^sub>e (cast character_data_ptr) h) cast" adhoc_overloading get get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a locale l_type_wf_def\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a begin definition a_type_wf :: "(_) heap \ bool" where "a_type_wf h = (ElementClass.type_wf h \ (\character_data_ptr \ fset (character_data_ptr_kinds h). get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr h \ None))" end global_interpretation l_type_wf_def\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a defines type_wf = a_type_wf . lemmas type_wf_defs = a_type_wf_def locale l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a = l_type_wf type_wf for type_wf :: "((_) heap \ bool)" + assumes type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a: "type_wf h \ CharacterDataClass.type_wf h" sublocale l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a \ l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t apply(unfold_locales) using ElementClass.a_type_wf_def by (meson CharacterDataClass.a_type_wf_def l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_axioms l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def) locale l_get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_lemmas = l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a begin sublocale l_get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas by unfold_locales lemma get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_type_wf: assumes "type_wf h" shows "character_data_ptr |\| character_data_ptr_kinds h \ get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr h \ None" using l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_axioms assms apply(simp add: type_wf_defs get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def) - by (metis assms bind.bind_lzero character_data_ptr_kinds_commutes fmember.rep_eq local.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf option.exhaust option.simps(3)) + by (metis assms bind.bind_lzero character_data_ptr_kinds_commutes fmember.rep_eq + local.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf option.exhaust option.simps(3)) end global_interpretation l_get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_lemmas type_wf by unfold_locales definition put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a :: "(_) character_data_ptr \ (_) CharacterData \ (_) heap \ (_) heap" where "put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr character_data = put\<^sub>N\<^sub>o\<^sub>d\<^sub>e (cast character_data_ptr) (cast character_data)" adhoc_overloading put put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a lemma put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ptr_in_heap: assumes "put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr character_data h = h'" shows "character_data_ptr |\| character_data_ptr_kinds h'" using assms put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_ptr_in_heap unfolding put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def character_data_ptr_kinds_def by (metis character_data_ptr_kinds_commutes character_data_ptr_kinds_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_ptr_in_heap) lemma put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_put_ptrs: assumes "put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr character_data h = h'" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast character_data_ptr|}" using assms by (simp add: put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_put_ptrs) lemma cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_inject [simp]: "cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e x = cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e y \ x = y" apply(simp add: cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def RObject.extend_def RNode.extend_def) by (metis (full_types) RNode.surjective old.unit.exhaust) lemma cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_none [simp]: "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a node = None \ \ (\character_data. cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e character_data = node)" apply(auto simp add: cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def RObject.extend_def RNode.extend_def split: sum.splits)[1] by (metis (full_types) RNode.select_convs(2) RNode.surjective old.unit.exhaust) lemma cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_some [simp]: "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a node = Some character_data \ cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e character_data = node" by(auto simp add: cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def RObject.extend_def RNode.extend_def split: sum.splits) lemma cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_inv [simp]: "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a (cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e character_data) = Some character_data" by simp lemma cast_element_not_character_data [simp]: "(cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e element \ cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e character_data)" "(cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e character_data \ cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e element)" by(auto simp add: cast\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def RNode.extend_def) lemma get_CharacterData_simp1 [simp]: "get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr (put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr character_data h) = Some character_data" by(auto simp add: get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def) lemma get_CharacterData_simp2 [simp]: "character_data_ptr \ character_data_ptr' \ get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr (put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr' character_data h) = get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr h" by(auto simp add: get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def) lemma get_CharacterData_simp3 [simp]: "get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr (put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr f h) = get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr h" by(auto simp add: get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def) lemma get_CharacterData_simp4 [simp]: "get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a element_ptr (put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t character_data_ptr f h) = get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a element_ptr h" by(auto simp add: get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a [simp]: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" shows "get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a ptr h = get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a ptr h'" using assms by(auto simp add: new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def) abbreviation "create_character_data_obj val_arg \ \ RObject.nothing = (), RNode.nothing = (), RCharacterData.nothing = (), val = val_arg, \ = None \" definition new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a :: "(_) heap \ ((_) character_data_ptr \ (_) heap)" where "new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a h = (let new_character_data_ptr = character_data_ptr.Ref (Suc (fMax (character_data_ptr.the_ref |`| (character_data_ptrs h)))) in (new_character_data_ptr, put new_character_data_ptr (create_character_data_obj '''') h))" lemma new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ptr_in_heap: assumes "new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a h = (new_character_data_ptr, h')" shows "new_character_data_ptr |\| character_data_ptr_kinds h'" using assms unfolding new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def Let_def using put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ptr_in_heap by blast lemma new_character_data_ptr_new: "character_data_ptr.Ref (Suc (fMax (finsert 0 (character_data_ptr.the_ref |`| character_data_ptrs h)))) |\| character_data_ptrs h" - by (metis Suc_n_not_le_n character_data_ptr.sel(1) fMax_ge fimage_finsert finsertI1 finsertI2 set_finsert) + by (metis Suc_n_not_le_n character_data_ptr.sel(1) fMax_ge fimage_finsert finsertI1 + finsertI2 set_finsert) lemma new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ptr_not_in_heap: assumes "new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a h = (new_character_data_ptr, h')" shows "new_character_data_ptr |\| character_data_ptr_kinds h" using assms unfolding new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def - by (metis Pair_inject character_data_ptrs_def fMax_finsert fempty_iff ffmember_filter fimage_is_fempty is_character_data_ptr_ref max_0L new_character_data_ptr_new) + by (metis Pair_inject character_data_ptrs_def fMax_finsert fempty_iff ffmember_filter + fimage_is_fempty is_character_data_ptr_ref max_0L new_character_data_ptr_new) lemma new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_new_ptr: assumes "new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a h = (new_character_data_ptr, h')" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast new_character_data_ptr|}" using assms by (metis Pair_inject new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_put_ptrs) lemma new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_is_character_data_ptr: assumes "new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a h = (new_character_data_ptr, h')" shows "is_character_data_ptr new_character_data_ptr" using assms by(auto simp add: new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def Let_def) lemma new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t [simp]: assumes "new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a h = (new_character_data_ptr, h')" assumes "ptr \ cast new_character_data_ptr" shows "get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h = get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h'" using assms by(auto simp add: new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def Let_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def) lemma new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_get\<^sub>N\<^sub>o\<^sub>d\<^sub>e [simp]: assumes "new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a h = (new_character_data_ptr, h')" assumes "ptr \ cast new_character_data_ptr" shows "get\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr h = get\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr h'" using assms by(auto simp add: new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def Let_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def) lemma new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t [simp]: assumes "new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a h = (new_character_data_ptr, h')" shows "get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h = get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h'" using assms by(auto simp add: new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def Let_def) lemma new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a [simp]: assumes "new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a h = (new_character_data_ptr, h')" assumes "ptr \ new_character_data_ptr" shows "get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a ptr h = get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a ptr h'" using assms by(auto simp add: new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def Let_def) locale l_known_ptr\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a begin definition a_known_ptr :: "(_) object_ptr \ bool" where "a_known_ptr ptr = (known_ptr ptr \ is_character_data_ptr ptr)" lemma known_ptr_not_character_data_ptr: "\is_character_data_ptr ptr \ a_known_ptr ptr \ known_ptr ptr" by(simp add: a_known_ptr_def) end global_interpretation l_known_ptr\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a defines known_ptr = a_known_ptr . lemmas known_ptr_defs = a_known_ptr_def locale l_known_ptrs\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a = l_known_ptr known_ptr for known_ptr :: "(_) object_ptr \ bool" begin definition a_known_ptrs :: "(_) heap \ bool" where "a_known_ptrs h = (\ptr \ fset (object_ptr_kinds h). known_ptr ptr)" lemma known_ptrs_known_ptr: "a_known_ptrs h \ ptr |\| object_ptr_kinds h \ known_ptr ptr" apply(simp add: a_known_ptrs_def) using notin_fset by fastforce lemma known_ptrs_preserved: "object_ptr_kinds h = object_ptr_kinds h' \ a_known_ptrs h = a_known_ptrs h'" by(auto simp add: a_known_ptrs_def) lemma known_ptrs_subset: "object_ptr_kinds h' |\| object_ptr_kinds h \ a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def less_eq_fset.rep_eq subsetD) -lemma known_ptrs_new_ptr: "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ a_known_ptrs h \ a_known_ptrs h'" +lemma known_ptrs_new_ptr: + "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ +a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def) end global_interpretation l_known_ptrs\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a known_ptr defines known_ptrs = a_known_ptrs . lemmas known_ptrs_defs = a_known_ptrs_def lemma known_ptrs_is_l_known_ptrs: "l_known_ptrs known_ptr known_ptrs" using known_ptrs_known_ptr known_ptrs_preserved known_ptrs_subset known_ptrs_new_ptr l_known_ptrs_def by blast end diff --git a/thys/Core_DOM/common/classes/DocumentClass.thy b/thys/Core_DOM/common/classes/DocumentClass.thy --- a/thys/Core_DOM/common/classes/DocumentClass.thy +++ b/thys/Core_DOM/common/classes/DocumentClass.thy @@ -1,340 +1,345 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\Document\ text\In this theory, we introduce the types for the Document class.\ theory DocumentClass imports CharacterDataClass begin text\The type @{type "doctype"} is a type synonym for @{type "string"}, defined in \autoref{sec:Core_DOM_Basic_Datatypes}.\ record ('node_ptr, 'element_ptr, 'character_data_ptr) RDocument = RObject + nothing :: unit doctype :: doctype document_element :: "(_) element_ptr option" disconnected_nodes :: "('node_ptr, 'element_ptr, 'character_data_ptr) node_ptr list" type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'Document) Document = "('node_ptr, 'element_ptr, 'character_data_ptr, 'Document option) RDocument_scheme" register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'Document) Document" type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData, 'Document) Object = "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, ('node_ptr, 'element_ptr, 'character_data_ptr, 'Document option) RDocument_ext + 'Object, 'Node, 'Element, 'CharacterData) Object" register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData, 'Document) Object" type_synonym ('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData, 'Document) heap = "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, ('node_ptr, 'element_ptr, 'character_data_ptr, 'Document option) RDocument_ext + 'Object, 'Node, 'Element, 'CharacterData) heap" register_default_tvars "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData, 'Document) heap" type_synonym heap\<^sub>f\<^sub>i\<^sub>n\<^sub>a\<^sub>l = "(unit, unit, unit, unit, unit, unit, unit, unit, unit, unit, unit) heap" definition document_ptr_kinds :: "(_) heap \ (_) document_ptr fset" where "document_ptr_kinds heap = the |`| (cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r |`| (ffilter is_document_ptr_kind (object_ptr_kinds heap)))" definition document_ptrs :: "(_) heap \ (_) document_ptr fset" where "document_ptrs heap = ffilter is_document_ptr (document_ptr_kinds heap)" definition cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) Object \ (_) Document option" where "cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t obj = (case RObject.more obj of Inr (Inl document) \ Some (RObject.extend (RObject.truncate obj) document) | _ \ None)" adhoc_overloading cast cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t definition cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t:: "(_) Document \ (_) Object" where "cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t document = (RObject.extend (RObject.truncate document) (Inr (Inl (RObject.more document))))" adhoc_overloading cast cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t definition is_document_kind :: "(_) Object \ bool" where "is_document_kind ptr \ cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr \ None" lemma document_ptr_kinds_simp [simp]: "document_ptr_kinds (Heap (fmupd (cast document_ptr) document (the_heap h))) = {|document_ptr|} |\| document_ptr_kinds h" apply(auto simp add: document_ptr_kinds_def)[1] by force lemma document_ptr_kinds_commutes [simp]: "cast document_ptr |\| object_ptr_kinds h \ document_ptr |\| document_ptr_kinds h" apply(auto simp add: object_ptr_kinds_def document_ptr_kinds_def)[1] by (metis (no_types, lifting) document_ptr_casts_commute2 document_ptr_document_ptr_cast ffmember_filter fimage_eqI fset.map_comp option.sel) definition get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) document_ptr \ (_) heap \ (_) Document option" where "get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr h = Option.bind (get (cast document_ptr) h) cast" adhoc_overloading get get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t locale l_type_wf_def\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin definition a_type_wf :: "(_) heap \ bool" where "a_type_wf h = (CharacterDataClass.type_wf h \ (\document_ptr \ fset (document_ptr_kinds h). get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr h \ None))" end global_interpretation l_type_wf_def\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t defines type_wf = a_type_wf . lemmas type_wf_defs = a_type_wf_def locale l_type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t = l_type_wf type_wf for type_wf :: "((_) heap \ bool)" + assumes type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t: "type_wf h \ DocumentClass.type_wf h" sublocale l_type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t \ l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a apply(unfold_locales) by (metis (full_types) type_wf_defs l_type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_axioms l_type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) locale l_get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas = l_type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin sublocale l_get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_lemmas by unfold_locales lemma get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_type_wf: assumes "type_wf h" shows "document_ptr |\| document_ptr_kinds h \ get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr h \ None" using l_type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_axioms assms apply(simp add: type_wf_defs get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def l_type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) - by (metis document_ptr_kinds_commutes fmember.rep_eq is_none_bind is_none_simps(1) is_none_simps(2) local.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf) + by (metis document_ptr_kinds_commutes fmember.rep_eq is_none_bind is_none_simps(1) + is_none_simps(2) local.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf) end global_interpretation l_get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas type_wf by unfold_locales definition put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) document_ptr \ (_) Document \ (_) heap \ (_) heap" where "put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr document = put (cast document_ptr) (cast document)" adhoc_overloading put put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t lemma put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap: assumes "put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr document h = h'" shows "document_ptr |\| document_ptr_kinds h'" using assms unfolding put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def by (metis document_ptr_kinds_commutes put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_ptr_in_heap) lemma put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_put_ptrs: assumes "put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr document h = h'" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast document_ptr|}" using assms by (simp add: put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_put_ptrs) lemma cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_inject [simp]: "cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t x = cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t y \ x = y" apply(simp add: cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def RObject.extend_def) by (metis (full_types) RObject.surjective old.unit.exhaust) lemma cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_none [simp]: "cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t obj = None \ \ (\document. cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t document = obj)" apply(auto simp add: cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def RObject.extend_def split: sum.splits)[1] by (metis (full_types) RObject.select_convs(2) RObject.surjective old.unit.exhaust) lemma cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_some [simp]: "cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t obj = Some document \ cast document = obj" by(auto simp add: cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def RObject.extend_def split: sum.splits) lemma cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_inv [simp]: "cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t (cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t document) = Some document" by simp lemma cast_document_not_node [simp]: "cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t document \ cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t node" "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t node \ cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t document" by(auto simp add: cast\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def RObject.extend_def) lemma get_document_ptr_simp1 [simp]: "get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr (put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr document h) = Some document" by(auto simp add: get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) lemma get_document_ptr_simp2 [simp]: "document_ptr \ document_ptr' \ get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr (put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr' document h) = get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr h" by(auto simp add: get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) lemma get_document_ptr_simp3 [simp]: "get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr (put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr f h) = get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr h" by(auto simp add: get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) -lemma get_document_ptr_simp4 [simp]: "get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr (put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr f h) = get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr h" +lemma get_document_ptr_simp4 [simp]: + "get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr (put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr f h) = get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr h" by(auto simp add: get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def) lemma get_document_ptr_simp5 [simp]: "get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr (put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr f h) = get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr h" by(auto simp add: get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) -lemma get_document_ptr_simp6 [simp]: "get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr (put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr f h) = get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr h" +lemma get_document_ptr_simp6 [simp]: + "get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr (put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr f h) = get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr h" by(auto simp add: get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t [simp]: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" shows "get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h = get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h'" using assms by(auto simp add: new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def) lemma new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t [simp]: assumes "new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a h = (new_character_data_ptr, h')" shows "get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h = get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h'" using assms by(auto simp add: new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def Let_def) abbreviation create_document_obj :: "char list \ (_) element_ptr option \ (_) node_ptr list \ (_) Document" where "create_document_obj doctype_arg document_element_arg disconnected_nodes_arg \ \ RObject.nothing = (), RDocument.nothing = (), doctype = doctype_arg, document_element = document_element_arg, disconnected_nodes = disconnected_nodes_arg, \ = None \" definition new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_)heap \ ((_) document_ptr \ (_) heap)" where "new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (let new_document_ptr = document_ptr.Ref (Suc (fMax (finsert 0 (document_ptr.the_ref |`| (document_ptrs h))))) in (new_document_ptr, put new_document_ptr (create_document_obj '''' None []) h))" lemma new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap: assumes "new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_document_ptr, h')" shows "new_document_ptr |\| document_ptr_kinds h'" using assms unfolding new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def using put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap by blast lemma new_document_ptr_new: "document_ptr.Ref (Suc (fMax (finsert 0 (document_ptr.the_ref |`| document_ptrs h)))) |\| document_ptrs h" by (metis Suc_n_not_le_n document_ptr.sel(1) fMax_ge fimage_finsert finsertI1 finsertI2 set_finsert) lemma new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_not_in_heap: assumes "new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_document_ptr, h')" shows "new_document_ptr |\| document_ptr_kinds h" using assms unfolding new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def by (metis Pair_inject document_ptrs_def fMax_finsert fempty_iff ffmember_filter fimage_is_fempty is_document_ptr_ref max_0L new_document_ptr_new) lemma new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_new_ptr: assumes "new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_document_ptr, h')" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast new_document_ptr|}" using assms by (metis Pair_inject new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_put_ptrs) lemma new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_is_document_ptr: assumes "new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_document_ptr, h')" shows "is_document_ptr new_document_ptr" using assms by(auto simp add: new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def) lemma new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t [simp]: assumes "new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_document_ptr, h')" assumes "ptr \ cast new_document_ptr" shows "get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h = get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h'" using assms by(auto simp add: new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) lemma new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>N\<^sub>o\<^sub>d\<^sub>e [simp]: assumes "new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_document_ptr, h')" shows "get\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr h = get\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr h'" using assms apply(simp add: new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) by(auto simp add: get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def) lemma new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t [simp]: assumes "new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_document_ptr, h')" shows "get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h = get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h'" using assms by(auto simp add: new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def) lemma new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a [simp]: assumes "new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_document_ptr, h')" shows "get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a ptr h = get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a ptr h'" using assms by(auto simp add: new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def) lemma new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t [simp]: assumes "new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_document_ptr, h')" assumes "ptr \ new_document_ptr" shows "get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h = get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h'" using assms by(auto simp add: new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def) locale l_known_ptr\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin definition a_known_ptr :: "(_) object_ptr \ bool" where "a_known_ptr ptr = (known_ptr ptr \ is_document_ptr ptr)" lemma known_ptr_not_document_ptr: "\is_document_ptr ptr \ a_known_ptr ptr \ known_ptr ptr" by(simp add: a_known_ptr_def) end global_interpretation l_known_ptr\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t defines known_ptr = a_known_ptr . lemmas known_ptr_defs = a_known_ptr_def locale l_known_ptrs\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t = l_known_ptr known_ptr for known_ptr :: "(_) object_ptr \ bool" begin definition a_known_ptrs :: "(_) heap \ bool" where "a_known_ptrs h = (\ptr \ fset (object_ptr_kinds h). known_ptr ptr)" lemma known_ptrs_known_ptr: "a_known_ptrs h \ ptr |\| object_ptr_kinds h \ known_ptr ptr" apply(simp add: a_known_ptrs_def) using notin_fset by fastforce lemma known_ptrs_preserved: "object_ptr_kinds h = object_ptr_kinds h' \ a_known_ptrs h = a_known_ptrs h'" by(auto simp add: a_known_ptrs_def) lemma known_ptrs_subset: "object_ptr_kinds h' |\| object_ptr_kinds h \ a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def less_eq_fset.rep_eq subsetD) -lemma known_ptrs_new_ptr: "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ a_known_ptrs h \ a_known_ptrs h'" +lemma known_ptrs_new_ptr: + "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ +a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def) end global_interpretation l_known_ptrs\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t known_ptr defines known_ptrs = a_known_ptrs . lemmas known_ptrs_defs = a_known_ptrs_def lemma known_ptrs_is_l_known_ptrs [instances]: "l_known_ptrs known_ptr known_ptrs" using known_ptrs_known_ptr known_ptrs_preserved l_known_ptrs_def known_ptrs_subset known_ptrs_new_ptr by blast end diff --git a/thys/Core_DOM/common/classes/NodeClass.thy b/thys/Core_DOM/common/classes/NodeClass.thy --- a/thys/Core_DOM/common/classes/NodeClass.thy +++ b/thys/Core_DOM/common/classes/NodeClass.thy @@ -1,204 +1,209 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\Node\ text\In this theory, we introduce the types for the Node class.\ theory NodeClass imports ObjectClass "../pointers/NodePointer" begin subsubsection\Node\ record RNode = RObject + nothing :: unit register_default_tvars "'Node RNode_ext" type_synonym 'Node Node = "'Node RNode_scheme" register_default_tvars "'Node Node" type_synonym ('Object, 'Node) Object = "('Node RNode_ext + 'Object) Object" register_default_tvars "('Object, 'Node) Object" type_synonym ('object_ptr, 'node_ptr, 'Object, 'Node) heap = "('node_ptr node_ptr + 'object_ptr, 'Node RNode_ext + 'Object) heap" register_default_tvars "('object_ptr, 'node_ptr, 'Object, 'Node) heap" type_synonym heap\<^sub>f\<^sub>i\<^sub>n\<^sub>a\<^sub>l = "(unit, unit, unit, unit) heap" definition node_ptr_kinds :: "(_) heap \ (_) node_ptr fset" where "node_ptr_kinds heap = (the |`| (cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r |`| (ffilter is_node_ptr_kind (object_ptr_kinds heap))))" lemma node_ptr_kinds_simp [simp]: "node_ptr_kinds (Heap (fmupd (cast node_ptr) node (the_heap h))) = {|node_ptr|} |\| node_ptr_kinds h" apply(auto simp add: node_ptr_kinds_def)[1] by force definition cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e :: "(_) Object \ (_) Node option" where "cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e obj = (case RObject.more obj of Inl node \ Some (RObject.extend (RObject.truncate obj) node) | _ \ None)" adhoc_overloading cast cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e definition cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t:: "(_) Node \ (_) Object" where "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t node = (RObject.extend (RObject.truncate node) (Inl (RObject.more node)))" adhoc_overloading cast cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t definition is_node_kind :: "(_) Object \ bool" where "is_node_kind ptr \ cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr \ None" definition get\<^sub>N\<^sub>o\<^sub>d\<^sub>e :: "(_) node_ptr \ (_) heap \ (_) Node option" where "get\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr h = Option.bind (get (cast node_ptr) h) cast" adhoc_overloading get get\<^sub>N\<^sub>o\<^sub>d\<^sub>e locale l_type_wf_def\<^sub>N\<^sub>o\<^sub>d\<^sub>e begin definition a_type_wf :: "(_) heap \ bool" where "a_type_wf h = (ObjectClass.type_wf h \ (\node_ptr \ fset( node_ptr_kinds h). get\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr h \ None))" end global_interpretation l_type_wf_def\<^sub>N\<^sub>o\<^sub>d\<^sub>e defines type_wf = a_type_wf . lemmas type_wf_defs = a_type_wf_def locale l_type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e = l_type_wf type_wf for type_wf :: "((_) heap \ bool)" + assumes type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e: "type_wf h \ NodeClass.type_wf h" sublocale l_type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e \ l_type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t apply(unfold_locales) using ObjectClass.a_type_wf_def by auto locale l_get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_lemmas = l_type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e begin sublocale l_get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_lemmas by unfold_locales lemma get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf: assumes "type_wf h" shows "node_ptr |\| node_ptr_kinds h \ get\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr h \ None" using l_type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e_axioms assms apply(simp add: type_wf_defs get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def l_type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def) by (metis bind_eq_None_conv ffmember_filter fimage_eqI fmember.rep_eq is_node_ptr_kind_cast get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf node_ptr_casts_commute2 node_ptr_kinds_def option.sel option.simps(3)) end global_interpretation l_get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_lemmas type_wf by unfold_locales definition put\<^sub>N\<^sub>o\<^sub>d\<^sub>e :: "(_) node_ptr \ (_) Node \ (_) heap \ (_) heap" where "put\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr node = put (cast node_ptr) (cast node)" adhoc_overloading put put\<^sub>N\<^sub>o\<^sub>d\<^sub>e lemma put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_ptr_in_heap: assumes "put\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr node h = h'" shows "node_ptr |\| node_ptr_kinds h'" using assms unfolding put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def node_ptr_kinds_def by (metis ffmember_filter fimage_eqI is_node_ptr_kind_cast node_ptr_casts_commute2 option.sel put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_ptr_in_heap) lemma put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_put_ptrs: assumes "put\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr node h = h'" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast node_ptr|}" using assms by (simp add: put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_put_ptrs) lemma node_ptr_kinds_commutes [simp]: "cast node_ptr |\| object_ptr_kinds h \ node_ptr |\| node_ptr_kinds h" apply(auto simp add: node_ptr_kinds_def split: option.splits)[1] by (metis (no_types, lifting) ffmember_filter fimage_eqI fset.map_comp is_node_ptr_kind_none node_ptr_casts_commute2 option.distinct(1) option.sel) lemma node_empty [simp]: "\RObject.nothing = (), RNode.nothing = (), \ = RNode.more node\ = node" by simp lemma cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_inject [simp]: "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t x = cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t y \ x = y" apply(simp add: cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def RObject.extend_def) by (metis (full_types) RObject.surjective old.unit.exhaust) lemma cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_none [simp]: "cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e obj = None \ \ (\node. cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t node = obj)" apply(auto simp add: cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def RObject.extend_def split: sum.splits)[1] by (metis (full_types) RObject.select_convs(2) RObject.surjective old.unit.exhaust) lemma cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_some [simp]: "cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e obj = Some node \ cast node = obj" by(auto simp add: cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def RObject.extend_def split: sum.splits) lemma cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_inv [simp]: "cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e (cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t node) = Some node" by simp locale l_known_ptr\<^sub>N\<^sub>o\<^sub>d\<^sub>e begin definition a_known_ptr :: "(_) object_ptr \ bool" where "a_known_ptr ptr = False" end global_interpretation l_known_ptr\<^sub>N\<^sub>o\<^sub>d\<^sub>e defines known_ptr = a_known_ptr . lemmas known_ptr_defs = a_known_ptr_def locale l_known_ptrs\<^sub>N\<^sub>o\<^sub>d\<^sub>e = l_known_ptr known_ptr for known_ptr :: "(_) object_ptr \ bool" begin definition a_known_ptrs :: "(_) heap \ bool" where "a_known_ptrs h = (\ptr \ fset (object_ptr_kinds h). known_ptr ptr)" lemma known_ptrs_known_ptr: "a_known_ptrs h \ ptr |\| object_ptr_kinds h \ known_ptr ptr" apply(simp add: a_known_ptrs_def) using notin_fset by fastforce -lemma known_ptrs_preserved: "object_ptr_kinds h = object_ptr_kinds h' \ a_known_ptrs h = a_known_ptrs h'" +lemma known_ptrs_preserved: + "object_ptr_kinds h = object_ptr_kinds h' \ a_known_ptrs h = a_known_ptrs h'" by(auto simp add: a_known_ptrs_def) -lemma known_ptrs_subset: "object_ptr_kinds h' |\| object_ptr_kinds h \ a_known_ptrs h \ a_known_ptrs h'" +lemma known_ptrs_subset: + "object_ptr_kinds h' |\| object_ptr_kinds h \ a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def less_eq_fset.rep_eq subsetD) -lemma known_ptrs_new_ptr: "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ a_known_ptrs h \ a_known_ptrs h'" +lemma known_ptrs_new_ptr: + "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ +a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def) end global_interpretation l_known_ptrs\<^sub>N\<^sub>o\<^sub>d\<^sub>e known_ptr defines known_ptrs = a_known_ptrs . lemmas known_ptrs_defs = a_known_ptrs_def lemma known_ptrs_is_l_known_ptrs: "l_known_ptrs known_ptr known_ptrs" - using known_ptrs_known_ptr known_ptrs_preserved l_known_ptrs_def known_ptrs_subset known_ptrs_new_ptr + using known_ptrs_known_ptr known_ptrs_preserved l_known_ptrs_def known_ptrs_subset + known_ptrs_new_ptr by blast lemma get_node_ptr_simp1 [simp]: "get\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr (put\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr node h) = Some node" by(auto simp add: get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def) lemma get_node_ptr_simp2 [simp]: "node_ptr \ node_ptr' \ get\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr (put\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr' node h) = get\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr h" by(auto simp add: get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def) end diff --git a/thys/Core_DOM/common/classes/ObjectClass.thy b/thys/Core_DOM/common/classes/ObjectClass.thy --- a/thys/Core_DOM/common/classes/ObjectClass.thy +++ b/thys/Core_DOM/common/classes/ObjectClass.thy @@ -1,217 +1,225 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\Object\ text\In this theory, we introduce the definition of the class Object. This class is the common superclass of our class model.\ theory ObjectClass imports BaseClass "../pointers/ObjectPointer" begin record RObject = nothing :: unit register_default_tvars "'Object RObject_ext" type_synonym 'Object Object = "'Object RObject_scheme" register_default_tvars "'Object Object" datatype ('object_ptr, 'Object) heap = Heap (the_heap: "((_) object_ptr, (_) Object) fmap") register_default_tvars "('object_ptr, 'Object) heap" type_synonym heap\<^sub>f\<^sub>i\<^sub>n\<^sub>a\<^sub>l = "(unit, unit) heap" definition object_ptr_kinds :: "(_) heap \ (_) object_ptr fset" where "object_ptr_kinds = fmdom \ the_heap" lemma object_ptr_kinds_simp [simp]: "object_ptr_kinds (Heap (fmupd object_ptr object (the_heap h))) = {|object_ptr|} |\| object_ptr_kinds h" by(auto simp add: object_ptr_kinds_def) definition get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t :: "(_) object_ptr \ (_) heap \ (_) Object option" where "get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h = fmlookup (the_heap h) ptr" adhoc_overloading get get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t locale l_type_wf_def\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t begin definition a_type_wf :: "(_) heap \ bool" where "a_type_wf h = True" end global_interpretation l_type_wf_def\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t defines type_wf = a_type_wf . lemmas type_wf_defs = a_type_wf_def locale l_type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t = l_type_wf type_wf for type_wf :: "((_) heap \ bool)" + assumes type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t: "type_wf h \ ObjectClass.type_wf h" locale l_get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_lemmas = l_type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t begin lemma get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf: assumes "type_wf h" shows "object_ptr |\| object_ptr_kinds h \ get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr h \ None" using l_type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_axioms assms apply(simp add: type_wf_def get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def) by (simp add: fmlookup_dom_iff object_ptr_kinds_def) end global_interpretation l_get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_lemmas type_wf by (simp add: l_get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_lemmas.intro l_type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t.intro) definition put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t :: "(_) object_ptr \ (_) Object \ (_) heap \ (_) heap" where "put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h = Heap (fmupd ptr obj (the_heap h))" adhoc_overloading put put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t lemma put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_ptr_in_heap: assumes "put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr object h = h'" shows "object_ptr |\| object_ptr_kinds h'" using assms unfolding put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def by auto lemma put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_put_ptrs: assumes "put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr object h = h'" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|object_ptr|}" using assms by (metis comp_apply fmdom_fmupd funion_finsert_right heap.sel object_ptr_kinds_def sup_bot.right_neutral put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def) lemma object_more_extend_id [simp]: "more (extend x y) = y" by(simp add: extend_def) lemma object_empty [simp]: "\nothing = (), \ = more x\ = x" by simp locale l_known_ptr\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t begin definition a_known_ptr :: "(_) object_ptr \ bool" where "a_known_ptr ptr = False" lemma known_ptr_not_object_ptr: "a_known_ptr ptr \ \is_object_ptr ptr \ known_ptr ptr" by(simp add: a_known_ptr_def) end global_interpretation l_known_ptr\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t defines known_ptr = a_known_ptr . lemmas known_ptr_defs = a_known_ptr_def locale l_known_ptrs = l_known_ptr known_ptr for known_ptr :: "(_) object_ptr \ bool" + fixes known_ptrs :: "(_) heap \ bool" assumes known_ptrs_known_ptr: "known_ptrs h \ ptr |\| object_ptr_kinds h \ known_ptr ptr" - assumes known_ptrs_preserved: "object_ptr_kinds h = object_ptr_kinds h' \ known_ptrs h = known_ptrs h'" - assumes known_ptrs_subset: "object_ptr_kinds h' |\| object_ptr_kinds h \ known_ptrs h \ known_ptrs h'" - assumes known_ptrs_new_ptr: "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ known_ptrs h \ known_ptrs h'" + assumes known_ptrs_preserved: + "object_ptr_kinds h = object_ptr_kinds h' \ known_ptrs h = known_ptrs h'" + assumes known_ptrs_subset: + "object_ptr_kinds h' |\| object_ptr_kinds h \ known_ptrs h \ known_ptrs h'" + assumes known_ptrs_new_ptr: + "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ +known_ptrs h \ known_ptrs h'" locale l_known_ptrs\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t = l_known_ptr known_ptr for known_ptr :: "(_) object_ptr \ bool" begin definition a_known_ptrs :: "(_) heap \ bool" where "a_known_ptrs h = (\ptr \ fset (object_ptr_kinds h). known_ptr ptr)" lemma known_ptrs_known_ptr: "a_known_ptrs h \ ptr |\| object_ptr_kinds h \ known_ptr ptr" apply(simp add: a_known_ptrs_def) using notin_fset by fastforce -lemma known_ptrs_preserved: "object_ptr_kinds h = object_ptr_kinds h' \ a_known_ptrs h = a_known_ptrs h'" +lemma known_ptrs_preserved: + "object_ptr_kinds h = object_ptr_kinds h' \ a_known_ptrs h = a_known_ptrs h'" by(auto simp add: a_known_ptrs_def) -lemma known_ptrs_subset: "object_ptr_kinds h' |\| object_ptr_kinds h \ a_known_ptrs h \ a_known_ptrs h'" +lemma known_ptrs_subset: + "object_ptr_kinds h' |\| object_ptr_kinds h \ a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def less_eq_fset.rep_eq subsetD) -lemma known_ptrs_new_ptr: "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ a_known_ptrs h \ a_known_ptrs h'" +lemma known_ptrs_new_ptr: + "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ +a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def) end global_interpretation l_known_ptrs\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t known_ptr defines known_ptrs = a_known_ptrs . lemmas known_ptrs_defs = a_known_ptrs_def lemma known_ptrs_is_l_known_ptrs: "l_known_ptrs known_ptr known_ptrs" using known_ptrs_known_ptr known_ptrs_preserved l_known_ptrs_def known_ptrs_subset known_ptrs_new_ptr by blast lemma get_object_ptr_simp1 [simp]: "get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr object h) = Some object" by(simp add: get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def) lemma get_object_ptr_simp2 [simp]: "object_ptr \ object_ptr' \ get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr' object h) = get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr h" by(simp add: get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def) subsection\Limited Heap Modifications\ definition heap_unchanged_except :: "(_) object_ptr set \ (_) heap \ (_) heap \ bool" where "heap_unchanged_except S h h' = (\ptr \ (fset (object_ptr_kinds h) \ (fset (object_ptr_kinds h'))) - S. get ptr h = get ptr h')" definition delete\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t :: "(_) object_ptr \ (_) heap \ (_) heap option" where "delete\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h = (if ptr |\| object_ptr_kinds h then Some (Heap (fmdrop ptr (the_heap h))) else None)" lemma delete\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_pointer_removed: assumes "delete\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h = Some h'" shows "ptr |\| object_ptr_kinds h'" using assms by(auto simp add: delete\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def object_ptr_kinds_def split: if_splits) lemma delete\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_pointer_ptr_in_heap: assumes "delete\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h = Some h'" shows "ptr |\| object_ptr_kinds h" using assms by(auto simp add: delete\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def object_ptr_kinds_def split: if_splits) lemma delete\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_ok: assumes "ptr |\| object_ptr_kinds h" shows "delete\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h \ None" using assms by(auto simp add: delete\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def object_ptr_kinds_def split: if_splits) subsection \Code Generator Setup\ definition "create_heap xs = Heap (fmap_of_list xs)" code_datatype ObjectClass.heap.Heap create_heap lemma object_ptr_kinds_code3 [code]: "fmlookup (the_heap (create_heap xs)) x = map_of xs x" by(auto simp add: create_heap_def fmlookup_of_list) lemma object_ptr_kinds_code4 [code]: "the_heap (create_heap xs) = fmap_of_list xs" by(simp add: create_heap_def) lemma object_ptr_kinds_code5 [code]: "the_heap (Heap x) = x" by simp end diff --git a/thys/Core_DOM/common/monads/BaseMonad.thy b/thys/Core_DOM/common/monads/BaseMonad.thy --- a/thys/Core_DOM/common/monads/BaseMonad.thy +++ b/thys/Core_DOM/common/monads/BaseMonad.thy @@ -1,375 +1,376 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\The Monad Infrastructure\ text\In this theory, we introduce the basic infrastructure for our monadic class encoding.\ theory BaseMonad imports "../classes/BaseClass" "../preliminaries/Heap_Error_Monad" begin subsection\Datatypes\ -datatype exception = NotFoundError | SegmentationFault | HierarchyRequestError | AssertException - | NonTerminationException | InvokeError | TypeError | DebugException nat +datatype exception = NotFoundError | HierarchyRequestError | NotSupportedError | SegmentationFault + | AssertException | NonTerminationException | InvokeError | TypeError lemma finite_set_in [simp]: "x \ fset FS \ x |\| FS" by (meson notin_fset) consts put_M :: 'a consts get_M :: 'a consts delete_M :: 'a lemma sorted_list_of_set_eq [dest]: "sorted_list_of_set (fset x) = sorted_list_of_set (fset y) \ x = y" by (metis finite_fset fset_inject sorted_list_of_set(1)) locale l_ptr_kinds_M = fixes ptr_kinds :: "'heap \ 'ptr::linorder fset" begin definition a_ptr_kinds_M :: "('heap, exception, 'ptr list) prog" where "a_ptr_kinds_M = do { h \ get_heap; return (sorted_list_of_set (fset (ptr_kinds h))) }" lemma ptr_kinds_M_ok [simp]: "h \ ok a_ptr_kinds_M" by(simp add: a_ptr_kinds_M_def) lemma ptr_kinds_M_pure [simp]: "pure a_ptr_kinds_M h" by (auto simp add: a_ptr_kinds_M_def intro: bind_pure_I) lemma ptr_kinds_ptr_kinds_M [simp]: "ptr \ set |h \ a_ptr_kinds_M|\<^sub>r \ ptr |\| ptr_kinds h" by(simp add: a_ptr_kinds_M_def) lemma ptr_kinds_M_ptr_kinds [simp]: "h \ a_ptr_kinds_M \\<^sub>r xa \ xa = sorted_list_of_set (fset (ptr_kinds h))" by(auto simp add: a_ptr_kinds_M_def) lemma ptr_kinds_M_ptr_kinds_returns_result [simp]: "h \ a_ptr_kinds_M \ f \\<^sub>r x \ h \ f (sorted_list_of_set (fset (ptr_kinds h))) \\<^sub>r x" by(auto simp add: a_ptr_kinds_M_def) lemma ptr_kinds_M_ptr_kinds_returns_heap [simp]: "h \ a_ptr_kinds_M \ f \\<^sub>h h' \ h \ f (sorted_list_of_set (fset (ptr_kinds h))) \\<^sub>h h'" by(auto simp add: a_ptr_kinds_M_def) end locale l_get_M = fixes get :: "'ptr \ 'heap \ 'obj option" fixes type_wf :: "'heap \ bool" fixes ptr_kinds :: "'heap \ 'ptr fset" assumes "type_wf h \ ptr |\| ptr_kinds h \ get ptr h \ None" assumes "get ptr h \ None \ ptr |\| ptr_kinds h" begin definition a_get_M :: "'ptr \ ('obj \ 'result) \ ('heap, exception, 'result) prog" where "a_get_M ptr getter = (do { h \ get_heap; (case get ptr h of Some res \ return (getter res) | None \ error SegmentationFault) })" lemma get_M_pure [simp]: "pure (a_get_M ptr getter) h" by(auto simp add: a_get_M_def bind_pure_I split: option.splits) lemma get_M_ok: "type_wf h \ ptr |\| ptr_kinds h \ h \ ok (a_get_M ptr getter)" apply(simp add: a_get_M_def) by (metis l_get_M_axioms l_get_M_def option.case_eq_if return_ok) lemma get_M_ptr_in_heap: "h \ ok (a_get_M ptr getter) \ ptr |\| ptr_kinds h" apply(simp add: a_get_M_def) by (metis error_returns_result is_OK_returns_result_E l_get_M_axioms l_get_M_def option.simps(4)) end locale l_put_M = l_get_M get for get :: "'ptr \ 'heap \ 'obj option" + fixes put :: "'ptr \ 'obj \ 'heap \ 'heap" begin definition a_put_M :: "'ptr \ (('v \ 'v) \ 'obj \ 'obj) \ 'v \ ('heap, exception, unit) prog" where "a_put_M ptr setter v = (do { obj \ a_get_M ptr id; h \ get_heap; return_heap (put ptr (setter (\_. v) obj) h) })" lemma put_M_ok: "type_wf h \ ptr |\| ptr_kinds h \ h \ ok (a_put_M ptr setter v)" by(auto simp add: a_put_M_def intro!: bind_is_OK_I2 dest: get_M_ok elim!: bind_is_OK_E) lemma put_M_ptr_in_heap: "h \ ok (a_put_M ptr setter v) \ ptr |\| ptr_kinds h" by(auto simp add: a_put_M_def intro!: bind_is_OK_I2 elim: get_M_ptr_in_heap dest: is_OK_returns_result_I elim!: bind_is_OK_E) end subsection \Setup for Defining Partial Functions\ lemma execute_admissible: "ccpo.admissible (fun_lub (flat_lub (Inl (e::'e)))) (fun_ord (flat_ord (Inl e))) ((\a. \(h::'heap) h2 (r::'result). h \ a = Inr (r, h2) \ P h h2 r) \ Prog)" proof (unfold comp_def, rule ccpo.admissibleI, clarify) fix A :: "('heap \ 'e + 'result \ 'heap) set" let ?lub = "Prog (fun_lub (flat_lub (Inl e)) A)" fix h h2 r assume 1: "Complete_Partial_Order.chain (fun_ord (flat_ord (Inl e))) A" and 2: "\xa\A. \h h2 r. h \ Prog xa = Inr (r, h2) \ P h h2 r" and 4: "h \ Prog (fun_lub (flat_lub (Inl e)) A) = Inr (r, h2)" have h1:"\a. Complete_Partial_Order.chain (flat_ord (Inl e)) {y. \f\A. y = f a}" by (rule chain_fun[OF 1]) show "P h h2 r" using chain_fun[OF 1] flat_lub_in_chain[OF chain_fun[OF 1]] 2 4 unfolding execute_def fun_lub_def - by auto (metis (lifting) Inl_Inr_False) + by force qed lemma execute_admissible2: "ccpo.admissible (fun_lub (flat_lub (Inl (e::'e)))) (fun_ord (flat_ord (Inl e))) ((\a. \(h::'heap) h' h2 h2' (r::'result) r'. h \ a = Inr (r, h2) \ h' \ a = Inr (r', h2') \ P h h' h2 h2' r r') \ Prog)" proof (unfold comp_def, rule ccpo.admissibleI, clarify) fix A :: "('heap \ 'e + 'result \ 'heap) set" let ?lub = "Prog (fun_lub (flat_lub (Inl e)) A)" fix h h' h2 h2' r r' assume 1: "Complete_Partial_Order.chain (fun_ord (flat_ord (Inl e))) A" and 2 [rule_format]: "\xa\A. \h h' h2 h2' r r'. h \ Prog xa = Inr (r, h2) \ h' \ Prog xa = Inr (r', h2') \ P h h' h2 h2' r r'" and 4: "h \ Prog (fun_lub (flat_lub (Inl e)) A) = Inr (r, h2)" and 5: "h' \ Prog (fun_lub (flat_lub (Inl e)) A) = Inr (r', h2')" have h1:"\a. Complete_Partial_Order.chain (flat_ord (Inl e)) {y. \f\A. y = f a}" by (rule chain_fun[OF 1]) have "h \ ?lub \ {y. \f\A. y = f h}" using flat_lub_in_chain[OF h1] 4 unfolding execute_def fun_lub_def - by auto (metis (lifting) Inl_Inr_False) + by auto moreover have "h' \ ?lub \ {y. \f\A. y = f h'}" using flat_lub_in_chain[OF h1] 5 unfolding execute_def fun_lub_def - by auto (metis (lifting) Inl_Inr_False) + by auto ultimately obtain f where "f \ A" and "h \ Prog f = Inr (r, h2)" and "h' \ Prog f = Inr (r', h2')" using 1 4 5 - by (auto simp add: chain_def fun_ord_def flat_ord_def execute_def)[1] (metis (lifting) Inl_Inr_False) + apply(auto simp add: chain_def fun_ord_def flat_ord_def execute_def)[1] + by (metis Inl_Inr_False) then show "P h h' h2 h2' r r'" by(fact 2) qed definition dom_prog_ord :: "('heap, exception, 'result) prog \ ('heap, exception, 'result) prog \ bool" where "dom_prog_ord = img_ord (\a b. execute b a) (fun_ord (flat_ord (Inl NonTerminationException)))" definition dom_prog_lub :: "('heap, exception, 'result) prog set \ ('heap, exception, 'result) prog" where "dom_prog_lub = img_lub (\a b. execute b a) Prog (fun_lub (flat_lub (Inl NonTerminationException)))" lemma dom_prog_lub_empty: "dom_prog_lub {} = error NonTerminationException" by(simp add: dom_prog_lub_def img_lub_def fun_lub_def flat_lub_def error_def) lemma dom_prog_interpretation: "partial_function_definitions dom_prog_ord dom_prog_lub" proof - have "partial_function_definitions (fun_ord (flat_ord (Inl NonTerminationException))) (fun_lub (flat_lub (Inl NonTerminationException)))" by (rule partial_function_lift) (rule flat_interpretation) then show ?thesis apply (simp add: dom_prog_lub_def dom_prog_ord_def flat_interpretation execute_def) using partial_function_image prog.expand prog.sel by blast qed interpretation dom_prog: partial_function_definitions dom_prog_ord dom_prog_lub rewrites "dom_prog_lub {} \ error NonTerminationException" by (fact dom_prog_interpretation)(simp add: dom_prog_lub_empty) lemma admissible_dom_prog: "dom_prog.admissible (\f. \x h h' r. h \ f x \\<^sub>r r \ h \ f x \\<^sub>h h' \ P x h h' r)" proof (rule admissible_fun[OF dom_prog_interpretation]) fix x show "ccpo.admissible dom_prog_lub dom_prog_ord (\a. \h h' r. h \ a \\<^sub>r r \ h \ a \\<^sub>h h' \ P x h h' r)" unfolding dom_prog_ord_def dom_prog_lub_def proof (intro admissible_image partial_function_lift flat_interpretation) show "ccpo.admissible (fun_lub (flat_lub (Inl NonTerminationException))) (fun_ord (flat_ord (Inl NonTerminationException))) ((\a. \h h' r. h \ a \\<^sub>r r \ h \ a \\<^sub>h h' \ P x h h' r) \ Prog)" by(auto simp add: execute_admissible returns_result_def returns_heap_def split: sum.splits) next show "\x y. (\b. b \ x) = (\b. b \ y) \ x = y" by(simp add: execute_def prog.expand) next show "\x. (\b. b \ Prog x) = x" by(simp add: execute_def) qed qed lemma admissible_dom_prog2: "dom_prog.admissible (\f. \x h h2 h' h2' r r2. h \ f x \\<^sub>r r \ h \ f x \\<^sub>h h' \ h2 \ f x \\<^sub>r r2 \ h2 \ f x \\<^sub>h h2' \ P x h h2 h' h2' r r2)" proof (rule admissible_fun[OF dom_prog_interpretation]) fix x show "ccpo.admissible dom_prog_lub dom_prog_ord (\a. \h h2 h' h2' r r2. h \ a \\<^sub>r r \ h \ a \\<^sub>h h' \ h2 \ a \\<^sub>r r2 \ h2 \ a \\<^sub>h h2' \ P x h h2 h' h2' r r2)" unfolding dom_prog_ord_def dom_prog_lub_def proof (intro admissible_image partial_function_lift flat_interpretation) show "ccpo.admissible (fun_lub (flat_lub (Inl NonTerminationException))) (fun_ord (flat_ord (Inl NonTerminationException))) ((\a. \h h2 h' h2' r r2. h \ a \\<^sub>r r \ h \ a \\<^sub>h h' \ h2 \ a \\<^sub>r r2 \ h2 \ a \\<^sub>h h2' \ P x h h2 h' h2' r r2) \ Prog)" by(auto simp add: returns_result_def returns_heap_def intro!: ccpo.admissibleI dest!: ccpo.admissibleD[OF execute_admissible2[where P="P x"]] split: sum.splits) next show "\x y. (\b. b \ x) = (\b. b \ y) \ x = y" by(simp add: execute_def prog.expand) next show "\x. (\b. b \ Prog x) = x" by(simp add: execute_def) qed qed lemma fixp_induct_dom_prog: fixes F :: "'c \ 'c" and U :: "'c \ 'b \ ('heap, exception, 'result) prog" and C :: "('b \ ('heap, exception, 'result) prog) \ 'c" and P :: "'b \ 'heap \ 'heap \ 'result \ bool" assumes mono: "\x. monotone (fun_ord dom_prog_ord) dom_prog_ord (\f. U (F (C f)) x)" assumes eq: "f \ C (ccpo.fixp (fun_lub dom_prog_lub) (fun_ord dom_prog_ord) (\f. U (F (C f))))" assumes inverse2: "\f. U (C f) = f" assumes step: "\f x h h' r. (\x h h' r. h \ (U f x) \\<^sub>r r \ h \ (U f x) \\<^sub>h h' \ P x h h' r) \ h \ (U (F f) x) \\<^sub>r r \ h \ (U (F f) x) \\<^sub>h h' \ P x h h' r" assumes defined: "h \ (U f x) \\<^sub>r r" and "h \ (U f x) \\<^sub>h h'" shows "P x h h' r" using step defined dom_prog.fixp_induct_uc[of U F C, OF mono eq inverse2 admissible_dom_prog, of P] by (metis assms(6) error_returns_heap) declaration \Partial_Function.init "dom_prog" @{term dom_prog.fixp_fun} @{term dom_prog.mono_body} @{thm dom_prog.fixp_rule_uc} @{thm dom_prog.fixp_induct_uc} (SOME @{thm fixp_induct_dom_prog})\ abbreviation "mono_dom_prog \ monotone (fun_ord dom_prog_ord) dom_prog_ord" lemma dom_prog_ordI: assumes "\h. h \ f \\<^sub>e NonTerminationException \ h \ f = h \ g" shows "dom_prog_ord f g" proof(auto simp add: dom_prog_ord_def img_ord_def fun_ord_def flat_ord_def)[1] fix x assume "x \ f \ x \ g" then show "x \ f = Inl NonTerminationException" using assms[where h=x] by(auto simp add: returns_error_def split: sum.splits) qed lemma dom_prog_ordE: assumes "dom_prog_ord x y" obtains "h \ x \\<^sub>e NonTerminationException" | " h \ x = h \ y" using assms unfolding dom_prog_ord_def img_ord_def fun_ord_def flat_ord_def using returns_error_def by force lemma bind_mono [partial_function_mono]: fixes B :: "('a \ ('heap, exception, 'result) prog) \ ('heap, exception, 'result2) prog" assumes mf: "mono_dom_prog B" and mg: "\y. mono_dom_prog (\f. C y f)" shows "mono_dom_prog (\f. B f \ (\y. C y f))" proof (rule monotoneI) fix f g :: "'a \ ('heap, exception, 'result) prog" assume fg: "dom_prog.le_fun f g" from mf have 1: "dom_prog_ord (B f) (B g)" by (rule monotoneD) (rule fg) from mg have 2: "\y'. dom_prog_ord (C y' f) (C y' g)" by (rule monotoneD) (rule fg) have "dom_prog_ord (B f \ (\y. C y f)) (B g \ (\y. C y f))" (is "dom_prog_ord ?L ?R") proof (rule dom_prog_ordI) fix h from 1 show "h \ ?L \\<^sub>e NonTerminationException \ h \ ?L = h \ ?R" apply(rule dom_prog_ordE) apply(auto)[1] using bind_cong by fastforce qed also have h1: "dom_prog_ord (B g \ (\y'. C y' f)) (B g \ (\y'. C y' g))" (is "dom_prog_ord ?L ?R") proof (rule dom_prog_ordI) (* { *) fix h show "h \ ?L \\<^sub>e NonTerminationException \ h \ ?L = h \ ?R" proof (cases "h \ ok (B g)") case True then obtain x h' where x: "h \ B g \\<^sub>r x" and h': "h \ B g \\<^sub>h h'" by blast then have "dom_prog_ord (C x f) (C x g)" using 2 by simp then show ?thesis using x h' apply(auto intro!: bind_returns_error_I3 dest: returns_result_eq dest!: dom_prog_ordE)[1] apply(auto simp add: execute_bind_simp)[1] using "2" dom_prog_ordE by metis next case False then obtain e where e: "h \ B g \\<^sub>e e" by(simp add: is_OK_def returns_error_def split: sum.splits) have "h \ B g \ (\y'. C y' f) \\<^sub>e e" using e by(auto) moreover have "h \ B g \ (\y'. C y' g) \\<^sub>e e" using e by auto ultimately show ?thesis using bind_returns_error_eq by metis qed qed finally (dom_prog.leq_trans) show "dom_prog_ord (B f \ (\y. C y f)) (B g \ (\y'. C y' g))" . qed lemma mono_dom_prog1 [partial_function_mono]: fixes g :: "('a \ ('heap, exception, 'result) prog) \ 'b \ ('heap, exception, 'result) prog" assumes "\x. (mono_dom_prog (\f. g f x))" shows "mono_dom_prog (\f. map_M (g f) xs)" using assms apply (induct xs) by(auto simp add: call_mono dom_prog.const_mono intro!: bind_mono) lemma mono_dom_prog2 [partial_function_mono]: fixes g :: "('a \ ('heap, exception, 'result) prog) \ 'b \ ('heap, exception, 'result) prog" assumes "\x. (mono_dom_prog (\f. g f x))" shows "mono_dom_prog (\f. forall_M (g f) xs)" using assms apply (induct xs) by(auto simp add: call_mono dom_prog.const_mono intro!: bind_mono) lemma sorted_list_set_cong [simp]: "sorted_list_of_set (fset FS) = sorted_list_of_set (fset FS') \ FS = FS'" by auto end diff --git a/thys/Core_DOM/common/monads/CharacterDataMonad.thy b/thys/Core_DOM/common/monads/CharacterDataMonad.thy --- a/thys/Core_DOM/common/monads/CharacterDataMonad.thy +++ b/thys/Core_DOM/common/monads/CharacterDataMonad.thy @@ -1,531 +1,534 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\CharacterData\ text\In this theory, we introduce the monadic method setup for the CharacterData class.\ theory CharacterDataMonad imports ElementMonad "../classes/CharacterDataClass" begin type_synonym ('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData, 'result) dom_prog = "((_) heap, exception, 'result) prog" register_default_tvars "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData, 'result) dom_prog" global_interpretation l_ptr_kinds_M character_data_ptr_kinds defines character_data_ptr_kinds_M = a_ptr_kinds_M . lemmas character_data_ptr_kinds_M_defs = a_ptr_kinds_M_def lemma character_data_ptr_kinds_M_eq: assumes "|h \ node_ptr_kinds_M|\<^sub>r = |h' \ node_ptr_kinds_M|\<^sub>r" shows "|h \ character_data_ptr_kinds_M|\<^sub>r = |h' \ character_data_ptr_kinds_M|\<^sub>r" using assms by(auto simp add: character_data_ptr_kinds_M_defs node_ptr_kinds_M_defs character_data_ptr_kinds_def) lemma character_data_ptr_kinds_M_reads: "reads (\node_ptr. {preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t node_ptr RObject.nothing)}) character_data_ptr_kinds_M h h'" using node_ptr_kinds_M_reads apply (simp add: reads_def node_ptr_kinds_M_defs character_data_ptr_kinds_M_defs character_data_ptr_kinds_def preserved_def) by (smt node_ptr_kinds_small preserved_def unit_all_impI) global_interpretation l_dummy defines get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a = "l_get_M.a_get_M get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a" . lemma get_M_is_l_get_M: "l_get_M get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a type_wf character_data_ptr_kinds" apply(simp add: get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_type_wf l_get_M_def) by (metis (no_types, hide_lams) NodeMonad.get_M_is_l_get_M bind_eq_Some_conv character_data_ptr_kinds_commutes get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def l_get_M_def option.distinct(1)) lemmas get_M_defs = get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def[unfolded l_get_M.a_get_M_def[OF get_M_is_l_get_M]] adhoc_overloading get_M get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a locale l_get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_lemmas = l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a begin sublocale l_get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas by unfold_locales interpretation l_get_M get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a type_wf character_data_ptr_kinds apply(unfold_locales) apply (simp add: get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_type_wf local.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a) by (meson CharacterDataMonad.get_M_is_l_get_M l_get_M_def) lemmas get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ok = get_M_ok[folded get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def] end global_interpretation l_get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_lemmas type_wf by unfold_locales global_interpretation l_put_M type_wf character_data_ptr_kinds get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a rewrites "a_get_M = get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a" defines put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a = a_put_M apply (simp add: get_M_is_l_get_M l_put_M_def) by (simp add: get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def) lemmas put_M_defs = a_put_M_def adhoc_overloading put_M put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a locale l_put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_lemmas = l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a begin sublocale l_put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas by unfold_locales interpretation l_put_M type_wf character_data_ptr_kinds get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a apply(unfold_locales) using get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_type_wf l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a local.l_type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_axioms apply blast by (meson CharacterDataMonad.get_M_is_l_get_M l_get_M_def) lemmas put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ok = put_M_ok[folded put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def] end global_interpretation l_put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_lemmas type_wf by unfold_locales lemma CharacterData_simp1 [simp]: "(\x. getter (setter (\_. v) x) = v) \ h \ put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr setter v \\<^sub>h h' \ h' \ get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr getter \\<^sub>r v" by(auto simp add: put_M_defs get_M_defs split: option.splits) lemma CharacterData_simp2 [simp]: "character_data_ptr \ character_data_ptr' \ h \ put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr' getter) h h'" by(auto simp add: put_M_defs get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma CharacterData_simp3 [simp]: " (\x. getter (setter (\_. v) x) = getter x) \ h \ put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr' getter) h h'" apply(cases "character_data_ptr = character_data_ptr'") by(auto simp add: put_M_defs get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma CharacterData_simp4 [simp]: "h \ put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr getter) h h'" by(auto simp add: put_M_defs ElementMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma CharacterData_simp5 [simp]: "h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr getter) h h'" by(auto simp add: ElementMonad.put_M_defs get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma CharacterData_simp6 [simp]: "(\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ h \ put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" apply (cases "cast character_data_ptr = object_ptr") by(auto simp add: put_M_defs get_M_defs ObjectMonad.get_M_defs NodeMonad.get_M_defs get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def preserved_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def bind_eq_Some_conv split: option.splits) lemma CharacterData_simp7 [simp]: "(\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ h \ put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr getter) h h'" apply(cases "cast character_data_ptr = node_ptr") by(auto simp add: put_M_defs get_M_defs ObjectMonad.get_M_defs NodeMonad.get_M_defs get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def preserved_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def bind_eq_Some_conv split: option.splits) lemma CharacterData_simp8 [simp]: "cast character_data_ptr \ node_ptr \ h \ put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr getter) h h'" by(auto simp add: put_M_defs get_M_defs get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def NodeMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma CharacterData_simp9 [simp]: "h \ put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr setter v \\<^sub>h h' \ (\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr getter) h h'" apply(cases "cast character_data_ptr \ node_ptr") by(auto simp add: put_M_defs get_M_defs get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def NodeMonad.get_M_defs preserved_def split: option.splits bind_splits dest: get_heap_E) lemma CharacterData_simp10 [simp]: "cast character_data_ptr \ node_ptr \ h \ put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr getter) h h'" by(auto simp add: NodeMonad.put_M_defs get_M_defs get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def NodeMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma CharacterData_simp11 [simp]: "cast character_data_ptr \ object_ptr \ h \ put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" by(auto simp add: put_M_defs get_M_defs get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def ObjectMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma CharacterData_simp12 [simp]: "h \ put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr setter v \\<^sub>h h' \ (\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" apply(cases "cast character_data_ptr \ object_ptr") apply(auto simp add: put_M_defs get_M_defs get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def ObjectMonad.get_M_defs preserved_def split: option.splits bind_splits dest: get_heap_E)[1] by(auto simp add: put_M_defs get_M_defs get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def ObjectMonad.get_M_defs preserved_def split: option.splits bind_splits dest: get_heap_E)[1] lemma CharacterData_simp13 [simp]: "cast character_data_ptr \ object_ptr \ h \ put_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr getter) h h'" by(auto simp add: ObjectMonad.put_M_defs get_M_defs get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def ObjectMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma new_element_get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a: "h \ new_element \\<^sub>h h' \ preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a ptr getter) h h'" by(auto simp add: new_element_def get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) subsection\Creating CharacterData\ definition new_character_data :: "(_, (_) character_data_ptr) dom_prog" where "new_character_data = do { h \ get_heap; (new_ptr, h') \ return (new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a h); return_heap h'; return new_ptr }" lemma new_character_data_ok [simp]: "h \ ok new_character_data" by(auto simp add: new_character_data_def split: prod.splits) lemma new_character_data_ptr_in_heap: assumes "h \ new_character_data \\<^sub>h h'" and "h \ new_character_data \\<^sub>r new_character_data_ptr" shows "new_character_data_ptr |\| character_data_ptr_kinds h'" using assms unfolding new_character_data_def by(auto simp add: new_character_data_def new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def Let_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ptr_in_heap is_OK_returns_result_I elim!: bind_returns_result_E bind_returns_heap_E) lemma new_character_data_ptr_not_in_heap: assumes "h \ new_character_data \\<^sub>h h'" and "h \ new_character_data \\<^sub>r new_character_data_ptr" shows "new_character_data_ptr |\| character_data_ptr_kinds h" using assms new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ptr_not_in_heap by(auto simp add: new_character_data_def split: prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_character_data_new_ptr: assumes "h \ new_character_data \\<^sub>h h'" and "h \ new_character_data \\<^sub>r new_character_data_ptr" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast new_character_data_ptr|}" using assms new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_new_ptr by(auto simp add: new_character_data_def split: prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_character_data_is_character_data_ptr: assumes "h \ new_character_data \\<^sub>r new_character_data_ptr" shows "is_character_data_ptr new_character_data_ptr" using assms new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_is_character_data_ptr by(auto simp add: new_character_data_def elim!: bind_returns_result_E split: prod.splits) lemma new_character_data_child_nodes: assumes "h \ new_character_data \\<^sub>h h'" assumes "h \ new_character_data \\<^sub>r new_character_data_ptr" shows "h' \ get_M new_character_data_ptr val \\<^sub>r ''''" using assms by(auto simp add: get_M_defs new_character_data_def new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def Let_def split: option.splits prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_character_data_get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t: "h \ new_character_data \\<^sub>h h' \ h \ new_character_data \\<^sub>r new_character_data_ptr \ ptr \ cast new_character_data_ptr \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr getter) h h'" by(auto simp add: new_character_data_def ObjectMonad.get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_character_data_get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e: "h \ new_character_data \\<^sub>h h' \ h \ new_character_data \\<^sub>r new_character_data_ptr \ ptr \ cast new_character_data_ptr \ preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr getter) h h'" by(auto simp add: new_character_data_def NodeMonad.get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_character_data_get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t: "h \ new_character_data \\<^sub>h h' \ h \ new_character_data \\<^sub>r new_character_data_ptr \ preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr getter) h h'" by(auto simp add: new_character_data_def ElementMonad.get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_character_data_get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a: "h \ new_character_data \\<^sub>h h' \ h \ new_character_data \\<^sub>r new_character_data_ptr \ ptr \ new_character_data_ptr \ preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a ptr getter) h h'" by(auto simp add: new_character_data_def get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) subsection\Modified Heaps\ lemma get_CharacterData_ptr_simp [simp]: "get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h) = (if ptr = cast character_data_ptr then cast obj else get character_data_ptr h)" by(auto simp add: get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def split: option.splits Option.bind_splits) lemma Character_data_ptr_kinds_simp [simp]: "character_data_ptr_kinds (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h) = character_data_ptr_kinds h |\| (if is_character_data_ptr_kind ptr then {|the (cast ptr)|} else {||})" by(auto simp add: character_data_ptr_kinds_def is_node_ptr_kind_def split: option.splits) lemma type_wf_put_I: assumes "type_wf h" assumes "ElementClass.type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "is_character_data_ptr_kind ptr \ is_character_data_kind obj" shows "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" using assms by(auto simp add: type_wf_defs split: option.splits) lemma type_wf_put_ptr_not_in_heap_E: assumes "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "ptr |\| object_ptr_kinds h" shows "type_wf h" using assms apply(auto simp add: type_wf_defs elim!: ElementMonad.type_wf_put_ptr_not_in_heap_E - split: option.splits if_splits) + split: option.splits if_splits)[1] using assms(2) node_ptr_kinds_commutes by blast lemma type_wf_put_ptr_in_heap_E: assumes "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "ptr |\| object_ptr_kinds h" assumes "ElementClass.type_wf h" assumes "is_character_data_ptr_kind ptr \ is_character_data_kind (the (get ptr h))" shows "type_wf h" using assms apply(auto simp add: type_wf_defs split: option.splits if_splits)[1] - by (metis (no_types, lifting) ElementClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf assms(2) bind.bind_lunit cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_inv cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_inv get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def notin_fset option.collapse) + by (metis (no_types, lifting) ElementClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf assms(2) bind.bind_lunit + cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_inv cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_inv get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def notin_fset option.collapse) subsection\Preserving Types\ lemma new_element_type_wf_preserved [simp]: assumes "h \ new_element \\<^sub>h h'" shows "type_wf h = type_wf h'" using assms apply(auto simp add: new_element_def new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def elim!: bind_returns_heap_E type_wf_put_ptr_not_in_heap_E intro!: type_wf_put_I split: if_splits)[1] using CharacterDataClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t assms new_element_type_wf_preserved apply blast using element_ptrs_def apply fastforce using CharacterDataClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t assms new_element_type_wf_preserved apply blast by (metis Suc_n_not_le_n element_ptr.sel(1) element_ptrs_def fMax_ge ffmember_filter fimage_eqI is_element_ptr_ref) lemma new_element_is_l_new_element: "l_new_element type_wf" using l_new_element.intro new_element_type_wf_preserved by blast -lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_tag_type_type_wf_preserved [simp]: - "h \ put_M element_ptr tag_type_update v \\<^sub>h h' \ type_wf h = type_wf h'" +lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_tag_name_type_wf_preserved [simp]: + "h \ put_M element_ptr tag_name_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: ElementMonad.put_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] using ObjectMonad.type_wf_put_ptr_in_heap_E ObjectMonad.type_wf_put_ptr_not_in_heap_E apply blast apply (metis (no_types, lifting) bind_eq_Some_conv finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) apply (metis finite_set_in) done lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_child_nodes_type_wf_preserved [simp]: "h \ put_M element_ptr child_nodes_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: ElementMonad.put_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] using ObjectMonad.type_wf_put_ptr_in_heap_E ObjectMonad.type_wf_put_ptr_not_in_heap_E apply blast apply (metis (no_types, lifting) bind_eq_Some_conv finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) apply (metis finite_set_in) done lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_attrs_type_wf_preserved [simp]: "h \ put_M element_ptr attrs_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: ElementMonad.put_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] using ObjectMonad.type_wf_put_ptr_in_heap_E ObjectMonad.type_wf_put_ptr_not_in_heap_E apply blast apply (metis (no_types, lifting) bind_eq_Some_conv finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) apply (metis finite_set_in) done lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_shadow_root_opt_type_wf_preserved [simp]: "h \ put_M element_ptr shadow_root_opt_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: ElementMonad.put_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs split: option.splits)[1] using ObjectMonad.type_wf_put_ptr_in_heap_E ObjectMonad.type_wf_put_ptr_not_in_heap_E apply blast apply (metis (no_types, lifting) bind_eq_Some_conv finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) apply (metis finite_set_in) done lemma new_character_data_type_wf_preserved [simp]: "h \ new_character_data \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: new_character_data_def new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def Let_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def elim!: bind_returns_heap_E type_wf_put_ptr_not_in_heap_E intro!: type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I split: if_splits)[1] apply(simp_all add: type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs is_node_kind_def) by (meson new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ptr_not_in_heap) locale l_new_character_data = l_type_wf + assumes new_character_data_types_preserved: "h \ new_character_data \\<^sub>h h' \ type_wf h = type_wf h'" lemma new_character_data_is_l_new_character_data: "l_new_character_data type_wf" using l_new_character_data.intro new_character_data_type_wf_preserved by blast lemma put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_val_type_wf_preserved [simp]: "h \ put_M character_data_ptr val_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: CharacterDataMonad.put_M_defs put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def CharacterDataClass.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e CharacterDataClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t is_node_kind_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs CharacterDataMonad.get_M_defs split: option.splits)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs CharacterDataMonad.get_M_defs ObjectClass.a_type_wf_def split: option.splits)[1] apply (metis (no_types, lifting) bind_eq_Some_conv finite_set_in get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def) apply (metis finite_set_in) done lemma character_data_ptr_kinds_small: assumes "\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" shows "character_data_ptr_kinds h = character_data_ptr_kinds h'" by(simp add: character_data_ptr_kinds_def node_ptr_kinds_def preserved_def object_ptr_kinds_preserved_small[OF assms]) lemma character_data_ptr_kinds_preserved: assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "\h h'. \w \ SW. h \ w \\<^sub>h h' \ (\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h')" shows "character_data_ptr_kinds h = character_data_ptr_kinds h'" using writes_small_big[OF assms] apply(simp add: reflp_def transp_def preserved_def character_data_ptr_kinds_def) by (metis assms node_ptr_kinds_preserved) lemma type_wf_preserved_small: assumes "\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" assumes "\node_ptr. preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr RNode.nothing) h h'" assumes "\element_ptr. preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr RElement.nothing) h h'" assumes "\character_data_ptr. preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr RCharacterData.nothing) h h'" shows "type_wf h = type_wf h'" using type_wf_preserved_small[OF assms(1) assms(2) assms(3)] allI[OF assms(4), of id, simplified] character_data_ptr_kinds_small[OF assms(1)] apply(auto simp add: type_wf_defs preserved_def get_M_defs character_data_ptr_kinds_small[OF assms(1)] split: option.splits)[1] apply(force) by force lemma type_wf_preserved: assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \node_ptr. preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr RNode.nothing) h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \element_ptr. preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr RElement.nothing) h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \character_data_ptr. preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr RCharacterData.nothing) h h'" shows "type_wf h = type_wf h'" proof - have "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ type_wf h = type_wf h'" using assms type_wf_preserved_small by fast with assms(1) assms(2) show ?thesis apply(rule writes_small_big) by(auto simp add: reflp_def transp_def) qed lemma type_wf_drop: "type_wf h \ type_wf (Heap (fmdrop ptr (the_heap h)))" apply(auto simp add: type_wf_def ElementMonad.type_wf_drop l_type_wf_def\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a.a_type_wf_def)[1] using type_wf_drop - by (metis (no_types, lifting) ElementClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ObjectClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf character_data_ptr_kinds_commutes finite_set_in fmlookup_drop get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def node_ptr_kinds_commutes object_ptr_kinds_code5) + by (metis (no_types, lifting) ElementClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ObjectClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf + character_data_ptr_kinds_commutes finite_set_in fmlookup_drop get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def + get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def node_ptr_kinds_commutes object_ptr_kinds_code5) end diff --git a/thys/Core_DOM/common/monads/DocumentMonad.thy b/thys/Core_DOM/common/monads/DocumentMonad.thy --- a/thys/Core_DOM/common/monads/DocumentMonad.thy +++ b/thys/Core_DOM/common/monads/DocumentMonad.thy @@ -1,603 +1,614 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\Document\ text\In this theory, we introduce the monadic method setup for the Document class.\ theory DocumentMonad imports CharacterDataMonad "../classes/DocumentClass" begin type_synonym ('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData, 'Document, 'result) dom_prog = "((_) heap, exception, 'result) prog" register_default_tvars "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element, 'CharacterData, 'Document, 'result) dom_prog" global_interpretation l_ptr_kinds_M document_ptr_kinds defines document_ptr_kinds_M = a_ptr_kinds_M . lemmas document_ptr_kinds_M_defs = a_ptr_kinds_M_def lemma document_ptr_kinds_M_eq: assumes "|h \ object_ptr_kinds_M|\<^sub>r = |h' \ object_ptr_kinds_M|\<^sub>r" shows "|h \ document_ptr_kinds_M|\<^sub>r = |h' \ document_ptr_kinds_M|\<^sub>r" using assms by(auto simp add: document_ptr_kinds_M_defs object_ptr_kinds_M_defs document_ptr_kinds_def) lemma document_ptr_kinds_M_reads: "reads (\object_ptr. {preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing)}) document_ptr_kinds_M h h'" using object_ptr_kinds_M_reads apply (simp add: reads_def object_ptr_kinds_M_defs document_ptr_kinds_M_defs document_ptr_kinds_def preserved_def cong del: image_cong_simp) apply (metis (mono_tags, hide_lams) object_ptr_kinds_preserved_small old.unit.exhaust preserved_def) done global_interpretation l_dummy defines get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t = "l_get_M.a_get_M get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t" . lemma get_M_is_l_get_M: "l_get_M get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t type_wf document_ptr_kinds" apply(simp add: get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_type_wf l_get_M_def) by (metis ObjectClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf ObjectClass.type_wf_defs bind_eq_None_conv document_ptr_kinds_commutes get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def option.simps(3)) lemmas get_M_defs = get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def[unfolded l_get_M.a_get_M_def[OF get_M_is_l_get_M]] adhoc_overloading get_M get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t locale l_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas = l_type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin sublocale l_get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_lemmas by unfold_locales interpretation l_get_M get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t type_wf document_ptr_kinds apply(unfold_locales) apply (simp add: get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_type_wf local.type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t) by (meson DocumentMonad.get_M_is_l_get_M l_get_M_def) lemmas get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok = get_M_ok[folded get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def] end global_interpretation l_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas type_wf by unfold_locales global_interpretation l_put_M type_wf document_ptr_kinds get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t rewrites "a_get_M = get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t" defines put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t = a_put_M apply (simp add: get_M_is_l_get_M l_put_M_def) by (simp add: get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) lemmas put_M_defs = a_put_M_def adhoc_overloading put_M put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t locale l_put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas = l_type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin sublocale l_put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_lemmas by unfold_locales interpretation l_put_M type_wf document_ptr_kinds get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t apply(unfold_locales) apply (simp add: get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_type_wf local.type_wf\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t) by (meson DocumentMonad.get_M_is_l_get_M l_get_M_def) lemmas put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok = put_M_ok[folded put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def] end global_interpretation l_put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas type_wf by unfold_locales lemma document_put_get [simp]: "h \ put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr setter v \\<^sub>h h' \ (\x. getter (setter (\_. v) x) = v) \ h' \ get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr getter \\<^sub>r v" by(auto simp add: put_M_defs get_M_defs split: option.splits) lemma get_M_Mdocument_preserved1 [simp]: "document_ptr \ document_ptr' \ h \ put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr' getter) h h'" by(auto simp add: put_M_defs get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma document_put_get_preserved [simp]: "h \ put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr setter v \\<^sub>h h' \ (\x. getter (setter (\_. v) x) = getter x) \ preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr' getter) h h'" apply(cases "document_ptr = document_ptr'") by(auto simp add: put_M_defs get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Mdocument_preserved2 [simp]: "h \ put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr getter) h h'" by(auto simp add: put_M_defs get_M_defs NodeMonad.get_M_defs get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def preserved_def split: option.splits dest: get_heap_E) lemma get_M_Mdocument_preserved3 [simp]: "cast document_ptr \ object_ptr \ h \ put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" by(auto simp add: put_M_defs get_M_defs get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def ObjectMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Mdocument_preserved4 [simp]: "h \ put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr setter v \\<^sub>h h' \ (\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" apply(cases "cast document_ptr \ object_ptr")[1] by(auto simp add: put_M_defs get_M_defs get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def ObjectMonad.get_M_defs preserved_def split: option.splits bind_splits dest: get_heap_E) lemma get_M_Mdocument_preserved5 [simp]: "cast document_ptr \ object_ptr \ h \ put_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr getter) h h'" by(auto simp add: ObjectMonad.put_M_defs get_M_defs get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def ObjectMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Mdocument_preserved6 [simp]: "h \ put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr getter) h h'" by(auto simp add: put_M_defs ElementMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Mdocument_preserved7 [simp]: "h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr getter) h h'" by(auto simp add: ElementMonad.put_M_defs get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Mdocument_preserved8 [simp]: "h \ put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr getter) h h'" by(auto simp add: put_M_defs CharacterDataMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Mdocument_preserved9 [simp]: "h \ put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr getter) h h'" by(auto simp add: CharacterDataMonad.put_M_defs get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Mdocument_preserved10 [simp]: "(\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ h \ put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" apply(cases "cast document_ptr = object_ptr") by(auto simp add: put_M_defs get_M_defs ObjectMonad.get_M_defs NodeMonad.get_M_defs get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def preserved_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def bind_eq_Some_conv split: option.splits) lemma new_element_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t: "h \ new_element \\<^sub>h h' \ preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr getter) h h'" by(auto simp add: new_element_def get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_character_data_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t: "h \ new_character_data \\<^sub>h h' \ preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr getter) h h'" by(auto simp add: new_character_data_def get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) subsection \Creating Documents\ definition new_document :: "(_, (_) document_ptr) dom_prog" where "new_document = do { h \ get_heap; (new_ptr, h') \ return (new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t h); return_heap h'; return new_ptr }" lemma new_document_ok [simp]: "h \ ok new_document" by(auto simp add: new_document_def split: prod.splits) lemma new_document_ptr_in_heap: assumes "h \ new_document \\<^sub>h h'" and "h \ new_document \\<^sub>r new_document_ptr" shows "new_document_ptr |\| document_ptr_kinds h'" using assms unfolding new_document_def by(auto simp add: new_document_def new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap is_OK_returns_result_I elim!: bind_returns_result_E bind_returns_heap_E) lemma new_document_ptr_not_in_heap: assumes "h \ new_document \\<^sub>h h'" and "h \ new_document \\<^sub>r new_document_ptr" shows "new_document_ptr |\| document_ptr_kinds h" using assms new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_not_in_heap by(auto simp add: new_document_def split: prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_document_new_ptr: assumes "h \ new_document \\<^sub>h h'" and "h \ new_document \\<^sub>r new_document_ptr" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast new_document_ptr|}" using assms new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_new_ptr by(auto simp add: new_document_def split: prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_document_is_document_ptr: assumes "h \ new_document \\<^sub>r new_document_ptr" shows "is_document_ptr new_document_ptr" using assms new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_is_document_ptr by(auto simp add: new_document_def elim!: bind_returns_result_E split: prod.splits) lemma new_document_doctype: assumes "h \ new_document \\<^sub>h h'" assumes "h \ new_document \\<^sub>r new_document_ptr" shows "h' \ get_M new_document_ptr doctype \\<^sub>r ''''" using assms by(auto simp add: get_M_defs new_document_def new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def split: option.splits prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_document_document_element: assumes "h \ new_document \\<^sub>h h'" assumes "h \ new_document \\<^sub>r new_document_ptr" shows "h' \ get_M new_document_ptr document_element \\<^sub>r None" using assms by(auto simp add: get_M_defs new_document_def new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def split: option.splits prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_document_disconnected_nodes: assumes "h \ new_document \\<^sub>h h'" assumes "h \ new_document \\<^sub>r new_document_ptr" shows "h' \ get_M new_document_ptr disconnected_nodes \\<^sub>r []" using assms by(auto simp add: get_M_defs new_document_def new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def split: option.splits prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_document_get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t: "h \ new_document \\<^sub>h h' \ h \ new_document \\<^sub>r new_document_ptr \ ptr \ cast new_document_ptr \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr getter) h h'" by(auto simp add: new_document_def ObjectMonad.get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_document_get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e: "h \ new_document \\<^sub>h h' \ h \ new_document \\<^sub>r new_document_ptr \ preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr getter) h h'" by(auto simp add: new_document_def NodeMonad.get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_document_get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t: "h \ new_document \\<^sub>h h' \ h \ new_document \\<^sub>r new_document_ptr \ preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr getter) h h'" by(auto simp add: new_document_def ElementMonad.get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_document_get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a: "h \ new_document \\<^sub>h h' \ h \ new_document \\<^sub>r new_document_ptr \ preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a ptr getter) h h'" by(auto simp add: new_document_def CharacterDataMonad.get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_document_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t: "h \ new_document \\<^sub>h h' \ h \ new_document \\<^sub>r new_document_ptr \ ptr \ new_document_ptr \ preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr getter) h h'" by(auto simp add: new_document_def get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) subsection \Modified Heaps\ lemma get_document_ptr_simp [simp]: "get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h) = (if ptr = cast document_ptr then cast obj else get document_ptr h)" by(auto simp add: get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def split: option.splits Option.bind_splits) lemma document_ptr_kidns_simp [simp]: "document_ptr_kinds (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h) = document_ptr_kinds h |\| (if is_document_ptr_kind ptr then {|the (cast ptr)|} else {||})" by(auto simp add: document_ptr_kinds_def split: option.splits) lemma type_wf_put_I: assumes "type_wf h" assumes "CharacterDataClass.type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "is_document_ptr_kind ptr \ is_document_kind obj" shows "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" using assms by(auto simp add: type_wf_defs is_document_kind_def split: option.splits) lemma type_wf_put_ptr_not_in_heap_E: assumes "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "ptr |\| object_ptr_kinds h" shows "type_wf h" using assms by(auto simp add: type_wf_defs elim!: CharacterDataMonad.type_wf_put_ptr_not_in_heap_E split: option.splits if_splits) lemma type_wf_put_ptr_in_heap_E: assumes "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "ptr |\| object_ptr_kinds h" assumes "CharacterDataClass.type_wf h" assumes "is_document_ptr_kind ptr \ is_document_kind (the (get ptr h))" shows "type_wf h" using assms apply(auto simp add: type_wf_defs elim!: CharacterDataMonad.type_wf_put_ptr_in_heap_E split: option.splits if_splits)[1] - by (metis (no_types, lifting) CharacterDataClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf bind.bind_lunit get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def is_document_kind_def notin_fset option.exhaust_sel) + by (metis (no_types, lifting) CharacterDataClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf bind.bind_lunit get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def + is_document_kind_def notin_fset option.exhaust_sel) subsection \Preserving Types\ lemma new_element_type_wf_preserved [simp]: "h \ new_element \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: new_element_def new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def DocumentClass.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t DocumentClass.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e DocumentClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t is_node_kind_def element_ptrs_def elim!: bind_returns_heap_E type_wf_put_ptr_not_in_heap_E intro!: type_wf_put_I CharacterDataMonad.type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I split: if_splits)[1] apply fastforce by (metis Suc_n_not_le_n element_ptr.sel(1) element_ptrs_def fMax_ge ffmember_filter fimage_eqI is_element_ptr_ref) lemma new_element_is_l_new_element [instances]: "l_new_element type_wf" using l_new_element.intro new_element_type_wf_preserved by blast -lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_tag_type_type_wf_preserved [simp]: - "h \ put_M element_ptr tag_type_update v \\<^sub>h h' \ type_wf h = type_wf h'" +lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_tag_name_type_wf_preserved [simp]: + "h \ put_M element_ptr tag_name_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: ElementMonad.put_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def DocumentClass.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t DocumentClass.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e DocumentClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t is_node_kind_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I CharacterDataMonad.type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] - apply (metis NodeClass.a_type_wf_def NodeClass.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf ObjectClass.a_type_wf_def bind.bind_lzero finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def l_type_wf_def\<^sub>N\<^sub>o\<^sub>d\<^sub>e.a_type_wf_def option.collapse option.distinct(1) option.simps(3)) + apply (metis NodeClass.a_type_wf_def NodeClass.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf ObjectClass.a_type_wf_def + bind.bind_lzero finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def l_type_wf_def\<^sub>N\<^sub>o\<^sub>d\<^sub>e.a_type_wf_def option.collapse + option.distinct(1) option.simps(3)) by (metis fmember.rep_eq) lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_child_nodes_type_wf_preserved [simp]: "h \ put_M element_ptr child_nodes_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: ElementMonad.put_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def DocumentClass.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t DocumentClass.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e DocumentClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t is_node_kind_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I CharacterDataMonad.type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] - apply (metis NodeClass.a_type_wf_def NodeClass.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf ObjectClass.a_type_wf_def bind.bind_lzero finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def l_type_wf_def\<^sub>N\<^sub>o\<^sub>d\<^sub>e.a_type_wf_def option.collapse option.distinct(1) option.simps(3)) + apply (metis NodeClass.a_type_wf_def NodeClass.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf ObjectClass.a_type_wf_def + bind.bind_lzero finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def l_type_wf_def\<^sub>N\<^sub>o\<^sub>d\<^sub>e.a_type_wf_def option.collapse + option.distinct(1) option.simps(3)) by (metis fmember.rep_eq) lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_attrs_type_wf_preserved [simp]: "h \ put_M element_ptr attrs_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: ElementMonad.put_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def DocumentClass.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t DocumentClass.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e DocumentClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t is_node_kind_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I CharacterDataMonad.type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] - apply (metis NodeClass.a_type_wf_def NodeClass.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf ObjectClass.a_type_wf_def bind.bind_lzero finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def l_type_wf_def\<^sub>N\<^sub>o\<^sub>d\<^sub>e.a_type_wf_def option.collapse option.distinct(1) option.simps(3)) + apply (metis NodeClass.a_type_wf_def NodeClass.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf ObjectClass.a_type_wf_def + bind.bind_lzero finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def l_type_wf_def\<^sub>N\<^sub>o\<^sub>d\<^sub>e.a_type_wf_def option.collapse + option.distinct(1) option.simps(3)) by (metis fmember.rep_eq) lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_shadow_root_opt_type_wf_preserved [simp]: "h \ put_M element_ptr shadow_root_opt_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: ElementMonad.put_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def DocumentClass.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t DocumentClass.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e DocumentClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t is_node_kind_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I CharacterDataMonad.type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] - apply (metis NodeClass.a_type_wf_def NodeClass.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf ObjectClass.a_type_wf_def bind.bind_lzero finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def l_type_wf_def\<^sub>N\<^sub>o\<^sub>d\<^sub>e.a_type_wf_def option.collapse option.distinct(1) option.simps(3)) + apply (metis NodeClass.a_type_wf_def NodeClass.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf ObjectClass.a_type_wf_def + bind.bind_lzero finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def l_type_wf_def\<^sub>N\<^sub>o\<^sub>d\<^sub>e.a_type_wf_def option.collapse + option.distinct(1) option.simps(3)) by (metis fmember.rep_eq) lemma new_character_data_type_wf_preserved [simp]: "h \ new_character_data \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: ElementMonad.put_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def DocumentClass.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t DocumentClass.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e DocumentClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t is_node_kind_def new_character_data_def new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def Let_def put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def dest!: get_heap_E elim!: bind_returns_heap_E2 bind_returns_heap_E type_wf_put_ptr_not_in_heap_E intro!: type_wf_put_I CharacterDataMonad.type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] by (meson new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def new\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_ptr_not_in_heap) lemma new_character_data_is_l_new_character_data [instances]: "l_new_character_data type_wf" using l_new_character_data.intro new_character_data_type_wf_preserved by blast lemma put_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_val_type_wf_preserved [simp]: "h \ put_M character_data_ptr val_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: CharacterDataMonad.put_M_defs put\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def DocumentClass.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t DocumentClass.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e DocumentClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t is_node_kind_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I CharacterDataMonad.type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_node_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs CharacterDataMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] apply (metis bind.bind_lzero finite_set_in get\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a_def option.distinct(1) option.exhaust_sel) by (metis finite_set_in) lemma new_document_type_wf_preserved [simp]: "h \ new_document \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: new_document_def new\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def DocumentClass.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t DocumentClass.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e DocumentClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t is_node_ptr_kind_none elim!: bind_returns_heap_E type_wf_put_ptr_not_in_heap_E intro!: type_wf_put_I ElementMonad.type_wf_put_I CharacterDataMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I split: if_splits)[1] apply(auto simp add: type_wf_defs ElementClass.type_wf_defs CharacterDataClass.type_wf_defs NodeClass.type_wf_defs ObjectClass.type_wf_defs is_document_kind_def split: option.splits)[1] using document_ptrs_def apply fastforce apply (simp add: is_document_kind_def) - apply (metis Suc_n_not_le_n document_ptr.sel(1) document_ptrs_def fMax_ge ffmember_filter fimage_eqI is_document_ptr_ref) + apply (metis Suc_n_not_le_n document_ptr.sel(1) document_ptrs_def fMax_ge ffmember_filter + fimage_eqI is_document_ptr_ref) done locale l_new_document = l_type_wf + assumes new_document_types_preserved: "h \ new_document \\<^sub>h h' \ type_wf h = type_wf h'" lemma new_document_is_l_new_document [instances]: "l_new_document type_wf" using l_new_document.intro new_document_type_wf_preserved by blast lemma put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_doctype_type_wf_preserved [simp]: "h \ put_M document_ptr doctype_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: put_M_defs put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I CharacterDataMonad.type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_document_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] apply(auto simp add: is_document_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] apply(auto simp add: is_document_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] apply(auto simp add: is_document_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] apply(auto simp add: is_document_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] apply(auto simp add: is_document_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] apply(auto simp add: is_document_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] apply(auto simp add: is_document_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] - apply(auto simp add: get_M_defs) + apply(auto simp add: get_M_defs)[1] by (metis (mono_tags) error_returns_result finite_set_in option.exhaust_sel option.simps(4)) lemma put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_document_element_type_wf_preserved [simp]: "h \ put_M document_ptr document_element_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: put_M_defs put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def DocumentClass.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t DocumentClass.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e DocumentClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t is_node_ptr_kind_none cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_none is_document_kind_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I CharacterDataMonad.type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: get_M_defs is_document_kind_def type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] by (metis finite_set_in) lemma put_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_disconnected_nodes_type_wf_preserved [simp]: "h \ put_M document_ptr disconnected_nodes_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: put_M_defs put\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def DocumentClass.type_wf\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a DocumentClass.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t DocumentClass.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e DocumentClass.type_wf\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t is_node_ptr_kind_none cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_none is_document_kind_def dest!: get_heap_E elim!: bind_returns_heap_E2 intro!: type_wf_put_I CharacterDataMonad.type_wf_put_I ElementMonad.type_wf_put_I NodeMonad.type_wf_put_I ObjectMonad.type_wf_put_I)[1] apply(auto simp add: is_document_kind_def get_M_defs type_wf_defs ElementClass.type_wf_defs NodeClass.type_wf_defs ElementMonad.get_M_defs ObjectClass.type_wf_defs CharacterDataClass.type_wf_defs split: option.splits)[1] by (metis finite_set_in) lemma document_ptr_kinds_small: assumes "\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" shows "document_ptr_kinds h = document_ptr_kinds h'" by(simp add: document_ptr_kinds_def preserved_def object_ptr_kinds_preserved_small[OF assms]) lemma document_ptr_kinds_preserved: assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "\h h'. \w \ SW. h \ w \\<^sub>h h' \ (\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h')" shows "document_ptr_kinds h = document_ptr_kinds h'" using writes_small_big[OF assms] apply(simp add: reflp_def transp_def preserved_def document_ptr_kinds_def) by (metis assms object_ptr_kinds_preserved) lemma type_wf_preserved_small: assumes "\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" assumes "\node_ptr. preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr RNode.nothing) h h'" assumes "\element_ptr. preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr RElement.nothing) h h'" assumes "\character_data_ptr. preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr RCharacterData.nothing) h h'" assumes "\document_ptr. preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr RDocument.nothing) h h'" shows "DocumentClass.type_wf h = DocumentClass.type_wf h'" using type_wf_preserved_small[OF assms(1) assms(2) assms(3) assms(4)] allI[OF assms(5), of id, simplified] document_ptr_kinds_small[OF assms(1)] apply(auto simp add: type_wf_defs )[1] apply(auto simp add: type_wf_defs preserved_def get_M_defs document_ptr_kinds_small[OF assms(1)] split: option.splits)[1] apply force apply(auto simp add: type_wf_defs preserved_def get_M_defs document_ptr_kinds_small[OF assms(1)] split: option.splits)[1] by force lemma type_wf_preserved: assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \node_ptr. preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr RNode.nothing) h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \element_ptr. preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr RElement.nothing) h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \character_data_ptr. preserved (get_M\<^sub>C\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>D\<^sub>a\<^sub>t\<^sub>a character_data_ptr RCharacterData.nothing) h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \document_ptr. preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t document_ptr RDocument.nothing) h h'" shows "DocumentClass.type_wf h = DocumentClass.type_wf h'" proof - have "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ DocumentClass.type_wf h = DocumentClass.type_wf h'" using assms type_wf_preserved_small by fast with assms(1) assms(2) show ?thesis apply(rule writes_small_big) by(auto simp add: reflp_def transp_def) qed lemma type_wf_drop: "type_wf h \ type_wf (Heap (fmdrop ptr (the_heap h)))" apply(auto simp add: type_wf_defs)[1] using type_wf_drop apply blast - by (metis (no_types, lifting) CharacterDataClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf CharacterDataMonad.type_wf_drop document_ptr_kinds_commutes finite_set_in fmlookup_drop get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def heap.sel) + by (metis (no_types, lifting) CharacterDataClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf CharacterDataMonad.type_wf_drop + document_ptr_kinds_commutes finite_set_in fmlookup_drop get\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def heap.sel) end diff --git a/thys/Core_DOM/common/monads/ElementMonad.thy b/thys/Core_DOM/common/monads/ElementMonad.thy --- a/thys/Core_DOM/common/monads/ElementMonad.thy +++ b/thys/Core_DOM/common/monads/ElementMonad.thy @@ -1,445 +1,445 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\Element\ text\In this theory, we introduce the monadic method setup for the Element class.\ theory ElementMonad imports NodeMonad "ElementClass" begin type_synonym ('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element,'result) dom_prog = "((_) heap, exception, 'result) prog" register_default_tvars "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element,'result) dom_prog" global_interpretation l_ptr_kinds_M element_ptr_kinds defines element_ptr_kinds_M = a_ptr_kinds_M . lemmas element_ptr_kinds_M_defs = a_ptr_kinds_M_def lemma element_ptr_kinds_M_eq: assumes "|h \ node_ptr_kinds_M|\<^sub>r = |h' \ node_ptr_kinds_M|\<^sub>r" shows "|h \ element_ptr_kinds_M|\<^sub>r = |h' \ element_ptr_kinds_M|\<^sub>r" using assms by(auto simp add: element_ptr_kinds_M_defs node_ptr_kinds_M_defs element_ptr_kinds_def) lemma element_ptr_kinds_M_reads: "reads (\element_ptr. {preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t element_ptr RObject.nothing)}) element_ptr_kinds_M h h'" apply (simp add: reads_def node_ptr_kinds_M_defs element_ptr_kinds_M_defs element_ptr_kinds_def node_ptr_kinds_M_reads preserved_def cong del: image_cong_simp) apply (metis (mono_tags, hide_lams) node_ptr_kinds_small old.unit.exhaust preserved_def) done global_interpretation l_dummy defines get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t = "l_get_M.a_get_M get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t" . lemma get_M_is_l_get_M: "l_get_M get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t type_wf element_ptr_kinds" apply(simp add: get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_type_wf l_get_M_def) by (metis (no_types, lifting) ObjectClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf ObjectClass.type_wf_defs bind_eq_Some_conv bind_eq_Some_conv element_ptr_kinds_commutes get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def node_ptr_kinds_commutes option.simps(3)) lemmas get_M_defs = get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def[unfolded l_get_M.a_get_M_def[OF get_M_is_l_get_M]] adhoc_overloading get_M get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t locale l_get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas = l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin sublocale l_get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_lemmas by unfold_locales interpretation l_get_M get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t type_wf element_ptr_kinds apply(unfold_locales) apply (simp add: get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_type_wf local.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t) by (meson ElementMonad.get_M_is_l_get_M l_get_M_def) lemmas get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok = get_M_ok[folded get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def] lemmas get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap = get_M_ptr_in_heap[folded get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def] end global_interpretation l_get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas type_wf by unfold_locales global_interpretation l_put_M type_wf element_ptr_kinds get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t rewrites "a_get_M = get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t" defines put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t = a_put_M apply (simp add: get_M_is_l_get_M l_put_M_def) by (simp add: get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) lemmas put_M_defs = a_put_M_def adhoc_overloading put_M put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t locale l_put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas = l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin sublocale l_put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_lemmas by unfold_locales interpretation l_put_M type_wf element_ptr_kinds get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t apply(unfold_locales) apply (simp add: get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_type_wf local.type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t) by (meson ElementMonad.get_M_is_l_get_M l_get_M_def) lemmas put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ok = put_M_ok[folded put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def] end global_interpretation l_put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas type_wf by unfold_locales lemma element_put_get [simp]: "h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h' \ (\x. getter (setter (\_. v) x) = v) \ h' \ get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr getter \\<^sub>r v" by(auto simp add: put_M_defs get_M_defs split: option.splits) lemma get_M_Element_preserved1 [simp]: "element_ptr \ element_ptr' \ h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr' getter) h h'" by(auto simp add: put_M_defs get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma element_put_get_preserved [simp]: "(\x. getter (setter (\_. v) x) = getter x) \ h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr' getter) h h'" apply(cases "element_ptr = element_ptr'") by(auto simp add: put_M_defs get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Element_preserved3 [simp]: "(\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" apply(cases "cast element_ptr = object_ptr") by (auto simp add: put_M_defs get_M_defs ObjectMonad.get_M_defs NodeMonad.get_M_defs get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def preserved_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def bind_eq_Some_conv split: option.splits) lemma get_M_Element_preserved4 [simp]: "(\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr getter) h h'" apply(cases "cast element_ptr = node_ptr") by(auto simp add: put_M_defs get_M_defs ObjectMonad.get_M_defs NodeMonad.get_M_defs get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def preserved_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def bind_eq_Some_conv split: option.splits) lemma get_M_Element_preserved5 [simp]: "cast element_ptr \ node_ptr \ h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr getter) h h'" by(auto simp add: put_M_defs get_M_defs get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def NodeMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Element_preserved6 [simp]: "h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h' \ (\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr getter) h h'" apply(cases "cast element_ptr \ node_ptr") by(auto simp add: put_M_defs get_M_defs get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def NodeMonad.get_M_defs preserved_def split: option.splits bind_splits dest: get_heap_E) lemma get_M_Element_preserved7 [simp]: "cast element_ptr \ node_ptr \ h \ put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr getter) h h'" by(auto simp add: NodeMonad.put_M_defs get_M_defs get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def NodeMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Element_preserved8 [simp]: "cast element_ptr \ object_ptr \ h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" by(auto simp add: put_M_defs get_M_defs get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def ObjectMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Element_preserved9 [simp]: "h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h' \ (\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" apply(cases "cast element_ptr \ object_ptr") by(auto simp add: put_M_defs get_M_defs get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def ObjectMonad.get_M_defs preserved_def split: option.splits bind_splits dest: get_heap_E) lemma get_M_Element_preserved10 [simp]: "cast element_ptr \ object_ptr \ h \ put_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr getter) h h'" by(auto simp add: ObjectMonad.put_M_defs get_M_defs get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def ObjectMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) subsection\Creating Elements\ definition new_element :: "(_, (_) element_ptr) dom_prog" where "new_element = do { h \ get_heap; (new_ptr, h') \ return (new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h); return_heap h'; return new_ptr }" lemma new_element_ok [simp]: "h \ ok new_element" by(auto simp add: new_element_def split: prod.splits) lemma new_element_ptr_in_heap: assumes "h \ new_element \\<^sub>h h'" and "h \ new_element \\<^sub>r new_element_ptr" shows "new_element_ptr |\| element_ptr_kinds h'" using assms unfolding new_element_def by(auto simp add: new_element_def new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap is_OK_returns_result_I elim!: bind_returns_result_E bind_returns_heap_E) lemma new_element_ptr_not_in_heap: assumes "h \ new_element \\<^sub>h h'" and "h \ new_element \\<^sub>r new_element_ptr" shows "new_element_ptr |\| element_ptr_kinds h" using assms new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_not_in_heap by(auto simp add: new_element_def split: prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_element_new_ptr: assumes "h \ new_element \\<^sub>h h'" and "h \ new_element \\<^sub>r new_element_ptr" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast new_element_ptr|}" using assms new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_new_ptr by(auto simp add: new_element_def split: prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_element_is_element_ptr: assumes "h \ new_element \\<^sub>r new_element_ptr" shows "is_element_ptr new_element_ptr" using assms new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_is_element_ptr by(auto simp add: new_element_def elim!: bind_returns_result_E split: prod.splits) lemma new_element_child_nodes: assumes "h \ new_element \\<^sub>h h'" assumes "h \ new_element \\<^sub>r new_element_ptr" shows "h' \ get_M new_element_ptr child_nodes \\<^sub>r []" using assms by(auto simp add: get_M_defs new_element_def new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def split: option.splits prod.splits elim!: bind_returns_result_E bind_returns_heap_E) -lemma new_element_tag_type: +lemma new_element_tag_name: assumes "h \ new_element \\<^sub>h h'" assumes "h \ new_element \\<^sub>r new_element_ptr" - shows "h' \ get_M new_element_ptr tag_type \\<^sub>r ''''" + shows "h' \ get_M new_element_ptr tag_name \\<^sub>r ''''" using assms by(auto simp add: get_M_defs new_element_def new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def split: option.splits prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_element_attrs: assumes "h \ new_element \\<^sub>h h'" assumes "h \ new_element \\<^sub>r new_element_ptr" shows "h' \ get_M new_element_ptr attrs \\<^sub>r fmempty" using assms by(auto simp add: get_M_defs new_element_def new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def split: option.splits prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_element_shadow_root_opt: assumes "h \ new_element \\<^sub>h h'" assumes "h \ new_element \\<^sub>r new_element_ptr" shows "h' \ get_M new_element_ptr shadow_root_opt \\<^sub>r None" using assms by(auto simp add: get_M_defs new_element_def new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def split: option.splits prod.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_element_get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t: "h \ new_element \\<^sub>h h' \ h \ new_element \\<^sub>r new_element_ptr \ ptr \ cast new_element_ptr \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr getter) h h'" by(auto simp add: new_element_def ObjectMonad.get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_element_get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e: "h \ new_element \\<^sub>h h' \ h \ new_element \\<^sub>r new_element_ptr \ ptr \ cast new_element_ptr \ preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr getter) h h'" by(auto simp add: new_element_def NodeMonad.get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) lemma new_element_get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t: "h \ new_element \\<^sub>h h' \ h \ new_element \\<^sub>r new_element_ptr \ ptr \ new_element_ptr \ preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr getter) h h'" by(auto simp add: new_element_def get_M_defs preserved_def split: prod.splits option.splits elim!: bind_returns_result_E bind_returns_heap_E) subsection\Modified Heaps\ lemma get_Element_ptr_simp [simp]: "get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h) = (if ptr = cast element_ptr then cast obj else get element_ptr h)" by(auto simp add: get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def split: option.splits Option.bind_splits) lemma element_ptr_kinds_simp [simp]: "element_ptr_kinds (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h) = element_ptr_kinds h |\| (if is_element_ptr_kind ptr then {|the (cast ptr)|} else {||})" by(auto simp add: element_ptr_kinds_def is_node_ptr_kind_def split: option.splits) lemma type_wf_put_I: assumes "type_wf h" assumes "NodeClass.type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "is_element_ptr_kind ptr \ is_element_kind obj" shows "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" using assms by(auto simp add: type_wf_defs split: option.splits) lemma type_wf_put_ptr_not_in_heap_E: assumes "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "ptr |\| object_ptr_kinds h" shows "type_wf h" using assms apply(auto simp add: type_wf_defs elim!: NodeMonad.type_wf_put_ptr_not_in_heap_E split: option.splits if_splits)[1] using assms(2) node_ptr_kinds_commutes by blast lemma type_wf_put_ptr_in_heap_E: assumes "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "ptr |\| object_ptr_kinds h" assumes "NodeClass.type_wf h" assumes "is_element_ptr_kind ptr \ is_element_kind (the (get ptr h))" shows "type_wf h" using assms apply(auto simp add: type_wf_defs split: option.splits if_splits)[1] by (metis (no_types, lifting) NodeClass.l_get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_lemmas_axioms assms(2) bind.bind_lunit cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_inv cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_inv finite_set_in get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def l_get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_lemmas.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf option.collapse) subsection\Preserving Types\ lemma new_element_type_wf_preserved [simp]: "h \ new_element \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: type_wf_defs NodeClass.type_wf_defs ObjectClass.type_wf_defs new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def new_element_def Let_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def split: prod.splits if_splits elim!: bind_returns_heap_E)[1] apply (metis element_ptr_kinds_commutes element_ptrs_def fempty_iff ffmember_filter finite_set_in is_element_ptr_ref) apply (metis element_ptrs_def fempty_iff ffmember_filter finite_set_in is_element_ptr_ref) apply (metis (no_types, lifting) Suc_n_not_le_n element_ptr.sel(1) element_ptr_kinds_commutes element_ptrs_def fMax_ge ffmember_filter fimage_eqI is_element_ptr_ref notin_fset) apply (metis (no_types, lifting) Suc_n_not_le_n element_ptr.sel(1) element_ptrs_def fMax_ge ffmember_filter fimage_eqI finite_set_in is_element_ptr_ref) done locale l_new_element = l_type_wf + assumes new_element_types_preserved: "h \ new_element \\<^sub>h h' \ type_wf h = type_wf h'" lemma new_element_is_l_new_element: "l_new_element type_wf" using l_new_element.intro new_element_type_wf_preserved by blast -lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_tag_type_type_wf_preserved [simp]: - "h \ put_M element_ptr tag_type_update v \\<^sub>h h' \ type_wf h = type_wf h'" +lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_tag_name_type_wf_preserved [simp]: + "h \ put_M element_ptr tag_name_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: type_wf_defs NodeClass.type_wf_defs ObjectClass.type_wf_defs Let_def put_M_defs get_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def split: prod.splits option.splits Option.bind_splits elim!: bind_returns_heap_E)[1] apply (metis finite_set_in option.inject) apply (metis cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_inv finite_set_in option.sel) done lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_child_nodes_type_wf_preserved [simp]: "h \ put_M element_ptr child_nodes_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: type_wf_defs NodeClass.type_wf_defs ObjectClass.type_wf_defs Let_def put_M_defs get_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def split: prod.splits option.splits Option.bind_splits elim!: bind_returns_heap_E)[1] apply (metis finite_set_in option.inject) apply (metis cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_inv finite_set_in option.sel) done lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_attrs_type_wf_preserved [simp]: "h \ put_M element_ptr attrs_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: type_wf_defs NodeClass.type_wf_defs ObjectClass.type_wf_defs Let_def put_M_defs get_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def split: prod.splits option.splits Option.bind_splits elim!: bind_returns_heap_E)[1] apply (metis finite_set_in option.inject) apply (metis cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_inv finite_set_in option.sel) done lemma put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_shadow_root_opt_type_wf_preserved [simp]: "h \ put_M element_ptr shadow_root_opt_update v \\<^sub>h h' \ type_wf h = type_wf h'" apply(auto simp add: type_wf_defs NodeClass.type_wf_defs ObjectClass.type_wf_defs Let_def put_M_defs get_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def split: prod.splits option.splits Option.bind_splits elim!: bind_returns_heap_E)[1] apply (metis finite_set_in option.inject) apply (metis cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_inv finite_set_in option.sel) done lemma put_M_pointers_preserved: assumes "h \ put_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr setter v \\<^sub>h h'" shows "object_ptr_kinds h = object_ptr_kinds h'" using assms apply(auto simp add: put_M_defs put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def elim!: bind_returns_heap_E2 dest!: get_heap_E)[1] by (meson get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap is_OK_returns_result_I) lemma element_ptr_kinds_preserved: assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "\h h'. \w \ SW. h \ w \\<^sub>h h' \ (\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h')" shows "element_ptr_kinds h = element_ptr_kinds h'" using writes_small_big[OF assms] apply(simp add: reflp_def transp_def preserved_def element_ptr_kinds_def) by (metis assms node_ptr_kinds_preserved) lemma element_ptr_kinds_small: assumes "\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" shows "element_ptr_kinds h = element_ptr_kinds h'" by(simp add: element_ptr_kinds_def node_ptr_kinds_def preserved_def object_ptr_kinds_preserved_small[OF assms]) lemma type_wf_preserved_small: assumes "\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" assumes "\node_ptr. preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr RNode.nothing) h h'" assumes "\element_ptr. preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr RElement.nothing) h h'" shows "type_wf h = type_wf h'" using type_wf_preserved_small[OF assms(1) assms(2)] allI[OF assms(3), of id, simplified] apply(auto simp add: type_wf_defs )[1] apply(auto simp add: preserved_def get_M_defs element_ptr_kinds_small[OF assms(1)] split: option.splits,force)[1] by(auto simp add: preserved_def get_M_defs element_ptr_kinds_small[OF assms(1)] split: option.splits,force) lemma type_wf_preserved: assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \node_ptr. preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr RNode.nothing) h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \element_ptr. preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr RElement.nothing) h h'" shows "type_wf h = type_wf h'" proof - have "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ type_wf h = type_wf h'" using assms type_wf_preserved_small by fast with assms(1) assms(2) show ?thesis apply(rule writes_small_big) by(auto simp add: reflp_def transp_def) qed lemma type_wf_drop: "type_wf h \ type_wf (Heap (fmdrop ptr (the_heap h)))" apply(auto simp add: type_wf_defs NodeClass.type_wf_defs ObjectClass.type_wf_defs node_ptr_kinds_def object_ptr_kinds_def is_node_ptr_kind_def get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_def)[1] apply (metis (no_types, lifting) element_ptr_kinds_commutes finite_set_in fmdom_notD fmdom_notI fmlookup_drop heap.sel node_ptr_kinds_commutes o_apply object_ptr_kinds_def) by (metis element_ptr_kinds_commutes fmdom_notI fmdrop_lookup heap.sel node_ptr_kinds_commutes o_apply object_ptr_kinds_def) end diff --git a/thys/Core_DOM/common/monads/NodeMonad.thy b/thys/Core_DOM/common/monads/NodeMonad.thy --- a/thys/Core_DOM/common/monads/NodeMonad.thy +++ b/thys/Core_DOM/common/monads/NodeMonad.thy @@ -1,218 +1,218 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\Node\ text\In this theory, we introduce the monadic method setup for the Node class.\ theory NodeMonad imports ObjectMonad "../classes/NodeClass" begin type_synonym ('object_ptr, 'node_ptr, 'Object, 'Node, 'result) dom_prog = "((_) heap, exception, 'result) prog" register_default_tvars "('object_ptr, 'node_ptr, 'Object, 'Node, 'result) dom_prog" global_interpretation l_ptr_kinds_M node_ptr_kinds defines node_ptr_kinds_M = a_ptr_kinds_M . lemmas node_ptr_kinds_M_defs = a_ptr_kinds_M_def lemma node_ptr_kinds_M_eq: assumes "|h \ object_ptr_kinds_M|\<^sub>r = |h' \ object_ptr_kinds_M|\<^sub>r" shows "|h \ node_ptr_kinds_M|\<^sub>r = |h' \ node_ptr_kinds_M|\<^sub>r" using assms by(auto simp add: node_ptr_kinds_M_defs object_ptr_kinds_M_defs node_ptr_kinds_def) global_interpretation l_dummy defines get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e = "l_get_M.a_get_M get\<^sub>N\<^sub>o\<^sub>d\<^sub>e" . lemma get_M_is_l_get_M: "l_get_M get\<^sub>N\<^sub>o\<^sub>d\<^sub>e type_wf node_ptr_kinds" apply(simp add: get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf l_get_M_def) by (metis ObjectClass.a_type_wf_def ObjectClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf bind_eq_None_conv get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def node_ptr_kinds_commutes option.simps(3)) lemmas get_M_defs = get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def[unfolded l_get_M.a_get_M_def[OF get_M_is_l_get_M]] adhoc_overloading get_M get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e locale l_get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_lemmas = l_type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e begin sublocale l_get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_lemmas by unfold_locales interpretation l_get_M get\<^sub>N\<^sub>o\<^sub>d\<^sub>e type_wf node_ptr_kinds apply(unfold_locales) apply (simp add: get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf local.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e) by (meson NodeMonad.get_M_is_l_get_M l_get_M_def) lemmas get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_ok = get_M_ok[folded get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def] end global_interpretation l_get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_lemmas type_wf by unfold_locales lemma node_ptr_kinds_M_reads: "reads (\object_ptr. {preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing)}) node_ptr_kinds_M h h'" using object_ptr_kinds_M_reads apply (simp add: reads_def node_ptr_kinds_M_defs node_ptr_kinds_def object_ptr_kinds_M_reads preserved_def) by (smt object_ptr_kinds_preserved_small preserved_def unit_all_impI) global_interpretation l_put_M type_wf node_ptr_kinds get\<^sub>N\<^sub>o\<^sub>d\<^sub>e put\<^sub>N\<^sub>o\<^sub>d\<^sub>e rewrites "a_get_M = get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e" defines put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e = a_put_M apply (simp add: get_M_is_l_get_M l_put_M_def) by (simp add: get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def) lemmas put_M_defs = a_put_M_def adhoc_overloading put_M put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e locale l_put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_lemmas = l_type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e begin sublocale l_put_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_lemmas by unfold_locales interpretation l_put_M type_wf node_ptr_kinds get\<^sub>N\<^sub>o\<^sub>d\<^sub>e put\<^sub>N\<^sub>o\<^sub>d\<^sub>e apply(unfold_locales) apply (simp add: get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf local.type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e) by (meson NodeMonad.get_M_is_l_get_M l_get_M_def) lemmas put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_ok = put_M_ok[folded put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def] end global_interpretation l_put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e_lemmas type_wf by unfold_locales lemma get_M_Object_preserved1 [simp]: "(\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ h \ put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" apply(cases "cast node_ptr = object_ptr") by(auto simp add: put_M_defs get_M_defs ObjectMonad.get_M_defs get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def preserved_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def bind_eq_Some_conv split: option.splits) lemma get_M_Object_preserved2 [simp]: "cast node_ptr \ object_ptr \ h \ put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" by(auto simp add: put_M_defs get_M_defs get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def ObjectMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) lemma get_M_Object_preserved3 [simp]: "h \ put_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr setter v \\<^sub>h h' \ (\x. getter (cast (setter (\_. v) x)) = getter (cast x)) \ preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr getter) h h'" apply(cases "cast node_ptr \ object_ptr") by(auto simp add: put_M_defs get_M_defs get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def ObjectMonad.get_M_defs preserved_def split: option.splits bind_splits dest: get_heap_E) lemma get_M_Object_preserved4 [simp]: "cast node_ptr \ object_ptr \ h \ put_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr setter v \\<^sub>h h' \ preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr getter) h h'" by(auto simp add: ObjectMonad.put_M_defs get_M_defs get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def ObjectMonad.get_M_defs preserved_def split: option.splits dest: get_heap_E) subsection\Modified Heaps\ lemma get_node_ptr_simp [simp]: "get\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h) = (if ptr = cast node_ptr then cast obj else get node_ptr h)" by(auto simp add: get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def) lemma node_ptr_kinds_simp [simp]: "node_ptr_kinds (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h) = node_ptr_kinds h |\| (if is_node_ptr_kind ptr then {|the (cast ptr)|} else {||})" by(auto simp add: node_ptr_kinds_def) lemma type_wf_put_I: assumes "type_wf h" assumes "ObjectClass.type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "is_node_ptr_kind ptr \ is_node_kind obj" shows "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" using assms apply(auto simp add: type_wf_defs split: option.splits)[1] using cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_none is_node_kind_def apply blast using cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_none is_node_kind_def apply blast done lemma type_wf_put_ptr_not_in_heap_E: assumes "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "ptr |\| object_ptr_kinds h" shows "type_wf h" using assms by(auto simp add: type_wf_defs elim!: ObjectMonad.type_wf_put_ptr_not_in_heap_E split: option.splits if_splits) lemma type_wf_put_ptr_in_heap_E: assumes "type_wf (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr obj h)" assumes "ptr |\| object_ptr_kinds h" assumes "ObjectClass.type_wf h" assumes "is_node_ptr_kind ptr \ is_node_kind (the (get ptr h))" shows "type_wf h" using assms - apply(auto simp add: type_wf_defs split: option.splits if_splits) + apply(auto simp add: type_wf_defs split: option.splits if_splits)[1] by (metis ObjectClass.get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t_type_wf bind.bind_lunit finite_set_in get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def is_node_kind_def option.exhaust_sel) subsection\Preserving Types\ lemma node_ptr_kinds_small: assumes "\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" shows "node_ptr_kinds h = node_ptr_kinds h'" by(simp add: node_ptr_kinds_def preserved_def object_ptr_kinds_preserved_small[OF assms]) lemma node_ptr_kinds_preserved: assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "\h h'. \w \ SW. h \ w \\<^sub>h h' \ (\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h')" shows "node_ptr_kinds h = node_ptr_kinds h'" using writes_small_big[OF assms] apply(simp add: reflp_def transp_def preserved_def node_ptr_kinds_def) by (metis assms object_ptr_kinds_preserved) lemma type_wf_preserved_small: assumes "\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" assumes "\node_ptr. preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr RNode.nothing) h h'" shows "type_wf h = type_wf h'" using type_wf_preserved allI[OF assms(2), of id, simplified] - apply(auto simp add: type_wf_defs) + apply(auto simp add: type_wf_defs)[1] apply(auto simp add: preserved_def get_M_defs node_ptr_kinds_small[OF assms(1)] split: option.splits)[1] apply (metis notin_fset option.simps(3)) by(auto simp add: preserved_def get_M_defs node_ptr_kinds_small[OF assms(1)] split: option.splits, force)[1] lemma type_wf_preserved: assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \node_ptr. preserved (get_M\<^sub>N\<^sub>o\<^sub>d\<^sub>e node_ptr RNode.nothing) h h'" shows "type_wf h = type_wf h'" proof - have "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ type_wf h = type_wf h'" using assms type_wf_preserved_small by fast with assms(1) assms(2) show ?thesis apply(rule writes_small_big) by(auto simp add: reflp_def transp_def) qed end diff --git a/thys/Core_DOM/common/preliminaries/Heap_Error_Monad.thy b/thys/Core_DOM/common/preliminaries/Heap_Error_Monad.thy --- a/thys/Core_DOM/common/preliminaries/Heap_Error_Monad.thy +++ b/thys/Core_DOM/common/preliminaries/Heap_Error_Monad.thy @@ -1,930 +1,917 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\The Heap Error Monad\ text \In this theory, we define a heap and error monad for modeling exceptions. This allows us to define composite methods similar to stateful programming in Haskell, but also to stay close to the official DOM specification.\ theory Heap_Error_Monad imports Hiding_Type_Variables "HOL-Library.Monad_Syntax" begin subsection \The Program Data Type\ datatype ('heap, 'e, 'result) prog = Prog (the_prog: "'heap \ 'e + 'result \ 'heap") register_default_tvars "('heap, 'e, 'result) prog" (print, parse) subsection \Basic Functions\ definition bind :: "(_, 'result) prog \ ('result \ (_, 'result2) prog) \ (_, 'result2) prog" where "bind f g = Prog (\h. (case (the_prog f) h of Inr (x, h') \ (the_prog (g x)) h' | Inl exception \ Inl exception))" adhoc_overloading Monad_Syntax.bind bind definition execute :: "'heap \ ('heap, 'e, 'result) prog \ ('e + 'result \ 'heap)" ("((_)/ \ (_))" [51, 52] 55) where "execute h p = (the_prog p) h" definition returns_result :: "'heap \ ('heap, 'e, 'result) prog \ 'result \ bool" ("((_)/ \ (_)/ \\<^sub>r (_))" [60, 35, 61] 65) where "returns_result h p r \ (case h \ p of Inr (r', _) \ r = r' | Inl _ \ False)" fun select_result ("|(_)|\<^sub>r") where "select_result (Inr (r, _)) = r" | "select_result (Inl _) = undefined" lemma returns_result_eq [elim]: "h \ f \\<^sub>r y \ h \ f \\<^sub>r y' \ y = y'" by(auto simp add: returns_result_def split: sum.splits) definition returns_heap :: "'heap \ ('heap, 'e, 'result) prog \ 'heap \ bool" ("((_)/ \ (_)/ \\<^sub>h (_))" [60, 35, 61] 65) where "returns_heap h p h' \ (case h \ p of Inr (_ , h'') \ h' = h'' | Inl _ \ False)" fun select_heap ("|(_)|\<^sub>h") where "select_heap (Inr ( _, h)) = h" | "select_heap (Inl _) = undefined" lemma returns_heap_eq [elim]: "h \ f \\<^sub>h h' \ h \ f \\<^sub>h h'' \ h' = h''" by(auto simp add: returns_heap_def split: sum.splits) definition returns_result_heap :: "'heap \ ('heap, 'e, 'result) prog \ 'result \ 'heap \ bool" ("((_)/ \ (_)/ \\<^sub>r (_) \\<^sub>h (_))" [60, 35, 61, 62] 65) where "returns_result_heap h p r h' \ h \ p \\<^sub>r r \ h \ p \\<^sub>h h'" -lemma return_result_heap_code [code]: "returns_result_heap h p r h' \ (case h \ p of Inr (r', h'') \ r = r' \ h' = h'' | Inl _ \ False)" +lemma return_result_heap_code [code]: + "returns_result_heap h p r h' \ (case h \ p of Inr (r', h'') \ r = r' \ h' = h'' | Inl _ \ False)" by(auto simp add: returns_result_heap_def returns_result_def returns_heap_def split: sum.splits) fun select_result_heap ("|(_)|\<^sub>r\<^sub>h") where "select_result_heap (Inr (r, h)) = (r, h)" | "select_result_heap (Inl _) = undefined" definition returns_error :: "'heap \ ('heap, 'e, 'result) prog \ 'e \ bool" ("((_)/ \ (_)/ \\<^sub>e (_))" [60, 35, 61] 65) where "returns_error h p e = (case h \ p of Inr _ \ False | Inl e' \ e = e')" definition is_OK :: "'heap \ ('heap, 'e, 'result) prog \ bool" ("((_)/ \ ok (_))" [75, 75]) where "is_OK h p = (case h \ p of Inr _ \ True | Inl _ \ False)" lemma is_OK_returns_result_I [intro]: "h \ f \\<^sub>r y \ h \ ok f" by(auto simp add: is_OK_def returns_result_def split: sum.splits) lemma is_OK_returns_result_E [elim]: assumes "h \ ok f" obtains x where "h \ f \\<^sub>r x" using assms by(auto simp add: is_OK_def returns_result_def split: sum.splits) lemma is_OK_returns_heap_I [intro]: "h \ f \\<^sub>h h' \ h \ ok f" by(auto simp add: is_OK_def returns_heap_def split: sum.splits) lemma is_OK_returns_heap_E [elim]: assumes "h \ ok f" obtains h' where "h \ f \\<^sub>h h'" using assms by(auto simp add: is_OK_def returns_heap_def split: sum.splits) lemma select_result_I: assumes "h \ ok f" and "\x. h \ f \\<^sub>r x \ P x" shows "P |h \ f|\<^sub>r" using assms by(auto simp add: is_OK_def returns_result_def split: sum.splits) lemma select_result_I2 [simp]: assumes "h \ f \\<^sub>r x" shows "|h \ f|\<^sub>r = x" using assms by(auto simp add: is_OK_def returns_result_def split: sum.splits) lemma returns_result_select_result [simp]: assumes "h \ ok f" shows "h \ f \\<^sub>r |h \ f|\<^sub>r" using assms by (simp add: select_result_I) lemma select_result_E: assumes "P |h \ f|\<^sub>r" and "h \ ok f" obtains x where "h \ f \\<^sub>r x" and "P x" using assms by(auto simp add: is_OK_def returns_result_def split: sum.splits) lemma select_result_eq: "(\x .h \ f \\<^sub>r x = h' \ f \\<^sub>r x) \ |h \ f|\<^sub>r = |h' \ f|\<^sub>r" by (metis (no_types, lifting) is_OK_def old.sum.simps(6) select_result.elims select_result_I select_result_I2) definition error :: "'e \ ('heap, 'e, 'result) prog" where "error exception = Prog (\h. Inl exception)" lemma error_bind [iff]: "(error e \ g) = error e" unfolding error_def bind_def by auto lemma error_returns_result [simp]: "\ (h \ error e \\<^sub>r y)" unfolding returns_result_def error_def execute_def by auto lemma error_returns_heap [simp]: "\ (h \ error e \\<^sub>h h')" unfolding returns_heap_def error_def execute_def by auto lemma error_returns_error [simp]: "h \ error e \\<^sub>e e" unfolding returns_error_def error_def execute_def by auto definition return :: "'result \ ('heap, 'e, 'result) prog" where "return result = Prog (\h. Inr (result, h))" lemma return_ok [simp]: "h \ ok (return x)" by(simp add: return_def is_OK_def execute_def) lemma return_bind [iff]: "(return x \ g) = g x" unfolding return_def bind_def by auto lemma return_id [simp]: "f \ return = f" by (induct f) (auto simp add: return_def bind_def split: sum.splits prod.splits) lemma return_returns_result [iff]: "(h \ return x \\<^sub>r y) = (x = y)" unfolding returns_result_def return_def execute_def by auto lemma return_returns_heap [iff]: "(h \ return x \\<^sub>h h') = (h = h')" unfolding returns_heap_def return_def execute_def by auto lemma return_returns_error [iff]: "\ h \ return x \\<^sub>e e" unfolding returns_error_def execute_def return_def by auto definition noop :: "('heap, 'e, unit) prog" where "noop = return ()" lemma noop_returns_heap [simp]: "h \ noop \\<^sub>h h' \ h = h'" by(simp add: noop_def) definition get_heap :: "('heap, 'e, 'heap) prog" where "get_heap = Prog (\h. h \ return h)" lemma get_heap_ok [simp]: "h \ ok (get_heap)" by (simp add: get_heap_def execute_def is_OK_def return_def) lemma get_heap_returns_result [simp]: "(h \ get_heap \ (\h'. f h') \\<^sub>r x) = (h \ f h \\<^sub>r x)" by(simp add: get_heap_def returns_result_def bind_def return_def execute_def) lemma get_heap_returns_heap [simp]: "(h \ get_heap \ (\h'. f h') \\<^sub>h h'') = (h \ f h \\<^sub>h h'')" by(simp add: get_heap_def returns_heap_def bind_def return_def execute_def) lemma get_heap_is_OK [simp]: "(h \ ok (get_heap \ (\h'. f h'))) = (h \ ok (f h))" by(auto simp add: get_heap_def is_OK_def bind_def return_def execute_def) lemma get_heap_E [elim]: "(h \ get_heap \\<^sub>r x) \ x = h" by(simp add: get_heap_def returns_result_def return_def execute_def) definition return_heap :: "'heap \ ('heap, 'e, unit) prog" where "return_heap h = Prog (\_. h \ return ())" lemma return_heap_E [iff]: "(h \ return_heap h' \\<^sub>h h'') = (h'' = h')" by(simp add: return_heap_def returns_heap_def return_def execute_def) lemma return_heap_returns_result [simp]: "h \ return_heap h' \\<^sub>r ()" by(simp add: return_heap_def execute_def returns_result_def return_def) subsection \Pure Heaps\ definition pure :: "('heap, 'e, 'result) prog \ 'heap \ bool" where "pure f h \ h \ ok f \ h \ f \\<^sub>h h" lemma return_pure [simp]: "pure (return x) h" by(simp add: pure_def return_def is_OK_def returns_heap_def execute_def) lemma error_pure [simp]: "pure (error e) h" by(simp add: pure_def error_def is_OK_def returns_heap_def execute_def) lemma noop_pure [simp]: "pure (noop) h" by (simp add: noop_def) lemma get_pure [simp]: "pure get_heap h" by(simp add: pure_def get_heap_def is_OK_def returns_heap_def return_def execute_def) lemma pure_returns_heap_eq: "h \ f \\<^sub>h h' \ pure f h \ h = h'" by (meson pure_def is_OK_returns_heap_I returns_heap_eq) lemma pure_eq_iff: "(\h' x. h \ f \\<^sub>r x \ h \ f \\<^sub>h h' \ h = h') \ pure f h" by(auto simp add: pure_def) subsection \Bind\ lemma bind_assoc [simp]: "((bind f g) \ h) = (f \ (\x. (g x \ h)))" by(auto simp add: bind_def split: sum.splits) lemma bind_returns_result_E: assumes "h \ f \ g \\<^sub>r y" obtains x h' where "h \ f \\<^sub>r x" and "h \ f \\<^sub>h h'" and "h' \ g x \\<^sub>r y" using assms by(auto simp add: bind_def returns_result_def returns_heap_def execute_def split: sum.splits) lemma bind_returns_result_E2: assumes "h \ f \ g \\<^sub>r y" and "pure f h" obtains x where "h \ f \\<^sub>r x" and "h \ g x \\<^sub>r y" using assms pure_returns_heap_eq bind_returns_result_E by metis lemma bind_returns_result_E3: assumes "h \ f \ g \\<^sub>r y" and "h \ f \\<^sub>r x" and "pure f h" shows "h \ g x \\<^sub>r y" using assms returns_result_eq bind_returns_result_E2 by metis lemma bind_returns_result_E4: assumes "h \ f \ g \\<^sub>r y" and "h \ f \\<^sub>r x" obtains h' where "h \ f \\<^sub>h h'" and "h' \ g x \\<^sub>r y" using assms returns_result_eq bind_returns_result_E by metis lemma bind_returns_heap_E: assumes "h \ f \ g \\<^sub>h h''" obtains x h' where "h \ f \\<^sub>r x" and "h \ f \\<^sub>h h'" and "h' \ g x \\<^sub>h h''" using assms by(auto simp add: bind_def returns_result_def returns_heap_def execute_def split: sum.splits) lemma bind_returns_heap_E2 [elim]: assumes "h \ f \ g \\<^sub>h h'" and "pure f h" obtains x where "h \ f \\<^sub>r x" and "h \ g x \\<^sub>h h'" using assms pure_returns_heap_eq by (fastforce elim: bind_returns_heap_E) lemma bind_returns_heap_E3 [elim]: assumes "h \ f \ g \\<^sub>h h'" and "h \ f \\<^sub>r x" and "pure f h" shows "h \ g x \\<^sub>h h'" using assms pure_returns_heap_eq returns_result_eq by (fastforce elim: bind_returns_heap_E) lemma bind_returns_heap_E4: assumes "h \ f \ g \\<^sub>h h''" and "h \ f \\<^sub>h h'" obtains x where "h \ f \\<^sub>r x" and "h' \ g x \\<^sub>h h''" using assms by (metis bind_returns_heap_E returns_heap_eq) lemma bind_returns_error_I [intro]: assumes "h \ f \\<^sub>e e" shows "h \ f \ g \\<^sub>e e" using assms by(auto simp add: returns_error_def bind_def execute_def split: sum.splits) lemma bind_returns_error_I3: assumes "h \ f \\<^sub>r x" and "h \ f \\<^sub>h h'" and "h' \ g x \\<^sub>e e" shows "h \ f \ g \\<^sub>e e" using assms by(auto simp add: returns_error_def bind_def execute_def returns_heap_def returns_result_def split: sum.splits) lemma bind_returns_error_I2 [intro]: assumes "pure f h" and "h \ f \\<^sub>r x" and "h \ g x \\<^sub>e e" shows "h \ f \ g \\<^sub>e e" using assms by (meson bind_returns_error_I3 is_OK_returns_result_I pure_def) lemma bind_is_OK_E [elim]: assumes "h \ ok (f \ g)" obtains x h' where "h \ f \\<^sub>r x" and "h \ f \\<^sub>h h'" and "h' \ ok (g x)" using assms by(auto simp add: bind_def returns_result_def returns_heap_def is_OK_def execute_def split: sum.splits) lemma bind_is_OK_E2: assumes "h \ ok (f \ g)" and "h \ f \\<^sub>r x" obtains h' where "h \ f \\<^sub>h h'" and "h' \ ok (g x)" using assms by(auto simp add: bind_def returns_result_def returns_heap_def is_OK_def execute_def split: sum.splits) lemma bind_returns_result_I [intro]: assumes "h \ f \\<^sub>r x" and "h \ f \\<^sub>h h'" and "h' \ g x \\<^sub>r y" shows "h \ f \ g \\<^sub>r y" using assms by(auto simp add: bind_def returns_result_def returns_heap_def execute_def split: sum.splits) lemma bind_pure_returns_result_I [intro]: assumes "pure f h" and "h \ f \\<^sub>r x" and "h \ g x \\<^sub>r y" shows "h \ f \ g \\<^sub>r y" using assms by (meson bind_returns_result_I pure_def is_OK_returns_result_I) lemma bind_pure_returns_result_I2 [intro]: assumes "pure f h" and "h \ ok f" and "\x. h \ f \\<^sub>r x \ h \ g x \\<^sub>r y" shows "h \ f \ g \\<^sub>r y" using assms by auto lemma bind_returns_heap_I [intro]: assumes "h \ f \\<^sub>r x" and "h \ f \\<^sub>h h'" and "h' \ g x \\<^sub>h h''" shows "h \ f \ g \\<^sub>h h''" using assms by(auto simp add: bind_def returns_result_def returns_heap_def execute_def split: sum.splits) lemma bind_returns_heap_I2 [intro]: assumes "h \ f \\<^sub>h h'" and "\x. h \ f \\<^sub>r x \ h' \ g x \\<^sub>h h''" shows "h \ f \ g \\<^sub>h h''" using assms by (meson bind_returns_heap_I is_OK_returns_heap_I is_OK_returns_result_E) lemma bind_is_OK_I [intro]: assumes "h \ f \\<^sub>r x" and "h \ f \\<^sub>h h'" and "h' \ ok (g x)" shows "h \ ok (f \ g)" by (meson assms(1) assms(2) assms(3) bind_returns_heap_I is_OK_returns_heap_E is_OK_returns_heap_I) lemma bind_is_OK_I2 [intro]: assumes "h \ ok f" and "\x h'. h \ f \\<^sub>r x \ h \ f \\<^sub>h h' \ h' \ ok (g x)" shows "h \ ok (f \ g)" using assms by blast lemma bind_is_OK_pure_I [intro]: assumes "pure f h" and "h \ ok f" and "\x. h \ f \\<^sub>r x \ h \ ok (g x)" shows "h \ ok (f \ g)" using assms by blast lemma bind_pure_I: assumes "pure f h" and "\x. h \ f \\<^sub>r x \ pure (g x) h" shows "pure (f \ g) h" using assms by (metis bind_returns_heap_E2 pure_def pure_returns_heap_eq is_OK_returns_heap_E) lemma pure_pure: assumes "h \ ok f" and "pure f h" shows "h \ f \\<^sub>h h" using assms returns_heap_eq unfolding pure_def by auto lemma bind_returns_error_eq: assumes "h \ f \\<^sub>e e" and "h \ g \\<^sub>e e" shows "h \ f = h \ g" using assms by(auto simp add: returns_error_def split: sum.splits) subsection \Map\ fun map_M :: "('x \ ('heap, 'e, 'result) prog) \ 'x list \ ('heap, 'e, 'result list) prog" where "map_M f [] = return []" | "map_M f (x#xs) = do { y \ f x; ys \ map_M f xs; return (y # ys) }" lemma map_M_ok_I [intro]: "(\x. x \ set xs \ h \ ok (f x)) \ (\x. x \ set xs \ pure (f x) h) \ h \ ok (map_M f xs)" apply(induct xs) by (simp_all add: bind_is_OK_I2 bind_is_OK_pure_I) lemma map_M_pure_I : "\h. (\x. x \ set xs \ pure (f x) h) \ pure (map_M f xs) h" apply(induct xs) apply(simp) by(auto intro!: bind_pure_I) lemma map_M_pure_E : assumes "h \ map_M g xs \\<^sub>r ys" and "x \ set xs" and "\x h. x \ set xs \ pure (g x) h" obtains y where "h \ g x \\<^sub>r y" and "y \ set ys" apply(insert assms, induct xs arbitrary: ys) apply(simp) apply(auto elim!: bind_returns_result_E)[1] by (metis (full_types) pure_returns_heap_eq) lemma map_M_pure_E2: assumes "h \ map_M g xs \\<^sub>r ys" and "y \ set ys" and "\x h. x \ set xs \ pure (g x) h" obtains x where "h \ g x \\<^sub>r y" and "x \ set xs" apply(insert assms, induct xs arbitrary: ys) apply(simp) apply(auto elim!: bind_returns_result_E)[1] by (metis (full_types) pure_returns_heap_eq) subsection \Forall\ fun forall_M :: "('y \ ('heap, 'e, 'result) prog) \ 'y list \ ('heap, 'e, unit) prog" where "forall_M P [] = return ()" | "forall_M P (x # xs) = do { P x; forall_M P xs }" - (* -lemma forall_M_elim: - assumes "h \ forall_M P xs \\<^sub>r True" and "\x h. x \ set xs \ pure (P x) h" - shows "\x \ set xs. h \ P x \\<^sub>r True" - apply(insert assms, induct xs) - apply(simp) - apply(auto elim!: bind_returns_result_E)[1] - by (metis (full_types) pure_returns_heap_eq) *) + lemma pure_forall_M_I: "(\x. x \ set xs \ pure (P x) h) \ pure (forall_M P xs) h" apply(induct xs) by(auto intro!: bind_pure_I) - (* -lemma forall_M_pure_I: - assumes "\x. x \ set xs \ h \ P x \\<^sub>r True" and "\x h. x \ set xs \ pure (P x)h" - shows "h \ forall_M P xs \\<^sub>r True" - apply(insert assms, induct xs) - apply(simp) - by(fastforce) - -lemma forall_M_pure_eq: - assumes "\x. x \ set xs \ h \ P x \\<^sub>r True \ h' \ P x \\<^sub>r True" - and "\x h. x \ set xs \ pure (P x) h" - shows "(h \ forall_M P xs \\<^sub>r True) \ h' \ forall_M P xs \\<^sub>r True" - using assms - by(auto intro!: forall_M_pure_I dest!: forall_M_elim) *) + subsection \Fold\ fun fold_M :: "('result \ 'y \ ('heap, 'e, 'result) prog) \ 'result \ 'y list \ ('heap, 'e, 'result) prog" where "fold_M f d [] = return d" | "fold_M f d (x # xs) = do { y \ f d x; fold_M f y xs }" lemma fold_M_pure_I : "(\d x. pure (f d x) h) \ (\d. pure (fold_M f d xs) h)" apply(induct xs) by(auto intro: bind_pure_I) subsection \Filter\ fun filter_M :: "('x \ ('heap, 'e, bool) prog) \ 'x list \ ('heap, 'e, 'x list) prog" where "filter_M P [] = return []" | "filter_M P (x#xs) = do { p \ P x; ys \ filter_M P xs; return (if p then x # ys else ys) }" lemma filter_M_pure_I [intro]: "(\x. x \ set xs \ pure (P x) h) \ pure (filter_M P xs)h" apply(induct xs) by(auto intro!: bind_pure_I) -lemma filter_M_is_OK_I [intro]: "(\x. x \ set xs \ h \ ok (P x)) \ (\x. x \ set xs \ pure (P x) h) \ h \ ok (filter_M P xs)" +lemma filter_M_is_OK_I [intro]: + "(\x. x \ set xs \ h \ ok (P x)) \ (\x. x \ set xs \ pure (P x) h) \ h \ ok (filter_M P xs)" apply(induct xs) apply(simp) by(auto intro!: bind_is_OK_pure_I) lemma filter_M_not_more_elements: assumes "h \ filter_M P xs \\<^sub>r ys" and "\x. x \ set xs \ pure (P x) h" and "x \ set ys" shows "x \ set xs" apply(insert assms, induct xs arbitrary: ys) by(auto elim!: bind_returns_result_E2 split: if_splits intro!: set_ConsD) lemma filter_M_in_result_if_ok: - assumes "h \ filter_M P xs \\<^sub>r ys" and "\h x. x \ set xs \ pure (P x) h" and "x \ set xs" and "h \ P x \\<^sub>r True" + assumes "h \ filter_M P xs \\<^sub>r ys" and "\h x. x \ set xs \ pure (P x) h" and "x \ set xs" and + "h \ P x \\<^sub>r True" shows "x \ set ys" apply(insert assms, induct xs arbitrary: ys) apply(simp) apply(auto elim!: bind_returns_result_E2)[1] by (metis returns_result_eq) lemma filter_M_holds_for_result: assumes "h \ filter_M P xs \\<^sub>r ys" and "x \ set ys" and "\x h. x \ set xs \ pure (P x) h" shows "h \ P x \\<^sub>r True" apply(insert assms, induct xs arbitrary: ys) by(auto elim!: bind_returns_result_E2 split: if_splits intro!: set_ConsD) lemma filter_M_empty_I: assumes "\x. pure (P x) h" and "\x \ set xs. h \ P x \\<^sub>r False" shows "h \ filter_M P xs \\<^sub>r []" using assms apply(induct xs) by(auto intro!: bind_pure_returns_result_I) lemma filter_M_subset_2: "h \ filter_M P xs \\<^sub>r ys \ h' \ filter_M P xs \\<^sub>r ys' \ (\x. pure (P x) h) \ (\x. pure (P x) h') \ (\b. \x \ set xs. h \ P x \\<^sub>r True \ h' \ P x \\<^sub>r b \ b) \ set ys \ set ys'" proof - assume 1: "h \ filter_M P xs \\<^sub>r ys" and 2: "h' \ filter_M P xs \\<^sub>r ys'" and 3: "(\x. pure (P x) h)" and "(\x. pure (P x) h')" and 4: "\b. \x\set xs. h \ P x \\<^sub>r True \ h' \ P x \\<^sub>r b \ b" have h1: "\x \ set xs. h' \ ok (P x)" using 2 3 \(\x. pure (P x) h')\ apply(induct xs arbitrary: ys') by(auto elim!: bind_returns_result_E2) then have 5: "\x\set xs. h \ P x \\<^sub>r True \ h' \ P x \\<^sub>r True" using 4 apply(auto)[1] by (metis is_OK_returns_result_E) show ?thesis using 1 2 3 5 \(\x. pure (P x) h')\ apply(induct xs arbitrary: ys ys') apply(auto)[1] apply(auto elim!: bind_returns_result_E2 split: if_splits)[1] apply auto[1] apply auto[1] apply(metis returns_result_eq) apply auto[1] apply auto[1] apply auto[1] by(auto) qed lemma filter_M_subset: "h \ filter_M P xs \\<^sub>r ys \ set ys \ set xs" apply(induct xs arbitrary: h ys) apply(auto)[1] apply(auto elim!: bind_returns_result_E split: if_splits)[1] apply blast by blast lemma filter_M_distinct: "h \ filter_M P xs \\<^sub>r ys \ distinct xs \ distinct ys" apply(induct xs arbitrary: h ys) apply(auto)[1] using filter_M_subset apply(auto elim!: bind_returns_result_E)[1] by fastforce lemma filter_M_filter: "h \ filter_M P xs \\<^sub>r ys \ (\x. x \ set xs \ pure (P x) h) \ (\x \ set xs. h \ ok P x) \ ys = filter (\x. |h \ P x|\<^sub>r) xs" apply(induct xs arbitrary: ys) by(auto elim!: bind_returns_result_E2) lemma filter_M_filter2: "(\x. x \ set xs \ pure (P x) h \ h \ ok P x) \ filter (\x. |h \ P x|\<^sub>r) xs = ys \ h \ filter_M P xs \\<^sub>r ys" apply(induct xs arbitrary: ys) by(auto elim!: bind_returns_result_E2 intro!: bind_pure_returns_result_I) lemma filter_ex1: "\!x \ set xs. P x \ P x \ x \ set xs \ distinct xs \ filter P xs = [x]" apply(auto)[1] apply(induct xs) apply(auto)[1] apply(auto)[1] using filter_empty_conv by fastforce lemma filter_M_ex1: assumes "h \ filter_M P xs \\<^sub>r ys" and "x \ set xs" and "\!x \ set xs. h \ P x \\<^sub>r True" and "\x. x \ set xs \ pure (P x) h" and "distinct xs" and "h \ P x \\<^sub>r True" shows "ys = [x]" proof - have *: "\!x \ set xs. |h \ P x|\<^sub>r" apply(insert assms(1) assms(3) assms(4)) apply(drule filter_M_filter) apply(simp) apply(auto simp add: select_result_I2)[1] by (metis (full_types) is_OK_returns_result_E select_result_I2) then show ?thesis apply(insert assms(1) assms(4)) apply(drule filter_M_filter) apply(auto)[1] by (metis * assms(2) assms(5) assms(6) distinct_filter distinct_length_2_or_more filter_empty_conv filter_set list.exhaust list.set_intros(1) list.set_intros(2) member_filter select_result_I2) qed lemma filter_M_eq: assumes "\x. pure (P x) h" and "\x. pure (P x) h'" and "\b x. x \ set xs \ h \ P x \\<^sub>r b = h' \ P x \\<^sub>r b" shows "h \ filter_M P xs \\<^sub>r ys \ h' \ filter_M P xs \\<^sub>r ys" using assms apply (induct xs arbitrary: ys) by(auto elim!: bind_returns_result_E2 intro!: bind_pure_returns_result_I dest: returns_result_eq) subsection \Map Filter\ definition map_filter_M :: "('x \ ('heap, 'e, 'y option) prog) \ 'x list \ ('heap, 'e, 'y list) prog" where "map_filter_M f xs = do { ys_opts \ map_M f xs; ys_no_opts \ filter_M (\x. return (x \ None)) ys_opts; map_M (\x. return (the x)) ys_no_opts }" lemma map_filter_M_pure: "(\x h. x \ set xs \ pure (f x) h) \ pure (map_filter_M f xs) h" by(auto simp add: map_filter_M_def map_M_pure_I intro!: bind_pure_I) lemma map_filter_M_pure_E: assumes "h \ (map_filter_M::('x \ ('heap, 'e, 'y option) prog) \ 'x list \ ('heap, 'e, 'y list) prog) f xs \\<^sub>r ys" and "y \ set ys" and "\x h. x \ set xs \ pure (f x) h" obtains x where "h \ f x \\<^sub>r Some y" and "x \ set xs" proof - obtain ys_opts ys_no_opts where ys_opts: "h \ map_M f xs \\<^sub>r ys_opts" and ys_no_opts: "h \ filter_M (\x. (return (x \ None)::('heap, 'e, bool) prog)) ys_opts \\<^sub>r ys_no_opts" and ys: "h \ map_M (\x. (return (the x)::('heap, 'e, 'y) prog)) ys_no_opts \\<^sub>r ys" using assms by(auto simp add: map_filter_M_def map_M_pure_I elim!: bind_returns_result_E2) have "\y \ set ys_no_opts. y \ None" using ys_no_opts filter_M_holds_for_result by fastforce then have "Some y \ set ys_no_opts" using map_M_pure_E2 ys \y \ set ys\ by (metis (no_types, lifting) option.collapse return_pure return_returns_result) then have "Some y \ set ys_opts" using filter_M_subset ys_no_opts by fastforce then show "(\x. h \ f x \\<^sub>r Some y \ x \ set xs \ thesis) \ thesis" by (metis assms(3) map_M_pure_E2 ys_opts) qed subsection \Iterate\ fun iterate_M :: "('heap, 'e, 'result) prog list \ ('heap, 'e, 'result) prog" where "iterate_M [] = return undefined" | "iterate_M (x # xs) = x \ (\_. iterate_M xs)" lemma iterate_M_concat: assumes "h \ iterate_M xs \\<^sub>h h'" and "h' \ iterate_M ys \\<^sub>h h''" shows "h \ iterate_M (xs @ ys) \\<^sub>h h''" using assms apply(induct "xs" arbitrary: h h'') apply(simp) apply(auto)[1] by (meson bind_returns_heap_E bind_returns_heap_I) subsection\Miscellaneous Rules\ lemma execute_bind_simp: assumes "h \ f \\<^sub>r x" and "h \ f \\<^sub>h h'" shows "h \ f \ g = h' \ g x" using assms by(auto simp add: returns_result_def returns_heap_def bind_def execute_def split: sum.splits) lemma bind_cong [fundef_cong]: fixes f1 f2 :: "('heap, 'e, 'result) prog" and g1 g2 :: "'result \ ('heap, 'e, 'result2) prog" assumes "h \ f1 = h \ f2" and "\y h'. h \ f1 \\<^sub>r y \ h \ f1 \\<^sub>h h' \ h' \ g1 y = h' \ g2 y" shows "h \ (f1 \ g1) = h \ (f2 \ g2)" apply(insert assms, cases "h \ f1") by(auto simp add: bind_def returns_result_def returns_heap_def execute_def split: sum.splits) lemma bind_cong_2: assumes "pure f h" and "pure f h'" and "\x. h \ f \\<^sub>r x = h' \ f \\<^sub>r x" and "\x. h \ f \\<^sub>r x \ h \ g x \\<^sub>r y = h' \ g x \\<^sub>r y'" shows "h \ f \ g \\<^sub>r y = h' \ f \ g \\<^sub>r y'" using assms by(auto intro!: bind_pure_returns_result_I elim!: bind_returns_result_E2) lemma bind_case_cong [fundef_cong]: assumes "x = x'" and "\a. x = Some a \ f a h = f' a h" shows "(case x of Some a \ f a | None \ g) h = (case x' of Some a \ f' a | None \ g) h" by (insert assms, simp add: option.case_eq_if) subsection \Reasoning About Reads and Writes\ definition preserved :: "('heap, 'e, 'result) prog \ 'heap \ 'heap \ bool" where "preserved f h h' \ (\x. h \ f \\<^sub>r x \ h' \ f \\<^sub>r x)" -lemma preserved_code [code]: "preserved f h h' = (((h \ ok f) \ (h' \ ok f) \ |h \ f|\<^sub>r = |h' \ f|\<^sub>r) \ ((\h \ ok f) \ (\h' \ ok f)))" +lemma preserved_code [code]: + "preserved f h h' = (((h \ ok f) \ (h' \ ok f) \ |h \ f|\<^sub>r = |h' \ f|\<^sub>r) \ ((\h \ ok f) \ (\h' \ ok f)))" apply(auto simp add: preserved_def)[1] apply (meson is_OK_returns_result_E is_OK_returns_result_I)+ done lemma reflp_preserved_f [simp]: "reflp (preserved f)" by(auto simp add: preserved_def reflp_def) lemma transp_preserved_f [simp]: "transp (preserved f)" by(auto simp add: preserved_def transp_def) definition all_args :: "('a \ ('heap, 'e, 'result) prog) \ ('heap, 'e, 'result) prog set" where "all_args f = (\arg. {f arg})" definition reads :: "('heap \ 'heap \ bool) set \ ('heap, 'e, 'result) prog \ 'heap \ 'heap \ bool" where "reads S getter h h' \ (\P \ S. reflp P \ transp P) \ ((\P \ S. P h h') \ preserved getter h h')" lemma reads_singleton [simp]: "reads {preserved f} f h h'" by(auto simp add: reads_def) lemma reads_bind_pure: assumes "pure f h" and "pure f h'" and "reads S f h h'" and "\x. h \ f \\<^sub>r x \ reads S (g x) h h'" shows "reads S (f \ g) h h'" using assms by(auto simp add: reads_def pure_pure preserved_def intro!: bind_pure_returns_result_I is_OK_returns_result_I dest: pure_returns_heap_eq elim!: bind_returns_result_E) -lemma reads_insert_writes_set_left: "\P \ S. reflp P \ transp P \ reads {getter} f h h' \ reads (insert getter S) f h h'" +lemma reads_insert_writes_set_left: + "\P \ S. reflp P \ transp P \ reads {getter} f h h' \ reads (insert getter S) f h h'" unfolding reads_def by simp -lemma reads_insert_writes_set_right: "reflp getter \ transp getter \ reads S f h h' \ reads (insert getter S) f h h'" +lemma reads_insert_writes_set_right: + "reflp getter \ transp getter \ reads S f h h' \ reads (insert getter S) f h h'" unfolding reads_def by blast -lemma reads_subset: "reads S f h h' \ \P \ S' - S. reflp P \ transp P \ S \ S' \ reads S' f h h'" +lemma reads_subset: + "reads S f h h' \ \P \ S' - S. reflp P \ transp P \ S \ S' \ reads S' f h h'" by(auto simp add: reads_def) lemma return_reads [simp]: "reads {} (return x) h h'" by(simp add: reads_def preserved_def) lemma error_reads [simp]: "reads {} (error e) h h'" by(simp add: reads_def preserved_def) lemma noop_reads [simp]: "reads {} noop h h'" by(simp add: reads_def noop_def preserved_def) lemma filter_M_reads: assumes "\x. x \ set xs \ pure (P x) h" and "\x. x \ set xs \ pure (P x) h'" and "\x. x \ set xs \ reads S (P x) h h'" and "\P \ S. reflp P \ transp P" shows "reads S (filter_M P xs) h h'" using assms apply(induct xs) by(auto intro: reads_subset[OF return_reads] intro!: reads_bind_pure) definition writes :: "('heap, 'e, 'result) prog set \ ('heap, 'e, 'result2) prog \ 'heap \ 'heap \ bool" where "writes S setter h h' \ (h \ setter \\<^sub>h h' \ (\progs. set progs \ S \ h \ iterate_M progs \\<^sub>h h'))" lemma writes_singleton [simp]: "writes (all_args f) (f a) h h'" apply(auto simp add: writes_def all_args_def)[1] apply(rule exI[where x="[f a]"]) by(auto) lemma writes_singleton2 [simp]: "writes {f} f h h'" apply(auto simp add: writes_def all_args_def)[1] apply(rule exI[where x="[f]"]) by(auto) lemma writes_union_left_I: assumes "writes S f h h'" shows "writes (S \ S') f h h'" using assms by(auto simp add: writes_def) lemma writes_union_right_I: assumes "writes S' f h h'" shows "writes (S \ S') f h h'" using assms by(auto simp add: writes_def) lemma writes_union_minus_split: assumes "writes (S - S2) f h h'" and "writes (S' - S2) f h h'" shows "writes ((S \ S') - S2) f h h'" using assms by(auto simp add: writes_def) lemma writes_subset: "writes S f h h' \ S \ S' \ writes S' f h h'" by(auto simp add: writes_def) lemma writes_error [simp]: "writes S (error e) h h'" by(simp add: writes_def) lemma writes_not_ok [simp]: "\h \ ok f \ writes S f h h'" by(auto simp add: writes_def) lemma writes_pure [simp]: assumes "pure f h" shows "writes S f h h'" using assms apply(auto simp add: writes_def)[1] by (metis bot.extremum iterate_M.simps(1) list.set(1) pure_returns_heap_eq return_returns_heap) lemma writes_bind: assumes "\h2. writes S f h h2" assumes "\x h2. h \ f \\<^sub>r x \ h \ f \\<^sub>h h2 \ writes S (g x) h2 h'" shows "writes S (f \ g) h h'" using assms apply(auto simp add: writes_def elim!: bind_returns_heap_E)[1] by (metis iterate_M_concat le_supI set_append) lemma writes_bind_pure: assumes "pure f h" assumes "\x. h \ f \\<^sub>r x \ writes S (g x) h h'" shows "writes S (f \ g) h h'" using assms by(auto simp add: writes_def elim!: bind_returns_heap_E2) lemma writes_small_big: assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ P h h'" assumes "reflp P" assumes "transp P" shows "P h h'" proof - obtain progs where "set progs \ SW" and iterate: "h \ iterate_M progs \\<^sub>h h'" by (meson assms(1) assms(2) writes_def) then have "\h h'. \prog \ set progs. h \ prog \\<^sub>h h' \ P h h'" using assms(3) by auto with iterate assms(4) assms(5) have "h \ iterate_M progs \\<^sub>h h' \ P h h'" proof(induct progs arbitrary: h) case Nil then show ?case using reflpE by force next case (Cons a progs) then show ?case apply(auto elim!: bind_returns_heap_E)[1] by (metis (full_types) transpD) qed then show ?thesis using assms(1) iterate by blast qed lemma reads_writes_preserved: assumes "reads SR getter h h'" assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "\h h'. \w \ SW. h \ w \\<^sub>h h' \ (\r \ SR. r h h')" shows "h \ getter \\<^sub>r x \ h' \ getter \\<^sub>r x" proof - obtain progs where "set progs \ SW" and iterate: "h \ iterate_M progs \\<^sub>h h'" by (meson assms(2) assms(3) writes_def) then have "\h h'. \prog \ set progs. h \ prog \\<^sub>h h' \ (\r \ SR. r h h')" using assms(4) by blast with iterate have "\r \ SR. r h h'" using writes_small_big assms(1) unfolding reads_def by (metis assms(2) assms(3) assms(4)) then show ?thesis using assms(1) by (simp add: preserved_def reads_def) qed lemma reads_writes_separate_forwards: assumes "reads SR getter h h'" assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "h \ getter \\<^sub>r x" assumes "\h h'. \w \ SW. h \ w \\<^sub>h h' \ (\r \ SR. r h h')" shows "h' \ getter \\<^sub>r x" using reads_writes_preserved[OF assms(1) assms(2) assms(3) assms(5)] assms(4) by(auto simp add: preserved_def) lemma reads_writes_separate_backwards: assumes "reads SR getter h h'" assumes "writes SW setter h h'" assumes "h \ setter \\<^sub>h h'" assumes "h' \ getter \\<^sub>r x" assumes "\h h'. \w \ SW. h \ w \\<^sub>h h' \ (\r \ SR. r h h')" shows "h \ getter \\<^sub>r x" using reads_writes_preserved[OF assms(1) assms(2) assms(3) assms(5)] assms(4) by(auto simp add: preserved_def) end diff --git a/thys/Core_DOM/common/preliminaries/Testing_Utils.thy b/thys/Core_DOM/common/preliminaries/Testing_Utils.thy --- a/thys/Core_DOM/common/preliminaries/Testing_Utils.thy +++ b/thys/Core_DOM/common/preliminaries/Testing_Utils.thy @@ -1,92 +1,94 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) theory Testing_Utils imports Main begin ML \ val _ = Theory.setup (Method.setup @{binding timed_code_simp} (Scan.succeed (SIMPLE_METHOD' o (CHANGED_PROP oo (fn a => fn b => fn tac => let val start = Time.now (); val result = Code_Simp.dynamic_tac a b tac; val t = Time.now() - start; in (if length (Seq.list_of result) > 0 then Output.information ("Took " ^ (Time.toString t)) else ()); result end)))) "timed simplification with code equations"); val _ = Theory.setup (Method.setup @{binding timed_eval} (Scan.succeed (SIMPLE_METHOD' o (fn a => fn b => fn tac => let val eval = CONVERSION (Conv.params_conv ~1 (K (Conv.concl_conv ~1 (Code_Runtime.dynamic_holds_conv a))) a) THEN' resolve_tac a [TrueI]; val start = Time.now (); val result = eval b tac val t = Time.now() - start; in (if length (Seq.list_of result) > 0 then Output.information ("Took " ^ (Time.toString t)) else ()); result end))) "timed evaluation"); val _ = Theory.setup (Method.setup @{binding timed_eval_and_code_simp} (Scan.succeed (SIMPLE_METHOD' o (fn a => fn b => fn tac => let val eval = CONVERSION (Conv.params_conv ~1 (K (Conv.concl_conv ~1 (Code_Runtime.dynamic_holds_conv a))) a) THEN' resolve_tac a [TrueI]; val start = Time.now (); val result = eval b tac val t = Time.now() - start; val start2 = Time.now (); val result2_opt = Timeout.apply (seconds 600.0) (fn _ => SOME (Code_Simp.dynamic_tac a b tac)) () handle Timeout.TIMEOUT _ => NONE; val t2 = Time.now() - start2; in - if length (Seq.list_of result) > 0 then (Output.information ("eval took " ^ (Time.toString t)); File.append (Path.explode "/tmp/isabellebench") (Time.toString t ^ ",")) else (); + if length (Seq.list_of result) > 0 then (Output.information ("eval took " ^ (Time.toString t)); +File.append (Path.explode "/tmp/isabellebench") (Time.toString t ^ ",")) else (); (case result2_opt of SOME result2 => - (if length (Seq.list_of result2) > 0 then (Output.information ("code_simp took " ^ (Time.toString t2)); File.append (Path.explode "/tmp/isabellebench") (Time.toString t2 ^ "\n")) else ()) + (if length (Seq.list_of result2) > 0 then (Output.information ("code_simp took " ^ (Time.toString t2)); +File.append (Path.explode "/tmp/isabellebench") (Time.toString t2 ^ "\n")) else ()) | NONE => (Output.information "code_simp timed out after 600s"; File.append (Path.explode "/tmp/isabellebench") (">600.000\n"))); result end))) "timed evaluation and simplification with code equations with file output"); \ (* To run the DOM test cases with timing information output, simply replace the use *) (* of "eval" with either "timed_code_simp", "timed_eval", or, to run both and write the results *) (* to /tmp/isabellebench, "timed_eval_and_code_simp". *) end diff --git a/thys/Core_DOM/common/tests/Core_DOM_BaseTest.thy b/thys/Core_DOM/common/tests/Core_DOM_BaseTest.thy --- a/thys/Core_DOM/common/tests/Core_DOM_BaseTest.thy +++ b/thys/Core_DOM/common/tests/Core_DOM_BaseTest.thy @@ -1,273 +1,284 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\Common Test Setup\ text\This theory provides the common test setup that is used by all formalized test cases.\ theory Core_DOM_BaseTest imports (*<*) "../preliminaries/Testing_Utils" (*>*) "../Core_DOM" begin definition "assert_throws e p = do { h \ get_heap; (if (h \ p \\<^sub>e e) then return () else error AssertException) }" notation assert_throws ("assert'_throws'(_, _')") definition "test p h \ h \ ok p" definition field_access :: "(string \ (_, (_) object_ptr option) dom_prog) \ string \ (_, (_) object_ptr option) dom_prog" (infix "." 80) where "field_access m field = m field" definition assert_equals :: "'a \ 'a \ (_, unit) dom_prog" where "assert_equals l r = (if l = r then return () else error AssertException)" definition assert_equals_with_message :: "'a \ 'a \ 'b \ (_, unit) dom_prog" where "assert_equals_with_message l r _ = (if l = r then return () else error AssertException)" notation assert_equals ("assert'_equals'(_, _')") notation assert_equals_with_message ("assert'_equals'(_, _, _')") notation assert_equals ("assert'_array'_equals'(_, _')") notation assert_equals_with_message ("assert'_array'_equals'(_, _, _')") definition assert_not_equals :: "'a \ 'a \ (_, unit) dom_prog" where "assert_not_equals l r = (if l \ r then return () else error AssertException)" definition assert_not_equals_with_message :: "'a \ 'a \ 'b \ (_, unit) dom_prog" where "assert_not_equals_with_message l r _ = (if l \ r then return () else error AssertException)" notation assert_not_equals ("assert'_not'_equals'(_, _')") notation assert_not_equals_with_message ("assert'_not'_equals'(_, _, _')") notation assert_not_equals ("assert'_array'_not'_equals'(_, _')") notation assert_not_equals_with_message ("assert'_array'_not'_equals'(_, _, _')") definition removeWhiteSpaceOnlyTextNodes :: "((_) object_ptr option) \ (_, unit) dom_prog" where "removeWhiteSpaceOnlyTextNodes _ = return ()" subsection \Making the functions under test compatible with untyped languages such as JavaScript\ fun set_attribute_with_null :: "((_) object_ptr option) \ attr_key \ attr_value \ (_, unit) dom_prog" where "set_attribute_with_null (Some ptr) k v = (case cast ptr of Some element_ptr \ set_attribute element_ptr k (Some v))" fun set_attribute_with_null2 :: "((_) object_ptr option) \ attr_key \ attr_value option \ (_, unit) dom_prog" where "set_attribute_with_null2 (Some ptr) k v = (case cast ptr of Some element_ptr \ set_attribute element_ptr k v)" notation set_attribute_with_null ("_ . setAttribute'(_, _')") notation set_attribute_with_null2 ("_ . setAttribute'(_, _')") fun get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_with_null :: "((_) object_ptr option) \ (_, (_) object_ptr option list) dom_prog" where "get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_with_null (Some ptr) = do { children \ get_child_nodes ptr; return (map (Some \ cast) children) }" notation get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_with_null ("_ . childNodes") fun create_element_with_null :: "((_) object_ptr option) \ string \ (_, ((_) object_ptr option)) dom_prog" where "create_element_with_null (Some owner_document_obj) tag = (case cast owner_document_obj of Some owner_document \ do { element_ptr \ create_element owner_document tag; return (Some (cast element_ptr))})" notation create_element_with_null ("_ . createElement'(_')") fun create_character_data_with_null :: "((_) object_ptr option) \ string \ (_, ((_) object_ptr option)) dom_prog" where "create_character_data_with_null (Some owner_document_obj) tag = (case cast owner_document_obj of Some owner_document \ do { character_data_ptr \ create_character_data owner_document tag; return (Some (cast character_data_ptr))})" notation create_character_data_with_null ("_ . createTextNode'(_')") definition create_document_with_null :: "string \ (_, ((_::linorder) object_ptr option)) dom_prog" where "create_document_with_null title = do { new_document_ptr \ create_document; html \ create_element new_document_ptr ''html''; append_child (cast new_document_ptr) (cast html); heap \ create_element new_document_ptr ''heap''; append_child (cast html) (cast heap); body \ create_element new_document_ptr ''body''; append_child (cast html) (cast body); return (Some (cast new_document_ptr)) }" abbreviation "create_document_with_null2 _ _ _ \ create_document_with_null ''''" notation create_document_with_null ("createDocument'(_')") notation create_document_with_null2 ("createDocument'(_, _, _')") fun get_element_by_id_with_null :: "((_::linorder) object_ptr option) \ string \ (_, ((_) object_ptr option)) dom_prog" where "get_element_by_id_with_null (Some ptr) id' = do { element_ptr_opt \ get_element_by_id ptr id'; (case element_ptr_opt of Some element_ptr \ return (Some (cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r element_ptr)) | None \ return None)}" | "get_element_by_id_with_null _ _ = error SegmentationFault" notation get_element_by_id_with_null ("_ . getElementById'(_')") -fun get_elements_by_class_name_with_null :: "((_::linorder) object_ptr option) \ string \ (_, ((_) object_ptr option) list) dom_prog" +fun get_elements_by_class_name_with_null :: +"((_::linorder) object_ptr option) \ string \ (_, ((_) object_ptr option) list) dom_prog" where "get_elements_by_class_name_with_null (Some ptr) class_name = get_elements_by_class_name ptr class_name \ map_M (return \ Some \ cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r)" notation get_elements_by_class_name_with_null ("_ . getElementsByClassName'(_')") -fun get_elements_by_tag_name_with_null :: "((_::linorder) object_ptr option) \ string \ (_, ((_) object_ptr option) list) dom_prog" +fun get_elements_by_tag_name_with_null :: +"((_::linorder) object_ptr option) \ string \ (_, ((_) object_ptr option) list) dom_prog" where - "get_elements_by_tag_name_with_null (Some ptr) tag_name = - get_elements_by_tag_name ptr tag_name \ map_M (return \ Some \ cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r)" + "get_elements_by_tag_name_with_null (Some ptr) tag = + get_elements_by_tag_name ptr tag \ map_M (return \ Some \ cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r)" notation get_elements_by_tag_name_with_null ("_ . getElementsByTagName'(_')") -fun insert_before_with_null :: "((_::linorder) object_ptr option) \ ((_) object_ptr option) \ ((_) object_ptr option) \ (_, ((_) object_ptr option)) dom_prog" +fun insert_before_with_null :: +"((_::linorder) object_ptr option) \ ((_) object_ptr option) \ ((_) object_ptr option) \ +(_, ((_) object_ptr option)) dom_prog" where "insert_before_with_null (Some ptr) (Some child_obj) ref_child_obj_opt = (case cast child_obj of Some child \ do { (case ref_child_obj_opt of Some ref_child_obj \ insert_before ptr child (cast ref_child_obj) | None \ insert_before ptr child None); return (Some child_obj)} | None \ error HierarchyRequestError)" notation insert_before_with_null ("_ . insertBefore'(_, _')") -fun append_child_with_null :: "((_::linorder) object_ptr option) \ ((_) object_ptr option) \ (_, unit) dom_prog" +fun append_child_with_null :: "((_::linorder) object_ptr option) \ ((_) object_ptr option) \ +(_, unit) dom_prog" where "append_child_with_null (Some ptr) (Some child_obj) = (case cast child_obj of Some child \ append_child ptr child | None \ error SegmentationFault)" notation append_child_with_null ("_ . appendChild'(_')") fun get_body :: "((_::linorder) object_ptr option) \ (_, ((_) object_ptr option)) dom_prog" where "get_body ptr = do { ptrs \ ptr . getElementsByTagName(''body''); return (hd ptrs) }" notation get_body ("_ . body") -fun get_document_element_with_null :: "((_::linorder) object_ptr option) \ (_, ((_) object_ptr option)) dom_prog" +fun get_document_element_with_null :: "((_::linorder) object_ptr option) \ +(_, ((_) object_ptr option)) dom_prog" where "get_document_element_with_null (Some ptr) = (case cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr of Some document_ptr \ do { element_ptr_opt \ get_M document_ptr document_element; return (case element_ptr_opt of Some element_ptr \ Some (cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r element_ptr) | None \ None)})" notation get_document_element_with_null ("_ . documentElement") -fun get_owner_document_with_null :: "((_::linorder) object_ptr option) \ (_, ((_) object_ptr option)) dom_prog" +fun get_owner_document_with_null :: "((_::linorder) object_ptr option) \ +(_, ((_) object_ptr option)) dom_prog" where "get_owner_document_with_null (Some ptr) = (do { document_ptr \ get_owner_document ptr; return (Some (cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r document_ptr))})" notation get_owner_document_with_null ("_ . ownerDocument") -fun remove_with_null :: "((_::linorder) object_ptr option) \ ((_) object_ptr option) \ (_, ((_) object_ptr option)) dom_prog" +fun remove_with_null :: "((_::linorder) object_ptr option) \ ((_) object_ptr option) \ +(_, ((_) object_ptr option)) dom_prog" where "remove_with_null (Some ptr) (Some child) = (case cast child of Some child_node \ do { remove child_node; return (Some child)} | None \ error NotFoundError)" | "remove_with_null None _ = error TypeError" | "remove_with_null _ None = error TypeError" notation remove_with_null ("_ . remove'(')") -fun remove_child_with_null :: "((_::linorder) object_ptr option) \ ((_) object_ptr option) \ (_, ((_) object_ptr option)) dom_prog" +fun remove_child_with_null :: "((_::linorder) object_ptr option) \ ((_) object_ptr option) \ +(_, ((_) object_ptr option)) dom_prog" where "remove_child_with_null (Some ptr) (Some child) = (case cast child of Some child_node \ do { remove_child ptr child_node; return (Some child)} | None \ error NotFoundError)" | "remove_child_with_null None _ = error TypeError" | "remove_child_with_null _ None = error TypeError" notation remove_child_with_null ("_ . removeChild") fun get_tag_name_with_null :: "((_) object_ptr option) \ (_, attr_value) dom_prog" where "get_tag_name_with_null (Some ptr) = (case cast ptr of - Some element_ptr \ get_M element_ptr tag_type)" + Some element_ptr \ get_M element_ptr tag_name)" notation get_tag_name_with_null ("_ . tagName") abbreviation "remove_attribute_with_null ptr k \ set_attribute_with_null2 ptr k None" notation remove_attribute_with_null ("_ . removeAttribute'(_')") fun get_attribute_with_null :: "((_) object_ptr option) \ attr_key \ (_, attr_value option) dom_prog" where "get_attribute_with_null (Some ptr) k = (case cast ptr of Some element_ptr \ get_attribute element_ptr k)" fun get_attribute_with_null2 :: "((_) object_ptr option) \ attr_key \ (_, attr_value) dom_prog" where "get_attribute_with_null2 (Some ptr) k = (case cast ptr of Some element_ptr \ do { a \ get_attribute element_ptr k; return (the a)})" notation get_attribute_with_null ("_ . getAttribute'(_')") notation get_attribute_with_null2 ("_ . getAttribute'(_')") fun get_parent_with_null :: "((_::linorder) object_ptr option) \ (_, (_) object_ptr option) dom_prog" where "get_parent_with_null (Some ptr) = (case cast ptr of Some node_ptr \ get_parent node_ptr)" notation get_parent_with_null ("_ . parentNode") fun first_child_with_null :: "((_) object_ptr option) \ (_, ((_) object_ptr option)) dom_prog" where "first_child_with_null (Some ptr) = do { child_opt \ first_child ptr; return (case child_opt of Some child \ Some (cast child) | None \ None)}" notation first_child_with_null ("_ . firstChild") -fun adopt_node_with_null :: "((_::linorder) object_ptr option) \ ((_) object_ptr option) \ (_, ((_) object_ptr option)) dom_prog" +fun adopt_node_with_null :: +"((_::linorder) object_ptr option) \ ((_) object_ptr option) \(_, ((_) object_ptr option)) dom_prog" where "adopt_node_with_null (Some ptr) (Some child) = (case cast ptr of Some document_ptr \ (case cast child of Some child_node \ do { adopt_node document_ptr child_node; return (Some child)}))" notation adopt_node_with_null ("_ . adoptNode'(_')") -definition createTestTree :: "((_::linorder) object_ptr option) \ (_, (string \ (_, ((_) object_ptr option)) dom_prog)) dom_prog" +definition createTestTree :: +"((_::linorder) object_ptr option) \ (_, (string \ (_, ((_) object_ptr option)) dom_prog)) dom_prog" where "createTestTree ref = return (\id. get_element_by_id_with_null ref id)" end diff --git a/thys/Core_DOM/standard/Core_DOM_Heap_WF.thy b/thys/Core_DOM/standard/Core_DOM_Heap_WF.thy --- a/thys/Core_DOM/standard/Core_DOM_Heap_WF.thy +++ b/thys/Core_DOM/standard/Core_DOM_Heap_WF.thy @@ -1,7790 +1,8045 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * + * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\Wellformedness\ -text\In this theory, we discuss the wellformedness of the DOM. First, we define -wellformedness and, second, we show for all functions for querying and modifying the +text\In this theory, we discuss the wellformedness of the DOM. First, we define +wellformedness and, second, we show for all functions for querying and modifying the DOM to what extend they preserve wellformendess.\ theory Core_DOM_Heap_WF -imports - "Core_DOM_Functions" + imports + "Core_DOM_Functions" begin locale l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs = l_get_child_nodes_defs get_child_nodes get_child_nodes_locs + l_get_disconnected_nodes_defs get_disconnected_nodes get_disconnected_nodes_locs for get_child_nodes :: "(_::linorder) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" - and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" + and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" + and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" begin definition a_owner_document_valid :: "(_) heap \ bool" where "a_owner_document_valid h \ (\node_ptr \ fset (node_ptr_kinds h). - ((\document_ptr. document_ptr |\| document_ptr_kinds h + ((\document_ptr. document_ptr |\| document_ptr_kinds h \ node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r) - \ (\parent_ptr. parent_ptr |\| object_ptr_kinds h + \ (\parent_ptr. parent_ptr |\| object_ptr_kinds h \ node_ptr \ set |h \ get_child_nodes parent_ptr|\<^sub>r)))" lemma a_owner_document_valid_code [code]: "a_owner_document_valid h \ node_ptr_kinds h |\| - fset_of_list (concat (map (\parent. |h \ get_child_nodes parent|\<^sub>r) (sorted_list_of_fset (object_ptr_kinds h)) @ map (\parent. |h \ get_disconnected_nodes parent|\<^sub>r) (sorted_list_of_fset (document_ptr_kinds h)))) + fset_of_list (concat (map (\parent. |h \ get_child_nodes parent|\<^sub>r) +(sorted_list_of_fset (object_ptr_kinds h)) @ map (\parent. |h \ get_disconnected_nodes parent|\<^sub>r) +(sorted_list_of_fset (document_ptr_kinds h)))) " - apply(auto simp add: a_owner_document_valid_def l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_owner_document_valid_def)[1] + apply(auto simp add: a_owner_document_valid_def + l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_owner_document_valid_def)[1] proof - fix x - assume 1: " \node_ptr\fset (node_ptr_kinds h). - (\document_ptr. document_ptr |\| document_ptr_kinds h \ node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r) \ - (\parent_ptr. parent_ptr |\| object_ptr_kinds h \ node_ptr \ set |h \ get_child_nodes parent_ptr|\<^sub>r)" + assume 1: " \node_ptr\fset (node_ptr_kinds h). + (\document_ptr. document_ptr |\| document_ptr_kinds h \ +node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r) \ + (\parent_ptr. parent_ptr |\| object_ptr_kinds h \ +node_ptr \ set |h \ get_child_nodes parent_ptr|\<^sub>r)" assume 2: "x |\| node_ptr_kinds h" - assume 3: "x |\| fset_of_list (concat (map (\parent. |h \ get_disconnected_nodes parent|\<^sub>r) (sorted_list_of_fset (document_ptr_kinds h))))" - have "\(\document_ptr. document_ptr |\| document_ptr_kinds h \ x \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r)" + assume 3: "x |\| fset_of_list (concat (map (\parent. |h \ get_disconnected_nodes parent|\<^sub>r) +(sorted_list_of_fset (document_ptr_kinds h))))" + have "\(\document_ptr. document_ptr |\| document_ptr_kinds h \ +x \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r)" using 1 2 3 by (smt UN_I fset_of_list_elem image_eqI notin_fset set_concat set_map sorted_list_of_fset_simps(1)) then have "(\parent_ptr. parent_ptr |\| object_ptr_kinds h \ x \ set |h \ get_child_nodes parent_ptr|\<^sub>r)" using 1 2 by auto - then obtain parent_ptr where parent_ptr: "parent_ptr |\| object_ptr_kinds h \ x \ set |h \ get_child_nodes parent_ptr|\<^sub>r" + then obtain parent_ptr where parent_ptr: + "parent_ptr |\| object_ptr_kinds h \ x \ set |h \ get_child_nodes parent_ptr|\<^sub>r" by auto moreover have "parent_ptr \ set (sorted_list_of_fset (object_ptr_kinds h))" using parent_ptr by auto - moreover have "|h \ get_child_nodes parent_ptr|\<^sub>r \ set (map (\parent. |h \ get_child_nodes parent|\<^sub>r) (sorted_list_of_fset (object_ptr_kinds h)))" + moreover have "|h \ get_child_nodes parent_ptr|\<^sub>r \ set (map (\parent. |h \ get_child_nodes parent|\<^sub>r) +(sorted_list_of_fset (object_ptr_kinds h)))" using calculation(2) by auto ultimately - show "x |\| fset_of_list (concat (map (\parent. |h \ get_child_nodes parent|\<^sub>r) (sorted_list_of_fset (object_ptr_kinds h))))" + show "x |\| fset_of_list (concat (map (\parent. |h \ get_child_nodes parent|\<^sub>r) +(sorted_list_of_fset (object_ptr_kinds h))))" using fset_of_list_elem by fastforce next fix node_ptr - assume 1: "node_ptr_kinds h |\| fset_of_list (concat (map (\parent. |h \ get_child_nodes parent|\<^sub>r) (sorted_list_of_fset (object_ptr_kinds h)))) |\| fset_of_list (concat (map (\parent. |h \ get_disconnected_nodes parent|\<^sub>r) (sorted_list_of_fset (document_ptr_kinds h))))" + assume 1: "node_ptr_kinds h |\| fset_of_list (concat (map (\parent. |h \ get_child_nodes parent|\<^sub>r) +(sorted_list_of_fset (object_ptr_kinds h)))) |\| +fset_of_list (concat (map (\parent. |h \ get_disconnected_nodes parent|\<^sub>r) +(sorted_list_of_fset (document_ptr_kinds h))))" assume 2: "node_ptr |\| node_ptr_kinds h" - assume 3: "\parent_ptr. parent_ptr |\| object_ptr_kinds h \ node_ptr \ set |h \ get_child_nodes parent_ptr|\<^sub>r" - have "node_ptr \ set (concat (map (\parent. |h \ get_child_nodes parent|\<^sub>r) (sorted_list_of_fset (object_ptr_kinds h)))) \ node_ptr \ set (concat (map (\parent. |h \ get_disconnected_nodes parent|\<^sub>r) (sorted_list_of_fset (document_ptr_kinds h))))" + assume 3: "\parent_ptr. parent_ptr |\| object_ptr_kinds h \ +node_ptr \ set |h \ get_child_nodes parent_ptr|\<^sub>r" + have "node_ptr \ set (concat (map (\parent. |h \ get_child_nodes parent|\<^sub>r) +(sorted_list_of_fset (object_ptr_kinds h)))) \ +node_ptr \ set (concat (map (\parent. |h \ get_disconnected_nodes parent|\<^sub>r) +(sorted_list_of_fset (document_ptr_kinds h))))" using 1 2 by (meson fin_mono fset_of_list_elem funion_iff) then - show "\document_ptr. document_ptr |\| document_ptr_kinds h \ node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r" + show "\document_ptr. document_ptr |\| document_ptr_kinds h \ +node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r" using 3 by auto qed definition a_parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" where - "a_parent_child_rel h = {(parent, child). parent |\| object_ptr_kinds h + "a_parent_child_rel h = {(parent, child). parent |\| object_ptr_kinds h \ child \ cast ` set |h \ get_child_nodes parent|\<^sub>r}" lemma a_parent_child_rel_code [code]: "a_parent_child_rel h = set (concat (map (\parent. map (\child. (parent, cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child)) |h \ get_child_nodes parent|\<^sub>r) (sorted_list_of_fset (object_ptr_kinds h))) )" by(auto simp add: a_parent_child_rel_def) definition a_acyclic_heap :: "(_) heap \ bool" where "a_acyclic_heap h = acyclic (a_parent_child_rel h)" definition a_all_ptrs_in_heap :: "(_) heap \ bool" where "a_all_ptrs_in_heap h \ (\ptr \ fset (object_ptr_kinds h). set |h \ get_child_nodes ptr|\<^sub>r \ fset (node_ptr_kinds h)) \ - (\document_ptr \ fset (document_ptr_kinds h). set |h \ get_disconnected_nodes document_ptr|\<^sub>r \ fset (node_ptr_kinds h))" + (\document_ptr \ fset (document_ptr_kinds h). +set |h \ get_disconnected_nodes document_ptr|\<^sub>r \ fset (node_ptr_kinds h))" definition a_distinct_lists :: "(_) heap \ bool" - where + where "a_distinct_lists h = distinct (concat ( - (map (\ptr. |h \ get_child_nodes ptr|\<^sub>r) |h \ object_ptr_kinds_M|\<^sub>r) + (map (\ptr. |h \ get_child_nodes ptr|\<^sub>r) |h \ object_ptr_kinds_M|\<^sub>r) @ (map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) |h \ document_ptr_kinds_M|\<^sub>r) ))" definition a_heap_is_wellformed :: "(_) heap \ bool" where "a_heap_is_wellformed h \ a_acyclic_heap h \ a_all_ptrs_in_heap h \ a_distinct_lists h \ a_owner_document_valid h" end locale l_heap_is_wellformed_defs = fixes heap_is_wellformed :: "(_) heap \ bool" fixes parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" -global_interpretation l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_child_nodes get_child_nodes_locs - get_disconnected_nodes get_disconnected_nodes_locs -defines heap_is_wellformed = "l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_heap_is_wellformed get_child_nodes +global_interpretation l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_child_nodes get_child_nodes_locs + get_disconnected_nodes get_disconnected_nodes_locs + defines heap_is_wellformed = "l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_heap_is_wellformed get_child_nodes get_disconnected_nodes" - and parent_child_rel = "l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_parent_child_rel get_child_nodes" - and acyclic_heap = a_acyclic_heap - and all_ptrs_in_heap = a_all_ptrs_in_heap - and distinct_lists = a_distinct_lists - and owner_document_valid = a_owner_document_valid + and parent_child_rel = "l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_parent_child_rel get_child_nodes" + and acyclic_heap = a_acyclic_heap + and all_ptrs_in_heap = a_all_ptrs_in_heap + and distinct_lists = a_distinct_lists + and owner_document_valid = a_owner_document_valid . locale l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_child_nodes type_wf known_ptr get_child_nodes get_child_nodes_locs - + l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_child_nodes get_child_nodes_locs get_disconnected_nodes - get_disconnected_nodes_locs + + l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs get_child_nodes get_child_nodes_locs get_disconnected_nodes + get_disconnected_nodes_locs + l_heap_is_wellformed_defs heap_is_wellformed parent_child_rel + l_get_disconnected_nodes type_wf get_disconnected_nodes get_disconnected_nodes_locs for known_ptr :: "(_::linorder) object_ptr \ bool" - and type_wf :: "(_) heap \ bool" - and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" - and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" - and heap_is_wellformed :: "(_) heap \ bool" - and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" + + and type_wf :: "(_) heap \ bool" + and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" + and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" + and heap_is_wellformed :: "(_) heap \ bool" + and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" + assumes heap_is_wellformed_impl: "heap_is_wellformed = a_heap_is_wellformed" assumes parent_child_rel_impl: "parent_child_rel = a_parent_child_rel" begin lemmas heap_is_wellformed_def = heap_is_wellformed_impl[unfolded a_heap_is_wellformed_def] lemmas parent_child_rel_def = parent_child_rel_impl[unfolded a_parent_child_rel_def] lemmas acyclic_heap_def = a_acyclic_heap_def[folded parent_child_rel_impl] lemma parent_child_rel_node_ptr: "(parent, child) \ parent_child_rel h \ is_node_ptr_kind child" by(auto simp add: parent_child_rel_def) lemma parent_child_rel_child_nodes: assumes "known_ptr parent" and "h \ get_child_nodes parent \\<^sub>r children" and "child \ set children" shows "(parent, cast child) \ parent_child_rel h" using assms apply(auto simp add: parent_child_rel_def is_OK_returns_result_I )[1] using get_child_nodes_ptr_in_heap by blast lemma parent_child_rel_child_nodes2: assumes "known_ptr parent" and "h \ get_child_nodes parent \\<^sub>r children" and "child \ set children" and "cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child = child_obj" shows "(parent, child_obj) \ parent_child_rel h" using assms parent_child_rel_child_nodes by blast lemma parent_child_rel_finite: "finite (parent_child_rel h)" proof - - have "parent_child_rel h = (\ptr \ set |h \ object_ptr_kinds_M|\<^sub>r. + have "parent_child_rel h = (\ptr \ set |h \ object_ptr_kinds_M|\<^sub>r. (\child \ set |h \ get_child_nodes ptr|\<^sub>r. {(ptr, cast child)}))" by(auto simp add: parent_child_rel_def) - moreover have "finite (\ptr \ set |h \ object_ptr_kinds_M|\<^sub>r. + moreover have "finite (\ptr \ set |h \ object_ptr_kinds_M|\<^sub>r. (\child \ set |h \ get_child_nodes ptr|\<^sub>r. {(ptr, cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child)}))" by simp ultimately show ?thesis by simp qed lemma distinct_lists_no_parent: assumes "a_distinct_lists h" assumes "h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes" assumes "node_ptr \ set disc_nodes" - shows "\(\parent_ptr. parent_ptr |\| object_ptr_kinds h + shows "\(\parent_ptr. parent_ptr |\| object_ptr_kinds h \ node_ptr \ set |h \ get_child_nodes parent_ptr|\<^sub>r)" using assms apply(auto simp add: a_distinct_lists_def)[1] proof - fix parent_ptr :: "(_) object_ptr" assume a1: "parent_ptr |\| object_ptr_kinds h" - assume a2: "(\x\fset (object_ptr_kinds h). - set |h \ get_child_nodes x|\<^sub>r) \ (\x\fset (document_ptr_kinds h). + assume a2: "(\x\fset (object_ptr_kinds h). + set |h \ get_child_nodes x|\<^sub>r) \ (\x\fset (document_ptr_kinds h). set |h \ get_disconnected_nodes x|\<^sub>r) = {}" assume a3: "h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes" assume a4: "node_ptr \ set disc_nodes" assume a5: "node_ptr \ set |h \ get_child_nodes parent_ptr|\<^sub>r" have f6: "parent_ptr \ fset (object_ptr_kinds h)" using a1 by auto have f7: "document_ptr \ fset (document_ptr_kinds h)" using a3 by (meson fmember.rep_eq get_disconnected_nodes_ptr_in_heap is_OK_returns_result_I) have "|h \ get_disconnected_nodes document_ptr|\<^sub>r = disc_nodes" using a3 by simp then show False using f7 f6 a5 a4 a2 by blast qed lemma distinct_lists_disconnected_nodes: assumes "a_distinct_lists h" and "h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes" shows "distinct disc_nodes" proof - - have h1: "distinct (concat (map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) + have h1: "distinct (concat (map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) |h \ document_ptr_kinds_M|\<^sub>r))" using assms(1) by(simp add: a_distinct_lists_def) then show ?thesis using concat_map_all_distinct[OF h1] assms(2) is_OK_returns_result_I get_disconnected_nodes_ok - by (metis (no_types, lifting) DocumentMonad.ptr_kinds_ptr_kinds_M - l_get_disconnected_nodes.get_disconnected_nodes_ptr_in_heap - l_get_disconnected_nodes_axioms select_result_I2) + by (metis (no_types, lifting) DocumentMonad.ptr_kinds_ptr_kinds_M + l_get_disconnected_nodes.get_disconnected_nodes_ptr_in_heap + l_get_disconnected_nodes_axioms select_result_I2) qed lemma distinct_lists_children: assumes "a_distinct_lists h" and "known_ptr ptr" and "h \ get_child_nodes ptr \\<^sub>r children" shows "distinct children" proof (cases "children = []", simp) assume "children \ []" have h1: "distinct (concat ((map (\ptr. |h \ get_child_nodes ptr|\<^sub>r) |h \ object_ptr_kinds_M|\<^sub>r)))" using assms(1) by(simp add: a_distinct_lists_def) show ?thesis using concat_map_all_distinct[OF h1] assms(2) assms(3) - by (metis (no_types, lifting) ObjectMonad.ptr_kinds_ptr_kinds_M get_child_nodes_ptr_in_heap - is_OK_returns_result_I select_result_I2) + by (metis (no_types, lifting) ObjectMonad.ptr_kinds_ptr_kinds_M get_child_nodes_ptr_in_heap + is_OK_returns_result_I select_result_I2) qed lemma heap_is_wellformed_children_in_heap: assumes "heap_is_wellformed h" assumes "h \ get_child_nodes ptr \\<^sub>r children" assumes "child \ set children" shows "child |\| node_ptr_kinds h" using assms apply(auto simp add: heap_is_wellformed_def a_all_ptrs_in_heap_def)[1] - by (metis (no_types, lifting) finite_set_in is_OK_returns_result_I local.get_child_nodes_ptr_in_heap select_result_I2 subsetD) + by (metis (no_types, lifting) finite_set_in is_OK_returns_result_I + local.get_child_nodes_ptr_in_heap select_result_I2 subsetD) lemma heap_is_wellformed_one_parent: assumes "heap_is_wellformed h" assumes "h \ get_child_nodes ptr \\<^sub>r children" assumes "h \ get_child_nodes ptr' \\<^sub>r children'" assumes "set children \ set children' \ {}" shows "ptr = ptr'" using assms proof (auto simp add: heap_is_wellformed_def a_distinct_lists_def)[1] fix x :: "(_) node_ptr" assume a1: "ptr \ ptr'" assume a2: "h \ get_child_nodes ptr \\<^sub>r children" assume a3: "h \ get_child_nodes ptr' \\<^sub>r children'" - assume a4: "distinct (concat (map (\ptr. |h \ get_child_nodes ptr|\<^sub>r) + assume a4: "distinct (concat (map (\ptr. |h \ get_child_nodes ptr|\<^sub>r) (sorted_list_of_set (fset (object_ptr_kinds h)))))" have f5: "|h \ get_child_nodes ptr|\<^sub>r = children" using a2 by simp have "|h \ get_child_nodes ptr'|\<^sub>r = children'" using a3 by (meson select_result_I2) - then have "ptr \ set (sorted_list_of_set (fset (object_ptr_kinds h))) - \ ptr' \ set (sorted_list_of_set (fset (object_ptr_kinds h))) + then have "ptr \ set (sorted_list_of_set (fset (object_ptr_kinds h))) + \ ptr' \ set (sorted_list_of_set (fset (object_ptr_kinds h))) \ set children \ set children' = {}" using f5 a4 a1 by (meson distinct_concat_map_E(1)) then show False - using a3 a2 by (metis (no_types) assms(4) finite_fset fmember.rep_eq is_OK_returns_result_I - local.get_child_nodes_ptr_in_heap set_sorted_list_of_set) + using a3 a2 by (metis (no_types) assms(4) finite_fset fmember.rep_eq is_OK_returns_result_I + local.get_child_nodes_ptr_in_heap set_sorted_list_of_set) qed -lemma parent_child_rel_child: - "h \ get_child_nodes ptr \\<^sub>r children \ child \ set children \ (ptr, cast child) \ parent_child_rel h" +lemma parent_child_rel_child: + "h \ get_child_nodes ptr \\<^sub>r children \ +child \ set children \ (ptr, cast child) \ parent_child_rel h" by (simp add: is_OK_returns_result_I get_child_nodes_ptr_in_heap parent_child_rel_def) lemma parent_child_rel_acyclic: "heap_is_wellformed h \ acyclic (parent_child_rel h)" by (simp add: acyclic_heap_def local.heap_is_wellformed_def) -lemma heap_is_wellformed_disconnected_nodes_distinct: - "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes \ distinct disc_nodes" +lemma heap_is_wellformed_disconnected_nodes_distinct: + "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes \ +distinct disc_nodes" using distinct_lists_disconnected_nodes local.heap_is_wellformed_def by blast -lemma parent_child_rel_parent_in_heap: +lemma parent_child_rel_parent_in_heap: "(parent, child_ptr) \ parent_child_rel h \ parent |\| object_ptr_kinds h" using local.parent_child_rel_def by blast -lemma parent_child_rel_child_in_heap: - "heap_is_wellformed h \ type_wf h \ known_ptr parent +lemma parent_child_rel_child_in_heap: + "heap_is_wellformed h \ type_wf h \ known_ptr parent \ (parent, child_ptr) \ parent_child_rel h \ child_ptr |\| object_ptr_kinds h" apply(auto simp add: heap_is_wellformed_def parent_child_rel_def a_all_ptrs_in_heap_def)[1] using get_child_nodes_ok by (meson finite_set_in subsetD) -lemma heap_is_wellformed_disc_nodes_in_heap: - "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes +lemma heap_is_wellformed_disc_nodes_in_heap: + "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes \ node \ set disc_nodes \ node |\| node_ptr_kinds h" - by (metis (no_types, lifting) finite_set_in is_OK_returns_result_I local.a_all_ptrs_in_heap_def local.get_disconnected_nodes_ptr_in_heap local.heap_is_wellformed_def select_result_I2 subsetD) - -lemma heap_is_wellformed_one_disc_parent: - "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes - \ h \ get_disconnected_nodes document_ptr' \\<^sub>r disc_nodes' + by (metis (no_types, lifting) finite_set_in is_OK_returns_result_I local.a_all_ptrs_in_heap_def + local.get_disconnected_nodes_ptr_in_heap local.heap_is_wellformed_def select_result_I2 subsetD) + +lemma heap_is_wellformed_one_disc_parent: + "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes + \ h \ get_disconnected_nodes document_ptr' \\<^sub>r disc_nodes' \ set disc_nodes \ set disc_nodes' \ {} \ document_ptr = document_ptr'" - using DocumentMonad.ptr_kinds_ptr_kinds_M concat_append distinct_append distinct_concat_map_E(1) - is_OK_returns_result_I local.a_distinct_lists_def local.get_disconnected_nodes_ptr_in_heap - local.heap_is_wellformed_def select_result_I2 + using DocumentMonad.ptr_kinds_ptr_kinds_M concat_append distinct_append distinct_concat_map_E(1) + is_OK_returns_result_I local.a_distinct_lists_def local.get_disconnected_nodes_ptr_in_heap + local.heap_is_wellformed_def select_result_I2 proof - assume a1: "heap_is_wellformed h" assume a2: "h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes" assume a3: "h \ get_disconnected_nodes document_ptr' \\<^sub>r disc_nodes'" assume a4: "set disc_nodes \ set disc_nodes' \ {}" have f5: "|h \ get_disconnected_nodes document_ptr|\<^sub>r = disc_nodes" using a2 by (meson select_result_I2) have f6: "|h \ get_disconnected_nodes document_ptr'|\<^sub>r = disc_nodes'" using a3 by (meson select_result_I2) have "\nss nssa. \ distinct (concat (nss @ nssa)) \ distinct (concat nssa::(_) node_ptr list)" by (metis (no_types) concat_append distinct_append) then have "distinct (concat (map (\d. |h \ get_disconnected_nodes d|\<^sub>r) |h \ document_ptr_kinds_M|\<^sub>r))" using a1 local.a_distinct_lists_def local.heap_is_wellformed_def by blast then show ?thesis - using f6 f5 a4 a3 a2 by (meson DocumentMonad.ptr_kinds_ptr_kinds_M distinct_concat_map_E(1) - is_OK_returns_result_I local.get_disconnected_nodes_ptr_in_heap) + using f6 f5 a4 a3 a2 by (meson DocumentMonad.ptr_kinds_ptr_kinds_M distinct_concat_map_E(1) + is_OK_returns_result_I local.get_disconnected_nodes_ptr_in_heap) qed -lemma heap_is_wellformed_children_disc_nodes_different: - "heap_is_wellformed h \ h \ get_child_nodes ptr \\<^sub>r children - \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes +lemma heap_is_wellformed_children_disc_nodes_different: + "heap_is_wellformed h \ h \ get_child_nodes ptr \\<^sub>r children + \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes \ set children \ set disc_nodes = {}" - by (metis (no_types, hide_lams) disjoint_iff_not_equal distinct_lists_no_parent - is_OK_returns_result_I local.get_child_nodes_ptr_in_heap - local.heap_is_wellformed_def select_result_I2) - -lemma heap_is_wellformed_children_disc_nodes: - "heap_is_wellformed h \ node_ptr |\| node_ptr_kinds h - \ \(\parent \ fset (object_ptr_kinds h). node_ptr \ set |h \ get_child_nodes parent|\<^sub>r) + by (metis (no_types, hide_lams) disjoint_iff_not_equal distinct_lists_no_parent + is_OK_returns_result_I local.get_child_nodes_ptr_in_heap + local.heap_is_wellformed_def select_result_I2) + +lemma heap_is_wellformed_children_disc_nodes: + "heap_is_wellformed h \ node_ptr |\| node_ptr_kinds h + \ \(\parent \ fset (object_ptr_kinds h). node_ptr \ set |h \ get_child_nodes parent|\<^sub>r) \ (\document_ptr \ fset (document_ptr_kinds h). node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r)" apply(auto simp add: heap_is_wellformed_def a_distinct_lists_def a_owner_document_valid_def)[1] by (meson fmember.rep_eq) -lemma heap_is_wellformed_children_distinct: +lemma heap_is_wellformed_children_distinct: "heap_is_wellformed h \ h \ get_child_nodes ptr \\<^sub>r children \ distinct children" - by (metis (no_types, lifting) ObjectMonad.ptr_kinds_ptr_kinds_M concat_append distinct_append - distinct_concat_map_E(2) is_OK_returns_result_I local.a_distinct_lists_def - local.get_child_nodes_ptr_in_heap local.heap_is_wellformed_def - select_result_I2) + by (metis (no_types, lifting) ObjectMonad.ptr_kinds_ptr_kinds_M concat_append distinct_append + distinct_concat_map_E(2) is_OK_returns_result_I local.a_distinct_lists_def + local.get_child_nodes_ptr_in_heap local.heap_is_wellformed_def + select_result_I2) end -locale l_heap_is_wellformed = l_type_wf + l_known_ptr + l_heap_is_wellformed_defs - + l_get_child_nodes_defs + l_get_disconnected_nodes_defs + -assumes heap_is_wellformed_children_in_heap: - "heap_is_wellformed h \ h \ get_child_nodes ptr \\<^sub>r children \ child \ set children +locale l_heap_is_wellformed = l_type_wf + l_known_ptr + l_heap_is_wellformed_defs + + l_get_child_nodes_defs + l_get_disconnected_nodes_defs + + assumes heap_is_wellformed_children_in_heap: + "heap_is_wellformed h \ h \ get_child_nodes ptr \\<^sub>r children \ child \ set children \ child |\| node_ptr_kinds h" -assumes heap_is_wellformed_disc_nodes_in_heap: - "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes + assumes heap_is_wellformed_disc_nodes_in_heap: + "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes \ node \ set disc_nodes \ node |\| node_ptr_kinds h" -assumes heap_is_wellformed_one_parent: - "heap_is_wellformed h \ h \ get_child_nodes ptr \\<^sub>r children - \ h \ get_child_nodes ptr' \\<^sub>r children' + assumes heap_is_wellformed_one_parent: + "heap_is_wellformed h \ h \ get_child_nodes ptr \\<^sub>r children + \ h \ get_child_nodes ptr' \\<^sub>r children' \ set children \ set children' \ {} \ ptr = ptr'" -assumes heap_is_wellformed_one_disc_parent: - "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes - \ h \ get_disconnected_nodes document_ptr' \\<^sub>r disc_nodes' + assumes heap_is_wellformed_one_disc_parent: + "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes + \ h \ get_disconnected_nodes document_ptr' \\<^sub>r disc_nodes' \ set disc_nodes \ set disc_nodes' \ {} \ document_ptr = document_ptr'" -assumes heap_is_wellformed_children_disc_nodes_different: - "heap_is_wellformed h \ h \ get_child_nodes ptr \\<^sub>r children - \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes + assumes heap_is_wellformed_children_disc_nodes_different: + "heap_is_wellformed h \ h \ get_child_nodes ptr \\<^sub>r children + \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes \ set children \ set disc_nodes = {}" -assumes heap_is_wellformed_disconnected_nodes_distinct: - "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes + assumes heap_is_wellformed_disconnected_nodes_distinct: + "heap_is_wellformed h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes \ distinct disc_nodes" -assumes heap_is_wellformed_children_distinct: - "heap_is_wellformed h \ h \ get_child_nodes ptr \\<^sub>r children \ distinct children" -assumes heap_is_wellformed_children_disc_nodes: - "heap_is_wellformed h \ node_ptr |\| node_ptr_kinds h - \ \(\parent \ fset (object_ptr_kinds h). node_ptr \ set |h \ get_child_nodes parent|\<^sub>r) + assumes heap_is_wellformed_children_distinct: + "heap_is_wellformed h \ h \ get_child_nodes ptr \\<^sub>r children \ distinct children" + assumes heap_is_wellformed_children_disc_nodes: + "heap_is_wellformed h \ node_ptr |\| node_ptr_kinds h + \ \(\parent \ fset (object_ptr_kinds h). node_ptr \ set |h \ get_child_nodes parent|\<^sub>r) \ (\document_ptr \ fset (document_ptr_kinds h). node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r)" -assumes parent_child_rel_child: - "h \ get_child_nodes ptr \\<^sub>r children + assumes parent_child_rel_child: + "h \ get_child_nodes ptr \\<^sub>r children \ child \ set children \ (ptr, cast child) \ parent_child_rel h" -assumes parent_child_rel_finite: - "heap_is_wellformed h \ finite (parent_child_rel h)" -assumes parent_child_rel_acyclic: - "heap_is_wellformed h \ acyclic (parent_child_rel h)" -assumes parent_child_rel_node_ptr: - "(parent, child_ptr) \ parent_child_rel h \ is_node_ptr_kind child_ptr" -assumes parent_child_rel_parent_in_heap: - "(parent, child_ptr) \ parent_child_rel h \ parent |\| object_ptr_kinds h" -assumes parent_child_rel_child_in_heap: - "heap_is_wellformed h \ type_wf h \ known_ptr parent + assumes parent_child_rel_finite: + "heap_is_wellformed h \ finite (parent_child_rel h)" + assumes parent_child_rel_acyclic: + "heap_is_wellformed h \ acyclic (parent_child_rel h)" + assumes parent_child_rel_node_ptr: + "(parent, child_ptr) \ parent_child_rel h \ is_node_ptr_kind child_ptr" + assumes parent_child_rel_parent_in_heap: + "(parent, child_ptr) \ parent_child_rel h \ parent |\| object_ptr_kinds h" + assumes parent_child_rel_child_in_heap: + "heap_is_wellformed h \ type_wf h \ known_ptr parent \ (parent, child_ptr) \ parent_child_rel h \ child_ptr |\| object_ptr_kinds h" -interpretation i_heap_is_wellformed?: l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes - get_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs - heap_is_wellformed parent_child_rel +interpretation i_heap_is_wellformed?: l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes + get_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs + heap_is_wellformed parent_child_rel apply(unfold_locales) by(auto simp add: heap_is_wellformed_def parent_child_rel_def) declare l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma heap_is_wellformed_is_l_heap_is_wellformed [instances]: - "l_heap_is_wellformed type_wf known_ptr heap_is_wellformed parent_child_rel get_child_nodes + "l_heap_is_wellformed type_wf known_ptr heap_is_wellformed parent_child_rel get_child_nodes get_disconnected_nodes" apply(auto simp add: l_heap_is_wellformed_def)[1] - using heap_is_wellformed_children_in_heap + using heap_is_wellformed_children_in_heap apply blast - using heap_is_wellformed_disc_nodes_in_heap + using heap_is_wellformed_disc_nodes_in_heap apply blast - using heap_is_wellformed_one_parent + using heap_is_wellformed_one_parent apply blast - using heap_is_wellformed_one_disc_parent + using heap_is_wellformed_one_disc_parent apply blast - using heap_is_wellformed_children_disc_nodes_different + using heap_is_wellformed_children_disc_nodes_different apply blast - using heap_is_wellformed_disconnected_nodes_distinct + using heap_is_wellformed_disconnected_nodes_distinct apply blast - using heap_is_wellformed_children_distinct + using heap_is_wellformed_children_distinct apply blast - using heap_is_wellformed_children_disc_nodes + using heap_is_wellformed_children_disc_nodes apply blast - using parent_child_rel_child + using parent_child_rel_child apply (blast) - using parent_child_rel_child + using parent_child_rel_child apply(blast) - using parent_child_rel_finite + using parent_child_rel_finite apply blast - using parent_child_rel_acyclic + using parent_child_rel_acyclic apply blast - using parent_child_rel_node_ptr + using parent_child_rel_node_ptr apply blast - using parent_child_rel_parent_in_heap + using parent_child_rel_parent_in_heap apply blast - using parent_child_rel_child_in_heap + using parent_child_rel_child_in_heap apply blast done subsection \get\_parent\ locale l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - known_ptr type_wf get_child_nodes get_child_nodes_locs known_ptrs get_parent get_parent_locs + known_ptr type_wf get_child_nodes get_child_nodes_locs known_ptrs get_parent get_parent_locs + l_heap_is_wellformed - type_wf known_ptr heap_is_wellformed parent_child_rel get_child_nodes get_child_nodes_locs - get_disconnected_nodes get_disconnected_nodes_locs + type_wf known_ptr heap_is_wellformed parent_child_rel get_child_nodes get_child_nodes_locs + get_disconnected_nodes get_disconnected_nodes_locs for known_ptr :: "(_::linorder) object_ptr \ bool" - and type_wf :: "(_) heap \ bool" - and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" - and known_ptrs :: "(_) heap \ bool" - and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" - and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" - and heap_is_wellformed :: "(_) heap \ bool" - and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" - and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" + and type_wf :: "(_) heap \ bool" + and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" + and known_ptrs :: "(_) heap \ bool" + and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" + and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" + and heap_is_wellformed :: "(_) heap \ bool" + and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" + and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" begin lemma child_parent_dual: assumes heap_is_wellformed: "heap_is_wellformed h" assumes "h \ get_child_nodes ptr \\<^sub>r children" assumes "child \ set children" assumes "known_ptrs h" assumes type_wf: "type_wf h" shows "h \ get_parent child \\<^sub>r Some ptr" proof - obtain ptrs where ptrs: "h \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs) then have h1: "ptr \ set ptrs" - using get_child_nodes_ok assms(2) is_OK_returns_result_I - by (metis (no_types, hide_lams) ObjectMonad.ptr_kinds_ptr_kinds_M - \\thesis. (\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs \ thesis) \ thesis\ - get_child_nodes_ptr_in_heap returns_result_eq select_result_I2) + using get_child_nodes_ok assms(2) is_OK_returns_result_I + by (metis (no_types, hide_lams) ObjectMonad.ptr_kinds_ptr_kinds_M + \\thesis. (\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs \ thesis) \ thesis\ + get_child_nodes_ptr_in_heap returns_result_eq select_result_I2) let ?P = "(\ptr. get_child_nodes ptr \ (\children. return (child \ set children)))" let ?filter = "filter_M ?P ptrs" have "h \ ok ?filter" using ptrs type_wf using get_child_nodes_ok apply(auto intro!: filter_M_is_OK_I bind_is_OK_pure_I get_child_nodes_ok simp add: bind_pure_I)[1] - using assms(4) local.known_ptrs_known_ptr by blast + using assms(4) local.known_ptrs_known_ptr by blast then obtain parent_ptrs where parent_ptrs: "h \ ?filter \\<^sub>r parent_ptrs" by auto - have h5: "\!x. x \ set ptrs \ h \ Heap_Error_Monad.bind (get_child_nodes x) + have h5: "\!x. x \ set ptrs \ h \ Heap_Error_Monad.bind (get_child_nodes x) (\children. return (child \ set children)) \\<^sub>r True" apply(auto intro!: bind_pure_returns_result_I)[1] using heap_is_wellformed_one_parent proof - have "h \ (return (child \ set children)::((_) heap, exception, bool) prog) \\<^sub>r True" by (simp add: assms(3)) - then show - "\z. z \ set ptrs \ h \ Heap_Error_Monad.bind (get_child_nodes z) + then show + "\z. z \ set ptrs \ h \ Heap_Error_Monad.bind (get_child_nodes z) (\ns. return (child \ set ns)) \\<^sub>r True" - by (metis (no_types) assms(2) bind_pure_returns_result_I2 h1 is_OK_returns_result_I - local.get_child_nodes_pure select_result_I2) + by (metis (no_types) assms(2) bind_pure_returns_result_I2 h1 is_OK_returns_result_I + local.get_child_nodes_pure select_result_I2) next fix x y assume 0: "x \ set ptrs" - and 1: "h \ Heap_Error_Monad.bind (get_child_nodes x) + and 1: "h \ Heap_Error_Monad.bind (get_child_nodes x) (\children. return (child \ set children)) \\<^sub>r True" and 2: "y \ set ptrs" - and 3: "h \ Heap_Error_Monad.bind (get_child_nodes y) + and 3: "h \ Heap_Error_Monad.bind (get_child_nodes y) (\children. return (child \ set children)) \\<^sub>r True" - and 4: "(\h ptr children ptr' children'. heap_is_wellformed h - \ h \ get_child_nodes ptr \\<^sub>r children \ h \ get_child_nodes ptr' \\<^sub>r children' + and 4: "(\h ptr children ptr' children'. heap_is_wellformed h + \ h \ get_child_nodes ptr \\<^sub>r children \ h \ get_child_nodes ptr' \\<^sub>r children' \ set children \ set children' \ {} \ ptr = ptr')" then show "x = y" - by (metis (no_types, lifting) bind_returns_result_E disjoint_iff_not_equal heap_is_wellformed - return_returns_result) + by (metis (no_types, lifting) bind_returns_result_E disjoint_iff_not_equal heap_is_wellformed + return_returns_result) qed have "child |\| node_ptr_kinds h" using heap_is_wellformed_children_in_heap heap_is_wellformed assms(2) assms(3) - by fast + by fast moreover have "parent_ptrs = [ptr]" apply(rule filter_M_ex1[OF parent_ptrs h1 h5]) - using ptrs assms(2) assms(3) + using ptrs assms(2) assms(3) by(auto simp add: object_ptr_kinds_M_defs bind_pure_I intro!: bind_pure_returns_result_I) ultimately show ?thesis using ptrs parent_ptrs - by(auto simp add: bind_pure_I get_parent_def - elim!: bind_returns_result_E2 - intro!: bind_pure_returns_result_I filter_M_pure_I) (*slow, ca 1min *) + by(auto simp add: bind_pure_I get_parent_def + elim!: bind_returns_result_E2 + intro!: bind_pure_returns_result_I filter_M_pure_I) (*slow, ca 1min *) qed lemma parent_child_rel_parent: assumes "heap_is_wellformed h" and "h \ get_parent child_node \\<^sub>r Some parent" shows "(parent, cast child_node) \ parent_child_rel h" using assms parent_child_rel_child get_parent_child_dual by auto lemma heap_wellformed_induct [consumes 1, case_names step]: assumes "heap_is_wellformed h" - and step: "\parent. (\children child. h \ get_child_nodes parent \\<^sub>r children + and step: "\parent. (\children child. h \ get_child_nodes parent \\<^sub>r children \ child \ set children \ P (cast child)) \ P parent" shows "P ptr" proof - fix ptr have "wf ((parent_child_rel h)\)" by (simp add: assms(1) finite_acyclic_wf_converse parent_child_rel_acyclic parent_child_rel_finite) then show "?thesis" proof (induct rule: wf_induct_rule) case (less parent) then show ?case using assms parent_child_rel_child by (meson converse_iff) qed qed lemma heap_wellformed_induct2 [consumes 3, case_names not_in_heap empty_children step]: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" and not_in_heap: "\parent. parent |\| object_ptr_kinds h \ P parent" and empty_children: "\parent. h \ get_child_nodes parent \\<^sub>r [] \ P parent" - and step: "\parent children child. h \ get_child_nodes parent \\<^sub>r children + and step: "\parent children child. h \ get_child_nodes parent \\<^sub>r children \ child \ set children \ P (cast child) \ P parent" shows "P ptr" proof(insert assms(1), induct rule: heap_wellformed_induct) case (step parent) then show ?case proof(cases "parent |\| object_ptr_kinds h") case True then obtain children where children: "h \ get_child_nodes parent \\<^sub>r children" - using get_child_nodes_ok assms(2) assms(3) + using get_child_nodes_ok assms(2) assms(3) by (meson is_OK_returns_result_E local.known_ptrs_known_ptr) then show ?thesis proof (cases "children = []") case True then show ?thesis using children empty_children by simp next case False then show ?thesis using assms(6) children last_in_set step.hyps by blast qed next case False - then show ?thesis + then show ?thesis by (simp add: not_in_heap) qed qed lemma heap_wellformed_induct_rev [consumes 1, case_names step]: assumes "heap_is_wellformed h" - and step: "\child. (\parent child_node. cast child_node = child + and step: "\child. (\parent child_node. cast child_node = child \ h \ get_parent child_node \\<^sub>r Some parent \ P parent) \ P child" shows "P ptr" proof - fix ptr have "wf ((parent_child_rel h))" - by (simp add: assms(1) local.parent_child_rel_acyclic local.parent_child_rel_finite - wf_iff_acyclic_if_finite) + by (simp add: assms(1) local.parent_child_rel_acyclic local.parent_child_rel_finite + wf_iff_acyclic_if_finite) then show "?thesis" proof (induct rule: wf_induct_rule) case (less child) show ?case using assms get_parent_child_dual by (metis less.hyps parent_child_rel_parent) qed qed end -interpretation i_get_parent_wf?: l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes - get_child_nodes_locs known_ptrs get_parent get_parent_locs heap_is_wellformed - parent_child_rel get_disconnected_nodes +interpretation i_get_parent_wf?: l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes + get_child_nodes_locs known_ptrs get_parent get_parent_locs heap_is_wellformed + parent_child_rel get_disconnected_nodes using instances by(simp add: l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) declare l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] locale l_get_parent_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - known_ptr type_wf get_child_nodes get_child_nodes_locs known_ptrs get_parent get_parent_locs - heap_is_wellformed parent_child_rel get_disconnected_nodes get_disconnected_nodes_locs + known_ptr type_wf get_child_nodes get_child_nodes_locs known_ptrs get_parent get_parent_locs + heap_is_wellformed parent_child_rel get_disconnected_nodes get_disconnected_nodes_locs + l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - known_ptr type_wf get_child_nodes get_child_nodes_locs get_disconnected_nodes - get_disconnected_nodes_locs heap_is_wellformed parent_child_rel + known_ptr type_wf get_child_nodes get_child_nodes_locs get_disconnected_nodes + get_disconnected_nodes_locs heap_is_wellformed parent_child_rel for known_ptr :: "(_::linorder) object_ptr \ bool" - and type_wf :: "(_) heap \ bool" - and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" - and known_ptrs :: "(_) heap \ bool" - and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" - and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" - and heap_is_wellformed :: "(_) heap \ bool" - and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" - and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" + and type_wf :: "(_) heap \ bool" + and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" + and known_ptrs :: "(_) heap \ bool" + and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" + and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" + and heap_is_wellformed :: "(_) heap \ bool" + and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" + and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" begin lemma preserves_wellformedness_writes_needed: assumes heap_is_wellformed: "heap_is_wellformed h" and "h \ f \\<^sub>h h'" and "writes SW f h h'" - and preserved_get_child_nodes: - "\h h' w. w \ SW \ h \ w \\<^sub>h h' + and preserved_get_child_nodes: + "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \object_ptr. \r \ get_child_nodes_locs object_ptr. r h h'" - and preserved_get_disconnected_nodes: - "\h h' w. w \ SW \ h \ w \\<^sub>h h' + and preserved_get_disconnected_nodes: + "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \document_ptr. \r \ get_disconnected_nodes_locs document_ptr. r h h'" - and preserved_object_pointers: - "\h h' w. w \ SW \ h \ w \\<^sub>h h' + and preserved_object_pointers: + "\h h' w. w \ SW \ h \ w \\<^sub>h h' \ \object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" -shows "heap_is_wellformed h'" + shows "heap_is_wellformed h'" proof - have object_ptr_kinds_eq3: "object_ptr_kinds h = object_ptr_kinds h'" using assms(2) assms(3) object_ptr_kinds_preserved preserved_object_pointers by blast - then have object_ptr_kinds_eq: - "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h' \ object_ptr_kinds_M \\<^sub>r ptrs" - unfolding object_ptr_kinds_M_defs by simp + then have object_ptr_kinds_eq: + "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h' \ object_ptr_kinds_M \\<^sub>r ptrs" + unfolding object_ptr_kinds_M_defs by simp then have object_ptr_kinds_eq2: "|h \ object_ptr_kinds_M|\<^sub>r = |h' \ object_ptr_kinds_M|\<^sub>r" using select_result_eq by force then have node_ptr_kinds_eq2: "|h \ node_ptr_kinds_M|\<^sub>r = |h' \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by auto then have node_ptr_kinds_eq3: "node_ptr_kinds h = node_ptr_kinds h'" by auto have document_ptr_kinds_eq2: "|h \ document_ptr_kinds_M|\<^sub>r = |h' \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_eq2 document_ptr_kinds_M_eq by auto then have document_ptr_kinds_eq3: "document_ptr_kinds h = document_ptr_kinds h'" - by auto - have children_eq: + by auto + have children_eq: "\ptr children. h \ get_child_nodes ptr \\<^sub>r children = h' \ get_child_nodes ptr \\<^sub>r children" apply(rule reads_writes_preserved[OF get_child_nodes_reads assms(3) assms(2)]) using preserved_get_child_nodes by fast then have children_eq2: "\ptr. |h \ get_child_nodes ptr|\<^sub>r = |h' \ get_child_nodes ptr|\<^sub>r" using select_result_eq by force - have disconnected_nodes_eq: - "\document_ptr disconnected_nodes. - h \ get_disconnected_nodes document_ptr \\<^sub>r disconnected_nodes + have disconnected_nodes_eq: + "\document_ptr disconnected_nodes. + h \ get_disconnected_nodes document_ptr \\<^sub>r disconnected_nodes = h' \ get_disconnected_nodes document_ptr \\<^sub>r disconnected_nodes" apply(rule reads_writes_preserved[OF get_disconnected_nodes_reads assms(3) assms(2)]) using preserved_get_disconnected_nodes by fast - then have disconnected_nodes_eq2: - "\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r + then have disconnected_nodes_eq2: + "\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r = |h' \ get_disconnected_nodes document_ptr|\<^sub>r" using select_result_eq by force have get_parent_eq: "\ptr parent. h \ get_parent ptr \\<^sub>r parent = h' \ get_parent ptr \\<^sub>r parent" apply(rule reads_writes_preserved[OF get_parent_reads assms(3) assms(2)]) using preserved_get_child_nodes preserved_object_pointers unfolding get_parent_locs_def by fast have "a_acyclic_heap h" using heap_is_wellformed by (simp add: heap_is_wellformed_def) have "parent_child_rel h' \ parent_child_rel h" proof fix x assume "x \ parent_child_rel h'" then show "x \ parent_child_rel h" by(simp add: parent_child_rel_def children_eq2 object_ptr_kinds_eq3) qed then have "a_acyclic_heap h'" using \a_acyclic_heap h\ acyclic_heap_def acyclic_subset by blast moreover have "a_all_ptrs_in_heap h" using heap_is_wellformed by (simp add: heap_is_wellformed_def) then have "a_all_ptrs_in_heap h'" - by (simp add: children_eq2 disconnected_nodes_eq2 document_ptr_kinds_eq3 l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_all_ptrs_in_heap_def node_ptr_kinds_eq3 object_ptr_kinds_eq3) + by (simp add: children_eq2 disconnected_nodes_eq2 document_ptr_kinds_eq3 + l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.a_all_ptrs_in_heap_def node_ptr_kinds_eq3 object_ptr_kinds_eq3) moreover have h0: "a_distinct_lists h" using heap_is_wellformed by (simp add: heap_is_wellformed_def) - have h1: "map (\ptr. |h \ get_child_nodes ptr|\<^sub>r) (sorted_list_of_set (fset (object_ptr_kinds h))) + have h1: "map (\ptr. |h \ get_child_nodes ptr|\<^sub>r) (sorted_list_of_set (fset (object_ptr_kinds h))) = map (\ptr. |h' \ get_child_nodes ptr|\<^sub>r) (sorted_list_of_set (fset (object_ptr_kinds h')))" - by (simp add: children_eq2 object_ptr_kinds_eq3) - have h2: "map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) - (sorted_list_of_set (fset (document_ptr_kinds h))) - = map (\document_ptr. |h' \ get_disconnected_nodes document_ptr|\<^sub>r) + by (simp add: children_eq2 object_ptr_kinds_eq3) + have h2: "map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) + (sorted_list_of_set (fset (document_ptr_kinds h))) + = map (\document_ptr. |h' \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h')))" using disconnected_nodes_eq document_ptr_kinds_eq2 select_result_eq by force have "a_distinct_lists h'" - using h0 + using h0 by(simp add: a_distinct_lists_def h1 h2) moreover have "a_owner_document_valid h" using heap_is_wellformed by (simp add: heap_is_wellformed_def) then have "a_owner_document_valid h'" - by(auto simp add: a_owner_document_valid_def children_eq2 disconnected_nodes_eq2 - object_ptr_kinds_eq3 node_ptr_kinds_eq3 document_ptr_kinds_eq3) + by(auto simp add: a_owner_document_valid_def children_eq2 disconnected_nodes_eq2 + object_ptr_kinds_eq3 node_ptr_kinds_eq3 document_ptr_kinds_eq3) ultimately show ?thesis by (simp add: heap_is_wellformed_def) qed end -interpretation i_get_parent_wf2?: l_get_parent_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes - get_child_nodes_locs known_ptrs get_parent get_parent_locs - heap_is_wellformed parent_child_rel get_disconnected_nodes - get_disconnected_nodes_locs +interpretation i_get_parent_wf2?: l_get_parent_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes + get_child_nodes_locs known_ptrs get_parent get_parent_locs + heap_is_wellformed parent_child_rel get_disconnected_nodes + get_disconnected_nodes_locs using l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms by (simp add: l_get_parent_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) declare l_get_parent_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] -locale l_get_parent_wf = l_type_wf + l_known_ptrs + l_heap_is_wellformed_defs - + l_get_child_nodes_defs + l_get_parent_defs + +locale l_get_parent_wf = l_type_wf + l_known_ptrs + l_heap_is_wellformed_defs + + l_get_child_nodes_defs + l_get_parent_defs + assumes child_parent_dual: "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ get_child_nodes ptr \\<^sub>r children \ child \ set children \ h \ get_parent child \\<^sub>r Some ptr" assumes heap_wellformed_induct [consumes 1, case_names step]: "heap_is_wellformed h - \ (\parent. (\children child. h \ get_child_nodes parent \\<^sub>r children + \ (\parent. (\children child. h \ get_child_nodes parent \\<^sub>r children \ child \ set children \ P (cast child)) \ P parent) \ P ptr" assumes heap_wellformed_induct_rev [consumes 1, case_names step]: "heap_is_wellformed h - \ (\child. (\parent child_node. cast child_node = child + \ (\child. (\parent child_node. cast child_node = child \ h \ get_parent child_node \\<^sub>r Some parent \ P parent) \ P child) \ P ptr" - assumes parent_child_rel_parent: "heap_is_wellformed h - \ h \ get_parent child_node \\<^sub>r Some parent + assumes parent_child_rel_parent: "heap_is_wellformed h + \ h \ get_parent child_node \\<^sub>r Some parent \ (parent, cast child_node) \ parent_child_rel h" -lemma get_parent_wf_is_l_get_parent_wf [instances]: - "l_get_parent_wf type_wf known_ptr known_ptrs heap_is_wellformed parent_child_rel +lemma get_parent_wf_is_l_get_parent_wf [instances]: + "l_get_parent_wf type_wf known_ptr known_ptrs heap_is_wellformed parent_child_rel get_child_nodes get_parent" using known_ptrs_is_l_known_ptrs apply(auto simp add: l_get_parent_wf_def l_get_parent_wf_axioms_def)[1] using child_parent_dual heap_wellformed_induct heap_wellformed_induct_rev parent_child_rel_parent - by metis+ + by metis+ subsection \get\_disconnected\_nodes\ subsection \set\_disconnected\_nodes\ subsubsection \get\_disconnected\_nodes\ locale l_set_disconnected_nodes_get_disconnected_nodes_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_set_disconnected_nodes_get_disconnected_nodes - type_wf get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes - set_disconnected_nodes_locs + type_wf get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes + set_disconnected_nodes_locs + l_heap_is_wellformed - type_wf known_ptr heap_is_wellformed parent_child_rel get_child_nodes get_child_nodes_locs - get_disconnected_nodes get_disconnected_nodes_locs + type_wf known_ptr heap_is_wellformed parent_child_rel get_child_nodes get_child_nodes_locs + get_disconnected_nodes get_disconnected_nodes_locs for known_ptr :: "(_) object_ptr \ bool" - and type_wf :: "(_) heap \ bool" - and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" - and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" - and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" - and heap_is_wellformed :: "(_) heap \ bool" - and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" - and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" + and type_wf :: "(_) heap \ bool" + and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" + and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" + and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" + and heap_is_wellformed :: "(_) heap \ bool" + and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" + and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" begin lemma remove_from_disconnected_nodes_removes: assumes "heap_is_wellformed h" assumes "h \ get_disconnected_nodes ptr \\<^sub>r disc_nodes" assumes "h \ set_disconnected_nodes ptr (remove1 node_ptr disc_nodes) \\<^sub>h h'" assumes "h' \ get_disconnected_nodes ptr \\<^sub>r disc_nodes'" shows "node_ptr \ set disc_nodes'" using assms - by (metis distinct_remove1_removeAll heap_is_wellformed_disconnected_nodes_distinct - set_disconnected_nodes_get_disconnected_nodes member_remove remove_code(1) - returns_result_eq) + by (metis distinct_remove1_removeAll heap_is_wellformed_disconnected_nodes_distinct + set_disconnected_nodes_get_disconnected_nodes member_remove remove_code(1) + returns_result_eq) end locale l_set_disconnected_nodes_get_disconnected_nodes_wf = l_heap_is_wellformed - + l_set_disconnected_nodes_get_disconnected_nodes + + + l_set_disconnected_nodes_get_disconnected_nodes + assumes remove_from_disconnected_nodes_removes: - "heap_is_wellformed h \ h \ get_disconnected_nodes ptr \\<^sub>r disc_nodes - \ h \ set_disconnected_nodes ptr (remove1 node_ptr disc_nodes) \\<^sub>h h' - \ h' \ get_disconnected_nodes ptr \\<^sub>r disc_nodes' + "heap_is_wellformed h \ h \ get_disconnected_nodes ptr \\<^sub>r disc_nodes + \ h \ set_disconnected_nodes ptr (remove1 node_ptr disc_nodes) \\<^sub>h h' + \ h' \ get_disconnected_nodes ptr \\<^sub>r disc_nodes' \ node_ptr \ set disc_nodes'" interpretation i_set_disconnected_nodes_get_disconnected_nodes_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M?: - l_set_disconnected_nodes_get_disconnected_nodes_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_disconnected_nodes - get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs heap_is_wellformed + l_set_disconnected_nodes_get_disconnected_nodes_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_disconnected_nodes + get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs heap_is_wellformed parent_child_rel get_child_nodes using instances by (simp add: l_set_disconnected_nodes_get_disconnected_nodes_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) declare l_set_disconnected_nodes_get_disconnected_nodes_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] - + lemma set_disconnected_nodes_get_disconnected_nodes_wf_is_l_set_disconnected_nodes_get_disconnected_nodes_wf [instances]: - "l_set_disconnected_nodes_get_disconnected_nodes_wf type_wf known_ptr heap_is_wellformed parent_child_rel + "l_set_disconnected_nodes_get_disconnected_nodes_wf type_wf known_ptr heap_is_wellformed parent_child_rel get_child_nodes get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs" - apply(auto simp add: l_set_disconnected_nodes_get_disconnected_nodes_wf_def - l_set_disconnected_nodes_get_disconnected_nodes_wf_axioms_def instances)[1] + apply(auto simp add: l_set_disconnected_nodes_get_disconnected_nodes_wf_def + l_set_disconnected_nodes_get_disconnected_nodes_wf_axioms_def instances)[1] using remove_from_disconnected_nodes_removes apply fast done subsection \get\_root\_node\ locale l_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_heap_is_wellformed - type_wf known_ptr heap_is_wellformed parent_child_rel get_child_nodes get_child_nodes_locs - get_disconnected_nodes get_disconnected_nodes_locs + type_wf known_ptr heap_is_wellformed parent_child_rel get_child_nodes get_child_nodes_locs + get_disconnected_nodes get_disconnected_nodes_locs + l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - known_ptr type_wf get_child_nodes get_child_nodes_locs known_ptrs get_parent get_parent_locs + known_ptr type_wf get_child_nodes get_child_nodes_locs known_ptrs get_parent get_parent_locs + l_get_parent_wf - type_wf known_ptr known_ptrs heap_is_wellformed parent_child_rel get_child_nodes - get_child_nodes_locs get_parent get_parent_locs + type_wf known_ptr known_ptrs heap_is_wellformed parent_child_rel get_child_nodes + get_child_nodes_locs get_parent get_parent_locs + l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - type_wf known_ptr known_ptrs get_parent get_parent_locs get_child_nodes get_child_nodes_locs - get_ancestors get_ancestors_locs get_root_node get_root_node_locs + type_wf known_ptr known_ptrs get_parent get_parent_locs get_child_nodes get_child_nodes_locs + get_ancestors get_ancestors_locs get_root_node get_root_node_locs for known_ptr :: "(_::linorder) object_ptr \ bool" - and type_wf :: "(_) heap \ bool" - and known_ptrs :: "(_) heap \ bool" - and heap_is_wellformed :: "(_) heap \ bool" - and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" - and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" - and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" - and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" - and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" - and get_ancestors :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr list) prog" - and get_ancestors_locs :: "((_) heap \ (_) heap \ bool) set" - and get_root_node :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr) prog" - and get_root_node_locs :: "((_) heap \ (_) heap \ bool) set" + and type_wf :: "(_) heap \ bool" + and known_ptrs :: "(_) heap \ bool" + and heap_is_wellformed :: "(_) heap \ bool" + and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" + and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" + and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" + and get_parent :: "(_) node_ptr \ ((_) heap, exception, (_) object_ptr option) prog" + and get_parent_locs :: "((_) heap \ (_) heap \ bool) set" + and get_ancestors :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr list) prog" + and get_ancestors_locs :: "((_) heap \ (_) heap \ bool) set" + and get_root_node :: "(_) object_ptr \ ((_) heap, exception, (_) object_ptr) prog" + and get_root_node_locs :: "((_) heap \ (_) heap \ bool) set" begin lemma get_ancestors_reads: assumes "heap_is_wellformed h" shows "reads get_ancestors_locs (get_ancestors node_ptr) h h'" proof (insert assms(1), induct rule: heap_wellformed_induct_rev) case (step child) then show ?case using [[simproc del: Product_Type.unit_eq]] get_parent_reads[unfolded reads_def] apply(simp (no_asm) add: get_ancestors_def) - by(auto simp add: get_ancestors_locs_def reads_subset[OF return_reads] get_parent_reads_pointers - intro!: reads_bind_pure reads_subset[OF check_in_heap_reads] - reads_subset[OF get_parent_reads] reads_subset[OF get_child_nodes_reads] - split: option.splits) + by(auto simp add: get_ancestors_locs_def reads_subset[OF return_reads] get_parent_reads_pointers + intro!: reads_bind_pure reads_subset[OF check_in_heap_reads] + reads_subset[OF get_parent_reads] reads_subset[OF get_child_nodes_reads] + split: option.splits) qed lemma get_ancestors_ok: assumes "heap_is_wellformed h" and "ptr |\| object_ptr_kinds h" and "known_ptrs h" and type_wf: "type_wf h" shows "h \ ok (get_ancestors ptr)" proof (insert assms(1) assms(2), induct rule: heap_wellformed_induct_rev) case (step child) then show ?case using assms(3) assms(4) apply(simp (no_asm) add: get_ancestors_def) apply(simp add: assms(1) get_parent_parent_in_heap) by(auto intro!: bind_is_OK_pure_I bind_pure_I get_parent_ok split: option.splits) qed lemma get_root_node_ptr_in_heap: assumes "h \ ok (get_root_node ptr)" shows "ptr |\| object_ptr_kinds h" using assms unfolding get_root_node_def using get_ancestors_ptr_in_heap by auto lemma get_root_node_ok: assumes "heap_is_wellformed h" "known_ptrs h" "type_wf h" and "ptr |\| object_ptr_kinds h" shows "h \ ok (get_root_node ptr)" unfolding get_root_node_def using assms get_ancestors_ok by auto lemma get_ancestors_parent: assumes "heap_is_wellformed h" and "h \ get_parent child \\<^sub>r Some parent" - shows "h \ get_ancestors (cast child) \\<^sub>r (cast child) # parent # ancestors + shows "h \ get_ancestors (cast child) \\<^sub>r (cast child) # parent # ancestors \ h \ get_ancestors parent \\<^sub>r parent # ancestors" proof - assume a1: "h \ get_ancestors (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child # parent # ancestors" + assume a1: "h \ get_ancestors (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r +cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child # parent # ancestors" then have "h \ Heap_Error_Monad.bind (check_in_heap (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child)) (\_. Heap_Error_Monad.bind (get_parent child) - (\x. Heap_Error_Monad.bind (case x of None \ return [] | Some x \ get_ancestors x) + (\x. Heap_Error_Monad.bind (case x of None \ return [] | Some x \ get_ancestors x) (\ancestors. return (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child # ancestors)))) \\<^sub>r cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child # parent # ancestors" by(simp add: get_ancestors_def) then show "h \ get_ancestors parent \\<^sub>r parent # ancestors" using assms(2) apply(auto elim!: bind_returns_result_E2 split: option.splits)[1] using returns_result_eq by fastforce next assume "h \ get_ancestors parent \\<^sub>r parent # ancestors" then show "h \ get_ancestors (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child # parent # ancestors" - using assms(2) + using assms(2) apply(simp (no_asm) add: get_ancestors_def) apply(auto intro!: bind_pure_returns_result_I split: option.splits)[1] - by (metis (full_types) assms(2) check_in_heap_ptr_in_heap is_OK_returns_result_I - local.get_parent_ptr_in_heap node_ptr_kinds_commutes old.unit.exhaust - select_result_I) + by (metis (full_types) assms(2) check_in_heap_ptr_in_heap is_OK_returns_result_I + local.get_parent_ptr_in_heap node_ptr_kinds_commutes old.unit.exhaust + select_result_I) qed lemma get_ancestors_never_empty: assumes "heap_is_wellformed h" and "h \ get_ancestors child \\<^sub>r ancestors" shows "ancestors \ []" proof(insert assms(2), induct arbitrary: ancestors rule: heap_wellformed_induct_rev[OF assms(1)]) case (1 child) then show ?case proof (induct "cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r child") case None then show ?case apply(simp add: get_ancestors_def) by(auto elim!: bind_returns_result_E2 split: option.splits) next case (Some child_node) then obtain parent_opt where parent_opt: "h \ get_parent child_node \\<^sub>r parent_opt" apply(simp add: get_ancestors_def) by(auto elim!: bind_returns_result_E2 split: option.splits) with Some show ?case proof(induct parent_opt) case None - then show ?case + then show ?case apply(simp add: get_ancestors_def) by(auto elim!: bind_returns_result_E2 split: option.splits) next case (Some option) - then show ?case + then show ?case apply(simp add: get_ancestors_def) by(auto elim!: bind_returns_result_E2 split: option.splits) qed qed qed lemma get_ancestors_subset: assumes "heap_is_wellformed h" and "h \ get_ancestors ptr \\<^sub>r ancestors" and "ancestor \ set ancestors" and "h \ get_ancestors ancestor \\<^sub>r ancestor_ancestors" -and type_wf: "type_wf h" -and known_ptrs: "known_ptrs h" + and type_wf: "type_wf h" + and known_ptrs: "known_ptrs h" shows "set ancestor_ancestors \ set ancestors" -proof (insert assms(1) assms(2) assms(3), induct ptr arbitrary: ancestors - rule: heap_wellformed_induct_rev) +proof (insert assms(1) assms(2) assms(3), induct ptr arbitrary: ancestors + rule: heap_wellformed_induct_rev) case (step child) have "child |\| object_ptr_kinds h" using get_ancestors_ptr_in_heap step(2) by auto - (* then have "h \ check_in_heap child \\<^sub>r ()" + (* then have "h \ check_in_heap child \\<^sub>r ()" using returns_result_select_result by force *) show ?case proof (induct "cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r child") case None then have "ancestors = [child]" - using step(2) step(3) + using step(2) step(3) by(auto simp add: get_ancestors_def elim!: bind_returns_result_E2) show ?case using step(2) step(3) apply(auto simp add: \ancestors = [child]\)[1] using assms(4) returns_result_eq by fastforce next case (Some child_node) note s1 = Some obtain parent_opt where parent_opt: "h \ get_parent child_node \\<^sub>r parent_opt" - using \child |\| object_ptr_kinds h\ assms(1) Some[symmetric] get_parent_ok[OF type_wf known_ptrs] - by (metis (no_types, lifting) is_OK_returns_result_E known_ptrs get_parent_ok - l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms node_ptr_casts_commute node_ptr_kinds_commutes) + using \child |\| object_ptr_kinds h\ assms(1) Some[symmetric] + get_parent_ok[OF type_wf known_ptrs] + by (metis (no_types, lifting) is_OK_returns_result_E known_ptrs get_parent_ok + l_get_parent\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms node_ptr_casts_commute node_ptr_kinds_commutes) then show ?case proof (induct parent_opt) case None then have "ancestors = [child]" using step(2) step(3) s1 apply(simp add: get_ancestors_def) by(auto elim!: bind_returns_result_E2 split: option.splits dest: returns_result_eq) show ?case using step(2) step(3) apply(auto simp add: \ancestors = [child]\)[1] using assms(4) returns_result_eq by fastforce next case (Some parent) have "h \ Heap_Error_Monad.bind (check_in_heap child) (\_. Heap_Error_Monad.bind (case cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r child of None \ return [] - | Some node_ptr \ Heap_Error_Monad.bind (get_parent node_ptr) - (\parent_ptr_opt. case parent_ptr_opt of None \ return [] + | Some node_ptr \ Heap_Error_Monad.bind (get_parent node_ptr) + (\parent_ptr_opt. case parent_ptr_opt of None \ return [] | Some x \ get_ancestors x)) (\ancestors. return (child # ancestors))) \\<^sub>r ancestors" using step(2) by(simp add: get_ancestors_def) moreover obtain tl_ancestors where tl_ancestors: "ancestors = child # tl_ancestors" using calculation by(auto elim!: bind_returns_result_E2 split: option.splits) ultimately have "h \ get_ancestors parent \\<^sub>r tl_ancestors" using s1 Some by(auto elim!: bind_returns_result_E2 split: option.splits dest: returns_result_eq) show ?case - using step(1)[OF s1[symmetric, simplified] Some \h \ get_ancestors parent \\<^sub>r tl_ancestors\] - step(3) + using step(1)[OF s1[symmetric, simplified] Some \h \ get_ancestors parent \\<^sub>r tl_ancestors\] + step(3) apply(auto simp add: tl_ancestors)[1] by (metis assms(4) insert_iff list.simps(15) local.step(2) returns_result_eq tl_ancestors) qed qed qed lemma get_ancestors_also_parent: assumes "heap_is_wellformed h" and "h \ get_ancestors some_ptr \\<^sub>r ancestors" and "cast child \ set ancestors" and "h \ get_parent child \\<^sub>r Some parent" and type_wf: "type_wf h" and known_ptrs: "known_ptrs h" shows "parent \ set ancestors" proof - obtain child_ancestors where child_ancestors: "h \ get_ancestors (cast child) \\<^sub>r child_ancestors" - by (meson assms(1) assms(4) get_ancestors_ok is_OK_returns_result_I known_ptrs - local.get_parent_ptr_in_heap node_ptr_kinds_commutes returns_result_select_result - type_wf) + by (meson assms(1) assms(4) get_ancestors_ok is_OK_returns_result_I known_ptrs + local.get_parent_ptr_in_heap node_ptr_kinds_commutes returns_result_select_result + type_wf) then have "parent \ set child_ancestors" apply(simp add: get_ancestors_def) - by(auto elim!: bind_returns_result_E2 split: option.splits dest!: returns_result_eq[OF assms(4)] - get_ancestors_ptr) + by(auto elim!: bind_returns_result_E2 split: option.splits dest!: returns_result_eq[OF assms(4)] + get_ancestors_ptr) then show ?thesis using assms child_ancestors get_ancestors_subset by blast qed lemma get_ancestors_obtains_children: assumes "heap_is_wellformed h" and "ancestor \ ptr" and "ancestor \ set ancestors" and "h \ get_ancestors ptr \\<^sub>r ancestors" and type_wf: "type_wf h" and known_ptrs: "known_ptrs h" - obtains children ancestor_child where "h \ get_child_nodes ancestor \\<^sub>r children" + obtains children ancestor_child where "h \ get_child_nodes ancestor \\<^sub>r children" and "ancestor_child \ set children" and "cast ancestor_child \ set ancestors" proof - assume 0: "(\children ancestor_child. h \ get_child_nodes ancestor \\<^sub>r children \ - ancestor_child \ set children \ cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ancestor_child \ set ancestors + ancestor_child \ set children \ cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ancestor_child \ set ancestors \ thesis)" have "\child. h \ get_parent child \\<^sub>r Some ancestor \ cast child \ set ancestors" - proof (insert assms(1) assms(2) assms(3) assms(4), induct ptr arbitrary: ancestors - rule: heap_wellformed_induct_rev) + proof (insert assms(1) assms(2) assms(3) assms(4), induct ptr arbitrary: ancestors + rule: heap_wellformed_induct_rev) case (step child) have "child |\| object_ptr_kinds h" using get_ancestors_ptr_in_heap step(4) by auto show ?case proof (induct "cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r child") case None then have "ancestors = [child]" using step(3) step(4) by(auto simp add: get_ancestors_def elim!: bind_returns_result_E2) show ?case using step(2) step(3) step(4) by(auto simp add: \ancestors = [child]\) next case (Some child_node) note s1 = Some obtain parent_opt where parent_opt: "h \ get_parent child_node \\<^sub>r parent_opt" using \child |\| object_ptr_kinds h\ assms(1) Some[symmetric] using get_parent_ok known_ptrs type_wf - by (metis (no_types, lifting) is_OK_returns_result_E node_ptr_casts_commute - node_ptr_kinds_commutes) + by (metis (no_types, lifting) is_OK_returns_result_E node_ptr_casts_commute + node_ptr_kinds_commutes) then show ?case proof (induct parent_opt) case None then have "ancestors = [child]" using step(2) step(3) step(4) s1 apply(simp add: get_ancestors_def) by(auto elim!: bind_returns_result_E2 split: option.splits dest: returns_result_eq) show ?case using step(2) step(3) step(4) by(auto simp add: \ancestors = [child]\) next case (Some parent) have "h \ Heap_Error_Monad.bind (check_in_heap child) (\_. Heap_Error_Monad.bind (case cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r child of None \ return [] - | Some node_ptr \ Heap_Error_Monad.bind (get_parent node_ptr) - (\parent_ptr_opt. case parent_ptr_opt of None \ return [] + | Some node_ptr \ Heap_Error_Monad.bind (get_parent node_ptr) + (\parent_ptr_opt. case parent_ptr_opt of None \ return [] | Some x \ get_ancestors x)) (\ancestors. return (child # ancestors))) \\<^sub>r ancestors" using step(4) by(simp add: get_ancestors_def) moreover obtain tl_ancestors where tl_ancestors: "ancestors = child # tl_ancestors" using calculation by(auto elim!: bind_returns_result_E2 split: option.splits) ultimately have "h \ get_ancestors parent \\<^sub>r tl_ancestors" using s1 Some by(auto elim!: bind_returns_result_E2 split: option.splits dest: returns_result_eq) - (* have "ancestor \ parent" *) + (* have "ancestor \ parent" *) have "ancestor \ set tl_ancestors" using tl_ancestors step(2) step(3) by auto show ?case proof (cases "ancestor \ parent") case True - show ?thesis - using step(1)[OF s1[symmetric, simplified] Some True - \ancestor \ set tl_ancestors\ \h \ get_ancestors parent \\<^sub>r tl_ancestors\] + show ?thesis + using step(1)[OF s1[symmetric, simplified] Some True + \ancestor \ set tl_ancestors\ \h \ get_ancestors parent \\<^sub>r tl_ancestors\] using tl_ancestors by auto next case False have "child \ set ancestors" using step(4) get_ancestors_ptr by simp then show ?thesis using Some False s1[symmetric] by(auto) qed qed qed qed - then obtain child where child: "h \ get_parent child \\<^sub>r Some ancestor" - and in_ancestors: "cast child \ set ancestors" + then obtain child where child: "h \ get_parent child \\<^sub>r Some ancestor" + and in_ancestors: "cast child \ set ancestors" by auto then obtain children where children: "h \ get_child_nodes ancestor \\<^sub>r children" and child_in_children: "child \ set children" using get_parent_child_dual by blast show thesis using 0[OF children child_in_children] child assms(3) in_ancestors by blast qed lemma get_ancestors_parent_child_rel: assumes "heap_is_wellformed h" and "h \ get_ancestors child \\<^sub>r ancestors" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" -shows "(ptr, child) \ (parent_child_rel h)\<^sup>* \ ptr \ set ancestors" + shows "(ptr, child) \ (parent_child_rel h)\<^sup>* \ ptr \ set ancestors" proof (safe) assume 3: "(ptr, child) \ (parent_child_rel h)\<^sup>*" show "ptr \ set ancestors" proof (insert 3, induct ptr rule: heap_wellformed_induct[OF assms(1)]) case (1 ptr) then show ?case proof (cases "ptr = child") case True then show ?thesis by (metis (no_types, lifting) assms(2) bind_returns_result_E get_ancestors_def - in_set_member member_rec(1) return_returns_result) + in_set_member member_rec(1) return_returns_result) next case False obtain ptr_child where ptr_child: "(ptr, ptr_child) \ (parent_child_rel h) \ (ptr_child, child) \ (parent_child_rel h)\<^sup>*" using converse_rtranclE[OF 1(2)] \ptr \ child\ by metis - then obtain ptr_child_node - where ptr_child_ptr_child_node: "ptr_child = cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr_child_node" + then obtain ptr_child_node + where ptr_child_ptr_child_node: "ptr_child = cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr_child_node" using ptr_child node_ptr_casts_commute3 parent_child_rel_node_ptr by (metis ) then obtain children where children: "h \ get_child_nodes ptr \\<^sub>r children" and ptr_child_node: "ptr_child_node \ set children" proof - - assume a1: "\children. \h \ get_child_nodes ptr \\<^sub>r children; ptr_child_node \ set children\ + assume a1: "\children. \h \ get_child_nodes ptr \\<^sub>r children; ptr_child_node \ set children\ \ thesis" - + have "ptr |\| object_ptr_kinds h" using local.parent_child_rel_parent_in_heap ptr_child by blast moreover have "ptr_child_node \ set |h \ get_child_nodes ptr|\<^sub>r" - by (metis calculation known_ptrs local.get_child_nodes_ok local.known_ptrs_known_ptr - local.parent_child_rel_child ptr_child ptr_child_ptr_child_node - returns_result_select_result type_wf) + by (metis calculation known_ptrs local.get_child_nodes_ok local.known_ptrs_known_ptr + local.parent_child_rel_child ptr_child ptr_child_ptr_child_node + returns_result_select_result type_wf) ultimately show ?thesis using a1 get_child_nodes_ok type_wf known_ptrs - by (meson local.known_ptrs_known_ptr returns_result_select_result) + by (meson local.known_ptrs_known_ptr returns_result_select_result) qed moreover have "(cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr_child_node, child) \ (parent_child_rel h)\<^sup>*" using ptr_child ptr_child_ptr_child_node by auto ultimately have "cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr_child_node \ set ancestors" using 1 by auto moreover have "h \ get_parent ptr_child_node \\<^sub>r Some ptr" using assms(1) children ptr_child_node child_parent_dual - using known_ptrs type_wf by blast + using known_ptrs type_wf by blast ultimately show ?thesis using get_ancestors_also_parent assms type_wf by blast qed qed - next +next assume 3: "ptr \ set ancestors" show "(ptr, child) \ (parent_child_rel h)\<^sup>*" proof (insert 3, induct ptr rule: heap_wellformed_induct[OF assms(1)]) case (1 ptr) then show ?case proof (cases "ptr = child") case True then show ?thesis by simp next case False then obtain children ptr_child_node where children: "h \ get_child_nodes ptr \\<^sub>r children" and ptr_child_node: "ptr_child_node \ set children" and ptr_child_node_in_ancestors: "cast ptr_child_node \ set ancestors" using 1(2) assms(2) get_ancestors_obtains_children assms(1) using known_ptrs type_wf by blast then have "(cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr_child_node, child) \ (parent_child_rel h)\<^sup>*" using 1(1) by blast - + moreover have "(ptr, cast ptr_child_node) \ parent_child_rel h" using children ptr_child_node assms(1) parent_child_rel_child_nodes2 using child_parent_dual known_ptrs parent_child_rel_parent type_wf by blast - + ultimately show ?thesis by auto qed qed qed lemma get_root_node_parent_child_rel: assumes "heap_is_wellformed h" and "h \ get_root_node child \\<^sub>r root" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" shows "(root, child) \ (parent_child_rel h)\<^sup>*" using assms get_ancestors_parent_child_rel apply(auto simp add: get_root_node_def elim!: bind_returns_result_E2)[1] using get_ancestors_never_empty last_in_set by blast lemma get_ancestors_eq: assumes "heap_is_wellformed h" and "heap_is_wellformed h'" and "\object_ptr w. object_ptr \ ptr \ w \ get_child_nodes_locs object_ptr \ w h h'" and pointers_preserved: "\object_ptr. preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr RObject.nothing) h h'" and known_ptrs: "known_ptrs h" and known_ptrs': "known_ptrs h'" and "h \ get_ancestors ptr \\<^sub>r ancestors" and type_wf: "type_wf h" and type_wf': "type_wf h'" shows "h' \ get_ancestors ptr \\<^sub>r ancestors" proof - have object_ptr_kinds_eq3: "object_ptr_kinds h = object_ptr_kinds h'" using pointers_preserved object_ptr_kinds_preserved_small by blast - then have object_ptr_kinds_M_eq: - "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h' \ object_ptr_kinds_M \\<^sub>r ptrs" + then have object_ptr_kinds_M_eq: + "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h' \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs) then have object_ptr_kinds_eq: "|h \ object_ptr_kinds_M|\<^sub>r = |h' \ object_ptr_kinds_M|\<^sub>r" by(simp) have "h' \ ok (get_ancestors ptr)" using get_ancestors_ok get_ancestors_ptr_in_heap object_ptr_kinds_eq3 assms(1) known_ptrs - known_ptrs' assms(2) assms(7) type_wf' - by blast + known_ptrs' assms(2) assms(7) type_wf' + by blast then obtain ancestors' where ancestors': "h' \ get_ancestors ptr \\<^sub>r ancestors'" by auto obtain root where root: "h \ get_root_node ptr \\<^sub>r root" proof - assume 0: "(\root. h \ get_root_node ptr \\<^sub>r root \ thesis)" show thesis apply(rule 0) using assms(7) by(auto simp add: get_root_node_def elim!: bind_returns_result_E2 split: option.splits) qed - have children_eq: - "\p children. p \ ptr \ h \ get_child_nodes p \\<^sub>r children = h' \ get_child_nodes p \\<^sub>r children" + have children_eq: + "\p children. p \ ptr \ h \ get_child_nodes p \\<^sub>r children = h' \ get_child_nodes p \\<^sub>r children" using get_child_nodes_reads assms(3) apply(simp add: reads_def reflp_def transp_def preserved_def) by blast have "acyclic (parent_child_rel h)" using assms(1) local.parent_child_rel_acyclic by auto have "acyclic (parent_child_rel h')" using assms(2) local.parent_child_rel_acyclic by blast - have 2: "\c parent_opt. cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c \ set ancestors \ set ancestors' + have 2: "\c parent_opt. cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c \ set ancestors \ set ancestors' \ h \ get_parent c \\<^sub>r parent_opt = h' \ get_parent c \\<^sub>r parent_opt" proof - fix c parent_opt assume 1: " cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c \ set ancestors \ set ancestors'" obtain ptrs where ptrs: "h \ object_ptr_kinds_M \\<^sub>r ptrs" by simp let ?P = "(\ptr. Heap_Error_Monad.bind (get_child_nodes ptr) (\children. return (c \ set children)))" have children_eq_True: "\p. p \ set ptrs \ h \ ?P p \\<^sub>r True \ h' \ ?P p \\<^sub>r True" proof - fix p assume "p \ set ptrs" then show "h \ ?P p \\<^sub>r True \ h' \ ?P p \\<^sub>r True" proof (cases "p = ptr") case True have "(cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c, ptr) \ (parent_child_rel h)\<^sup>*" - using get_ancestors_parent_child_rel 1 assms by blast + using get_ancestors_parent_child_rel 1 assms by blast then have "(ptr, cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c) \ (parent_child_rel h)" proof (cases "cast c = ptr") case True - then show ?thesis + then show ?thesis using \acyclic (parent_child_rel h)\ by(auto simp add: acyclic_def) next case False then have "(ptr, cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c) \ (parent_child_rel h)\<^sup>*" - using \acyclic (parent_child_rel h)\ False rtrancl_eq_or_trancl rtrancl_trancl_trancl - \(cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c, ptr) \ (parent_child_rel h)\<^sup>*\ + using \acyclic (parent_child_rel h)\ False rtrancl_eq_or_trancl rtrancl_trancl_trancl + \(cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c, ptr) \ (parent_child_rel h)\<^sup>*\ by (metis acyclic_def) then show ?thesis using r_into_rtrancl by auto qed obtain children where children: "h \ get_child_nodes ptr \\<^sub>r children" - using type_wf - by (metis \h' \ ok get_ancestors ptr\ assms(1) get_ancestors_ptr_in_heap get_child_nodes_ok - heap_is_wellformed_def is_OK_returns_result_E known_ptrs local.known_ptrs_known_ptr - object_ptr_kinds_eq3) + using type_wf + by (metis \h' \ ok get_ancestors ptr\ assms(1) get_ancestors_ptr_in_heap get_child_nodes_ok + heap_is_wellformed_def is_OK_returns_result_E known_ptrs local.known_ptrs_known_ptr + object_ptr_kinds_eq3) then have "c \ set children" using \(ptr, cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c) \ (parent_child_rel h)\ assms(1) using parent_child_rel_child_nodes2 using child_parent_dual known_ptrs parent_child_rel_parent - type_wf by blast + type_wf by blast with children have "h \ ?P p \\<^sub>r False" by(auto simp add: True) moreover have "(cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c, ptr) \ (parent_child_rel h')\<^sup>*" - using get_ancestors_parent_child_rel assms(2) ancestors' 1 known_ptrs' type_wf - type_wf' by blast + using get_ancestors_parent_child_rel assms(2) ancestors' 1 known_ptrs' type_wf + type_wf' by blast then have "(ptr, cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c) \ (parent_child_rel h')" proof (cases "cast c = ptr") case True - then show ?thesis + then show ?thesis using \acyclic (parent_child_rel h')\ by(auto simp add: acyclic_def) next case False then have "(ptr, cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c) \ (parent_child_rel h')\<^sup>*" using \acyclic (parent_child_rel h')\ False rtrancl_eq_or_trancl rtrancl_trancl_trancl - \(cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c, ptr) \ (parent_child_rel h')\<^sup>*\ + \(cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c, ptr) \ (parent_child_rel h')\<^sup>*\ by (metis acyclic_def) then show ?thesis using r_into_rtrancl by auto qed then have "(ptr, cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c) \ (parent_child_rel h')" using r_into_rtrancl by auto obtain children' where children': "h' \ get_child_nodes ptr \\<^sub>r children'" - using type_wf type_wf' - by (meson \h' \ ok (get_ancestors ptr)\ assms(2) get_ancestors_ptr_in_heap - get_child_nodes_ok is_OK_returns_result_E known_ptrs' - local.known_ptrs_known_ptr) + using type_wf type_wf' + by (meson \h' \ ok (get_ancestors ptr)\ assms(2) get_ancestors_ptr_in_heap + get_child_nodes_ok is_OK_returns_result_E known_ptrs' + local.known_ptrs_known_ptr) then have "c \ set children'" - using \(ptr, cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c) \ (parent_child_rel h')\ assms(2) type_wf type_wf' + using \(ptr, cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c) \ (parent_child_rel h')\ assms(2) type_wf type_wf' using parent_child_rel_child_nodes2 child_parent_dual known_ptrs' parent_child_rel_parent by auto with children' have "h' \ ?P p \\<^sub>r False" by(auto simp add: True) ultimately show ?thesis by (metis returns_result_eq) next case False then show ?thesis using children_eq ptrs - by (metis (no_types, lifting) bind_pure_returns_result_I bind_returns_result_E - get_child_nodes_pure return_returns_result) + by (metis (no_types, lifting) bind_pure_returns_result_I bind_returns_result_E + get_child_nodes_pure return_returns_result) qed qed - have "\pa. pa \ set ptrs \ h \ ok (get_child_nodes pa - \ (\children. return (c \ set children))) = h' \ ok ( get_child_nodes pa + have "\pa. pa \ set ptrs \ h \ ok (get_child_nodes pa + \ (\children. return (c \ set children))) = h' \ ok ( get_child_nodes pa \ (\children. return (c \ set children)))" - using assms(1) assms(2) object_ptr_kinds_eq ptrs type_wf type_wf' - by (metis (no_types, lifting) ObjectMonad.ptr_kinds_ptr_kinds_M bind_is_OK_pure_I - get_child_nodes_ok get_child_nodes_pure known_ptrs' - local.known_ptrs_known_ptr return_ok select_result_I2) - have children_eq_False: - "\pa. pa \ set ptrs \ h \ get_child_nodes pa - \ (\children. return (c \ set children)) \\<^sub>r False = h' \ get_child_nodes pa + using assms(1) assms(2) object_ptr_kinds_eq ptrs type_wf type_wf' + by (metis (no_types, lifting) ObjectMonad.ptr_kinds_ptr_kinds_M bind_is_OK_pure_I + get_child_nodes_ok get_child_nodes_pure known_ptrs' + local.known_ptrs_known_ptr return_ok select_result_I2) + have children_eq_False: + "\pa. pa \ set ptrs \ h \ get_child_nodes pa + \ (\children. return (c \ set children)) \\<^sub>r False = h' \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False" proof fix pa - assume "pa \ set ptrs" - and "h \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False" - have "h \ ok (get_child_nodes pa \ (\children. return (c \ set children))) + assume "pa \ set ptrs" + and "h \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False" + have "h \ ok (get_child_nodes pa \ (\children. return (c \ set children))) \ h' \ ok ( get_child_nodes pa \ (\children. return (c \ set children)))" - using \pa \ set ptrs\ \\pa. pa \ set ptrs \ h \ ok (get_child_nodes pa - \ (\children. return (c \ set children))) = h' \ ok ( get_child_nodes pa - \ (\children. return (c \ set children)))\ + using \pa \ set ptrs\ \\pa. pa \ set ptrs \ h \ ok (get_child_nodes pa + \ (\children. return (c \ set children))) = h' \ ok ( get_child_nodes pa + \ (\children. return (c \ set children)))\ by auto - moreover have "h \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False + moreover have "h \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False \ h' \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False" - by (metis (mono_tags, lifting) \\pa. pa \ set ptrs - \ h \ get_child_nodes pa - \ (\children. return (c \ set children)) \\<^sub>r True = h' \ get_child_nodes pa - \ (\children. return (c \ set children)) \\<^sub>r True\ \pa \ set ptrs\ - calculation is_OK_returns_result_I returns_result_eq returns_result_select_result) + by (metis (mono_tags, lifting) \\pa. pa \ set ptrs + \ h \ get_child_nodes pa + \ (\children. return (c \ set children)) \\<^sub>r True = h' \ get_child_nodes pa + \ (\children. return (c \ set children)) \\<^sub>r True\ \pa \ set ptrs\ + calculation is_OK_returns_result_I returns_result_eq returns_result_select_result) ultimately show "h' \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False" using \h \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False\ by auto next fix pa - assume "pa \ set ptrs" + assume "pa \ set ptrs" and "h' \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False" - have "h' \ ok (get_child_nodes pa \ (\children. return (c \ set children))) + have "h' \ ok (get_child_nodes pa \ (\children. return (c \ set children))) \ h \ ok ( get_child_nodes pa \ (\children. return (c \ set children)))" - using \pa \ set ptrs\ \\pa. pa \ set ptrs - \ h \ ok (get_child_nodes pa - \ (\children. return (c \ set children))) = h' \ ok ( get_child_nodes pa - \ (\children. return (c \ set children)))\ + using \pa \ set ptrs\ \\pa. pa \ set ptrs + \ h \ ok (get_child_nodes pa + \ (\children. return (c \ set children))) = h' \ ok ( get_child_nodes pa + \ (\children. return (c \ set children)))\ by auto - moreover have "h' \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False + moreover have "h' \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False \ h \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False" - by (metis (mono_tags, lifting) - \\pa. pa \ set ptrs \ h \ get_child_nodes pa - \ (\children. return (c \ set children)) \\<^sub>r True = h' \ get_child_nodes pa - \ (\children. return (c \ set children)) \\<^sub>r True\ \pa \ set ptrs\ - calculation is_OK_returns_result_I returns_result_eq returns_result_select_result) + by (metis (mono_tags, lifting) + \\pa. pa \ set ptrs \ h \ get_child_nodes pa + \ (\children. return (c \ set children)) \\<^sub>r True = h' \ get_child_nodes pa + \ (\children. return (c \ set children)) \\<^sub>r True\ \pa \ set ptrs\ + calculation is_OK_returns_result_I returns_result_eq returns_result_select_result) ultimately show "h \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False" using \h' \ get_child_nodes pa \ (\children. return (c \ set children)) \\<^sub>r False\ by blast qed have filter_eq: "\xs. h \ filter_M ?P ptrs \\<^sub>r xs = h' \ filter_M ?P ptrs \\<^sub>r xs" proof (rule filter_M_eq) - show - "\xs x. pure (Heap_Error_Monad.bind (get_child_nodes x) (\children. return (c \ set children))) h" + show + "\xs x. pure (Heap_Error_Monad.bind (get_child_nodes x) (\children. return (c \ set children))) h" by(auto intro!: bind_pure_I) next - show - "\xs x. pure (Heap_Error_Monad.bind (get_child_nodes x) (\children. return (c \ set children))) h'" + show + "\xs x. pure (Heap_Error_Monad.bind (get_child_nodes x) (\children. return (c \ set children))) h'" by(auto intro!: bind_pure_I) next fix xs b x assume 0: "x \ set ptrs" - then show "h \ Heap_Error_Monad.bind (get_child_nodes x) (\children. return (c \ set children)) \\<^sub>r b + then show "h \ Heap_Error_Monad.bind (get_child_nodes x) (\children. return (c \ set children)) \\<^sub>r b = h' \ Heap_Error_Monad.bind (get_child_nodes x) (\children. return (c \ set children)) \\<^sub>r b" apply(induct b) using children_eq_True apply blast using children_eq_False apply blast done qed show "h \ get_parent c \\<^sub>r parent_opt = h' \ get_parent c \\<^sub>r parent_opt" apply(simp add: get_parent_def) apply(rule bind_cong_2) apply(simp) apply(simp) apply(simp add: check_in_heap_def node_ptr_kinds_def object_ptr_kinds_eq3) apply(rule bind_cong_2) apply(auto simp add: object_ptr_kinds_M_eq object_ptr_kinds_eq3)[1] apply(auto simp add: object_ptr_kinds_M_eq object_ptr_kinds_eq3)[1] apply(auto simp add: object_ptr_kinds_M_eq object_ptr_kinds_eq3)[1] apply(rule bind_cong_2) apply(auto intro!: filter_M_pure_I bind_pure_I)[1] apply(auto intro!: filter_M_pure_I bind_pure_I)[1] - apply(auto simp add: filter_eq (* dest!: returns_result_eq[OF ptrs] *)) + apply(auto simp add: filter_eq (* dest!: returns_result_eq[OF ptrs] *))[1] using filter_eq ptrs apply auto[1] using filter_eq ptrs by auto qed have "ancestors = ancestors'" - proof(insert assms(1) assms(7) ancestors' 2, induct ptr arbitrary: ancestors ancestors' - rule: heap_wellformed_induct_rev) + proof(insert assms(1) assms(7) ancestors' 2, induct ptr arbitrary: ancestors ancestors' + rule: heap_wellformed_induct_rev) case (step child) show ?case using step(2) step(3) step(4) apply(simp add: get_ancestors_def) apply(auto intro!: elim!: bind_returns_result_E2 split: option.splits)[1] using returns_result_eq apply fastforce - apply (meson option.simps(3) returns_result_eq) + apply (meson option.simps(3) returns_result_eq) by (metis IntD1 IntD2 option.inject returns_result_eq step.hyps) qed then show ?thesis using assms(5) ancestors' by simp qed lemma get_ancestors_remains_not_in_ancestors: assumes "heap_is_wellformed h" and "heap_is_wellformed h'" and "h \ get_ancestors ptr \\<^sub>r ancestors" and "h' \ get_ancestors ptr \\<^sub>r ancestors'" - and "\p children children'. h \ get_child_nodes p \\<^sub>r children + and "\p children children'. h \ get_child_nodes p \\<^sub>r children \ h' \ get_child_nodes p \\<^sub>r children' \ set children' \ set children" and "node \ set ancestors" and object_ptr_kinds_eq3: "object_ptr_kinds h = object_ptr_kinds h'" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" and type_wf': "type_wf h'" shows "node \ set ancestors'" proof - - have object_ptr_kinds_M_eq: + have object_ptr_kinds_M_eq: "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h' \ object_ptr_kinds_M \\<^sub>r ptrs" using object_ptr_kinds_eq3 by(simp add: object_ptr_kinds_M_defs) then have object_ptr_kinds_eq: "|h \ object_ptr_kinds_M|\<^sub>r = |h' \ object_ptr_kinds_M|\<^sub>r" by(simp) show ?thesis - proof (insert assms(1) assms(3) assms(4) assms(6), induct ptr arbitrary: ancestors ancestors' - rule: heap_wellformed_induct_rev) + proof (insert assms(1) assms(3) assms(4) assms(6), induct ptr arbitrary: ancestors ancestors' + rule: heap_wellformed_induct_rev) case (step child) have 1: "\p parent. h' \ get_parent p \\<^sub>r Some parent \ h \ get_parent p \\<^sub>r Some parent" proof - fix p parent assume "h' \ get_parent p \\<^sub>r Some parent" then obtain children' where children': "h' \ get_child_nodes parent \\<^sub>r children'" and p_in_children': "p \ set children'" using get_parent_child_dual by blast obtain children where children: "h \ get_child_nodes parent \\<^sub>r children" - using get_child_nodes_ok assms(1) get_child_nodes_ptr_in_heap object_ptr_kinds_eq children' - known_ptrs + using get_child_nodes_ok assms(1) get_child_nodes_ptr_in_heap object_ptr_kinds_eq children' + known_ptrs using type_wf type_wf' - by (metis \h' \ get_parent p \\<^sub>r Some parent\ get_parent_parent_in_heap is_OK_returns_result_E - local.known_ptrs_known_ptr object_ptr_kinds_eq3) + by (metis \h' \ get_parent p \\<^sub>r Some parent\ get_parent_parent_in_heap is_OK_returns_result_E + local.known_ptrs_known_ptr object_ptr_kinds_eq3) have "p \ set children" using assms(5) children children' p_in_children' by blast then show "h \ get_parent p \\<^sub>r Some parent" using child_parent_dual assms(1) children known_ptrs type_wf by blast qed have "node \ child" - using assms(1) get_ancestors_parent_child_rel step.prems(1) step.prems(3) known_ptrs + using assms(1) get_ancestors_parent_child_rel step.prems(1) step.prems(3) known_ptrs using type_wf type_wf' by blast then show ?case using step(2) step(3) apply(simp add: get_ancestors_def) - using step(4) + using step(4) apply(auto elim!: bind_returns_result_E2 split: option.splits)[1] using 1 apply (meson option.distinct(1) returns_result_eq) by (metis "1" option.inject returns_result_eq step.hyps) qed qed lemma get_ancestors_ptrs_in_heap: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_ancestors ptr \\<^sub>r ancestors" assumes "ptr' \ set ancestors" shows "ptr' |\| object_ptr_kinds h" proof (insert assms(4) assms(5), induct ancestors arbitrary: ptr) case Nil then show ?case by(auto) next case (Cons a ancestors) then obtain x where x: "h \ get_ancestors x \\<^sub>r a # ancestors" by(auto simp add: get_ancestors_def[of a] elim!: bind_returns_result_E2 split: option.splits) then have "x = a" by(auto simp add: get_ancestors_def[of x] elim!: bind_returns_result_E2 split: option.splits) then show ?case using Cons.hyps Cons.prems(2) get_ancestors_ptr_in_heap x - by (metis assms(1) assms(2) assms(3) get_ancestors_obtains_children get_child_nodes_ptr_in_heap - is_OK_returns_result_I) + by (metis assms(1) assms(2) assms(3) get_ancestors_obtains_children get_child_nodes_ptr_in_heap + is_OK_returns_result_I) qed lemma get_ancestors_prefix: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_ancestors ptr \\<^sub>r ancestors" assumes "ptr' \ set ancestors" assumes "h \ get_ancestors ptr' \\<^sub>r ancestors'" shows "\pre. ancestors = pre @ ancestors'" -proof (insert assms(1) assms(5) assms(6), induct ptr' arbitrary: ancestors' - rule: heap_wellformed_induct) +proof (insert assms(1) assms(5) assms(6), induct ptr' arbitrary: ancestors' + rule: heap_wellformed_induct) case (step parent) then show ?case proof (cases "parent \ ptr" ) case True - then obtain children ancestor_child where "h \ get_child_nodes parent \\<^sub>r children" - and "ancestor_child \ set children" and "cast ancestor_child \ set ancestors" - using assms(1) assms(2) assms(3) assms(4) get_ancestors_obtains_children step.prems(1) by blast - then have "h \ get_parent ancestor_child \\<^sub>r Some parent" - using assms(1) assms(2) assms(3) child_parent_dual by blast - then have "h \ get_ancestors (cast ancestor_child) \\<^sub>r cast ancestor_child # ancestors'" - apply(simp add: get_ancestors_def) - using \h \ get_ancestors parent \\<^sub>r ancestors'\ get_parent_ptr_in_heap - by(auto simp add: check_in_heap_def is_OK_returns_result_I intro!: bind_pure_returns_result_I) - then show ?thesis - using step(1) \h \ get_child_nodes parent \\<^sub>r children\ \ancestor_child \ set children\ - \cast ancestor_child \ set ancestors\ \h \ get_ancestors (cast ancestor_child) \\<^sub>r cast ancestor_child # ancestors'\ - by fastforce + then obtain children ancestor_child where "h \ get_child_nodes parent \\<^sub>r children" + and "ancestor_child \ set children" and "cast ancestor_child \ set ancestors" + using assms(1) assms(2) assms(3) assms(4) get_ancestors_obtains_children step.prems(1) by blast + then have "h \ get_parent ancestor_child \\<^sub>r Some parent" + using assms(1) assms(2) assms(3) child_parent_dual by blast + then have "h \ get_ancestors (cast ancestor_child) \\<^sub>r cast ancestor_child # ancestors'" + apply(simp add: get_ancestors_def) + using \h \ get_ancestors parent \\<^sub>r ancestors'\ get_parent_ptr_in_heap + by(auto simp add: check_in_heap_def is_OK_returns_result_I intro!: bind_pure_returns_result_I) + then show ?thesis + using step(1) \h \ get_child_nodes parent \\<^sub>r children\ \ancestor_child \ set children\ + \cast ancestor_child \ set ancestors\ + \h \ get_ancestors (cast ancestor_child) \\<^sub>r cast ancestor_child # ancestors'\ + by fastforce next case False then show ?thesis by (metis append_Nil assms(4) returns_result_eq step.prems(2)) qed qed lemma get_ancestors_same_root_node: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_ancestors ptr \\<^sub>r ancestors" assumes "ptr' \ set ancestors" assumes "ptr'' \ set ancestors" shows "h \ get_root_node ptr' \\<^sub>r root_ptr \ h \ get_root_node ptr'' \\<^sub>r root_ptr" proof - have "ptr' |\| object_ptr_kinds h" - by (metis assms(1) assms(2) assms(3) assms(4) assms(5) get_ancestors_obtains_children - get_ancestors_ptr_in_heap get_child_nodes_ptr_in_heap is_OK_returns_result_I) + by (metis assms(1) assms(2) assms(3) assms(4) assms(5) get_ancestors_obtains_children + get_ancestors_ptr_in_heap get_child_nodes_ptr_in_heap is_OK_returns_result_I) then obtain ancestors' where ancestors': "h \ get_ancestors ptr' \\<^sub>r ancestors'" by (meson assms(1) assms(2) assms(3) get_ancestors_ok is_OK_returns_result_E) then have "\pre. ancestors = pre @ ancestors'" using get_ancestors_prefix assms by blast moreover have "ptr'' |\| object_ptr_kinds h" - by (metis assms(1) assms(2) assms(3) assms(4) assms(6) get_ancestors_obtains_children - get_ancestors_ptr_in_heap get_child_nodes_ptr_in_heap is_OK_returns_result_I) + by (metis assms(1) assms(2) assms(3) assms(4) assms(6) get_ancestors_obtains_children + get_ancestors_ptr_in_heap get_child_nodes_ptr_in_heap is_OK_returns_result_I) then obtain ancestors'' where ancestors'': "h \ get_ancestors ptr'' \\<^sub>r ancestors''" by (meson assms(1) assms(2) assms(3) get_ancestors_ok is_OK_returns_result_E) then have "\pre. ancestors = pre @ ancestors''" using get_ancestors_prefix assms by blast ultimately show ?thesis using ancestors' ancestors'' - apply(auto simp add: get_root_node_def elim!: bind_returns_result_E2 + apply(auto simp add: get_root_node_def elim!: bind_returns_result_E2 intro!: bind_pure_returns_result_I)[1] - apply (metis (no_types, lifting) assms(1) get_ancestors_never_empty last_appendR - returns_result_eq) + apply (metis (no_types, lifting) assms(1) get_ancestors_never_empty last_appendR + returns_result_eq) by (metis assms(1) get_ancestors_never_empty last_appendR returns_result_eq) qed lemma get_root_node_parent_same: assumes "h \ get_parent child \\<^sub>r Some ptr" shows "h \ get_root_node (cast child) \\<^sub>r root \ h \ get_root_node ptr \\<^sub>r root" proof assume 1: " h \ get_root_node (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r root" show "h \ get_root_node ptr \\<^sub>r root" using 1[unfolded get_root_node_def] assms apply(simp add: get_ancestors_def) - apply(auto simp add: get_root_node_def dest: returns_result_eq elim!: bind_returns_result_E2 + apply(auto simp add: get_root_node_def dest: returns_result_eq elim!: bind_returns_result_E2 intro!: bind_pure_returns_result_I split: option.splits)[1] using returns_result_eq apply fastforce using get_ancestors_ptr by fastforce next assume 1: " h \ get_root_node ptr \\<^sub>r root" show "h \ get_root_node (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r root" apply(simp add: get_root_node_def) using assms 1 apply(simp add: get_ancestors_def) - apply(auto simp add: get_root_node_def dest: returns_result_eq elim!: bind_returns_result_E2 - intro!: bind_pure_returns_result_I split: option.splits)[1] + apply(auto simp add: get_root_node_def dest: returns_result_eq elim!: bind_returns_result_E2 + intro!: bind_pure_returns_result_I split: option.splits)[1] apply (simp add: check_in_heap_def is_OK_returns_result_I) using get_ancestors_ptr get_parent_ptr_in_heap apply (simp add: is_OK_returns_result_I) by (meson list.distinct(1) list.set_cases local.get_ancestors_ptr) qed lemma get_root_node_same_no_parent: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_root_node ptr \\<^sub>r cast child" shows "h \ get_parent child \\<^sub>r None" proof (insert assms(1) assms(4), induct ptr rule: heap_wellformed_induct_rev) case (step c) then show ?case proof (cases "cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r c") case None then have "c = cast child" using step(2) by(auto simp add: get_root_node_def get_ancestors_def[of c] elim!: bind_returns_result_E2) then show ?thesis using None by auto next case (Some child_node) note s = this then obtain parent_opt where parent_opt: "h \ get_parent child_node \\<^sub>r parent_opt" - by (metis (no_types, lifting) assms(2) assms(3) get_root_node_ptr_in_heap - is_OK_returns_result_I local.get_parent_ok node_ptr_casts_commute - node_ptr_kinds_commutes returns_result_select_result step.prems) + by (metis (no_types, lifting) assms(2) assms(3) get_root_node_ptr_in_heap + is_OK_returns_result_I local.get_parent_ok node_ptr_casts_commute + node_ptr_kinds_commutes returns_result_select_result step.prems) then show ?thesis proof(induct parent_opt) case None then show ?case using Some get_root_node_no_parent returns_result_eq step.prems by fastforce next case (Some parent) then show ?case using step s - apply(auto simp add: get_root_node_def get_ancestors_def[of c] - elim!: bind_returns_result_E2 split: option.splits list.splits)[1] + apply(auto simp add: get_root_node_def get_ancestors_def[of c] + elim!: bind_returns_result_E2 split: option.splits list.splits)[1] using get_root_node_parent_same step.hyps step.prems by auto qed qed qed lemma get_root_node_not_node_same: assumes "ptr |\| object_ptr_kinds h" assumes "\is_node_ptr_kind ptr" shows "h \ get_root_node ptr \\<^sub>r ptr" using assms apply(simp add: get_root_node_def get_ancestors_def) - by(auto simp add: get_root_node_def dest: returns_result_eq elim!: bind_returns_result_E2 - intro!: bind_pure_returns_result_I split: option.splits) + by(auto simp add: get_root_node_def dest: returns_result_eq elim!: bind_returns_result_E2 + intro!: bind_pure_returns_result_I split: option.splits) lemma get_root_node_root_in_heap: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_root_node ptr \\<^sub>r root" shows "root |\| object_ptr_kinds h" using assms apply(auto simp add: get_root_node_def elim!: bind_returns_result_E2)[1] by (simp add: get_ancestors_never_empty get_ancestors_ptrs_in_heap) lemma get_root_node_same_no_parent_parent_child_rel: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_root_node ptr' \\<^sub>r ptr'" shows "\(\p. (p, ptr') \ (parent_child_rel h))" - by (metis (no_types, lifting) assms(1) assms(2) assms(3) assms(4) get_root_node_same_no_parent - l_heap_is_wellformed.parent_child_rel_child local.child_parent_dual local.get_child_nodes_ok - local.known_ptrs_known_ptr local.l_heap_is_wellformed_axioms local.parent_child_rel_node_ptr - local.parent_child_rel_parent_in_heap node_ptr_casts_commute3 option.simps(3) returns_result_eq - returns_result_select_result) + by (metis (no_types, lifting) assms(1) assms(2) assms(3) assms(4) get_root_node_same_no_parent + l_heap_is_wellformed.parent_child_rel_child local.child_parent_dual local.get_child_nodes_ok + local.known_ptrs_known_ptr local.l_heap_is_wellformed_axioms local.parent_child_rel_node_ptr + local.parent_child_rel_parent_in_heap node_ptr_casts_commute3 option.simps(3) returns_result_eq + returns_result_select_result) end -locale l_get_ancestors_wf = l_heap_is_wellformed_defs + l_known_ptrs + l_type_wf + l_get_ancestors_defs - + l_get_child_nodes_defs + l_get_parent_defs + +locale l_get_ancestors_wf = l_heap_is_wellformed_defs + l_known_ptrs + l_type_wf + l_get_ancestors_defs + + l_get_child_nodes_defs + l_get_parent_defs + assumes get_ancestors_never_empty: "heap_is_wellformed h \ h \ get_ancestors child \\<^sub>r ancestors \ ancestors \ []" assumes get_ancestors_ok: - "heap_is_wellformed h \ ptr |\| object_ptr_kinds h \ known_ptrs h \ type_wf h + "heap_is_wellformed h \ ptr |\| object_ptr_kinds h \ known_ptrs h \ type_wf h \ h \ ok (get_ancestors ptr)" assumes get_ancestors_reads: "heap_is_wellformed h \ reads get_ancestors_locs (get_ancestors node_ptr) h h'" - assumes get_ancestors_ptrs_in_heap: - "heap_is_wellformed h \ type_wf h \ known_ptrs h - \ h \ get_ancestors ptr \\<^sub>r ancestors \ ptr' \ set ancestors + assumes get_ancestors_ptrs_in_heap: + "heap_is_wellformed h \ type_wf h \ known_ptrs h + \ h \ get_ancestors ptr \\<^sub>r ancestors \ ptr' \ set ancestors \ ptr' |\| object_ptr_kinds h" assumes get_ancestors_remains_not_in_ancestors: - "heap_is_wellformed h \ heap_is_wellformed h' \ h \ get_ancestors ptr \\<^sub>r ancestors - \ h' \ get_ancestors ptr \\<^sub>r ancestors' - \ (\p children children'. h \ get_child_nodes p \\<^sub>r children - \ h' \ get_child_nodes p \\<^sub>r children' - \ set children' \ set children) - \ node \ set ancestors - \ object_ptr_kinds h = object_ptr_kinds h' \ known_ptrs h + "heap_is_wellformed h \ heap_is_wellformed h' \ h \ get_ancestors ptr \\<^sub>r ancestors + \ h' \ get_ancestors ptr \\<^sub>r ancestors' + \ (\p children children'. h \ get_child_nodes p \\<^sub>r children + \ h' \ get_child_nodes p \\<^sub>r children' + \ set children' \ set children) + \ node \ set ancestors + \ object_ptr_kinds h = object_ptr_kinds h' \ known_ptrs h \ type_wf h \ type_wf h' \ node \ set ancestors'" assumes get_ancestors_also_parent: - "heap_is_wellformed h \ h \ get_ancestors some_ptr \\<^sub>r ancestors - \ cast child_node \ set ancestors - \ h \ get_parent child_node \\<^sub>r Some parent \ type_wf h + "heap_is_wellformed h \ h \ get_ancestors some_ptr \\<^sub>r ancestors + \ cast child_node \ set ancestors + \ h \ get_parent child_node \\<^sub>r Some parent \ type_wf h \ known_ptrs h \ parent \ set ancestors" assumes get_ancestors_obtains_children: - "heap_is_wellformed h \ ancestor \ ptr \ ancestor \ set ancestors - \ h \ get_ancestors ptr \\<^sub>r ancestors \ type_wf h \ known_ptrs h - \ (\children ancestor_child . h \ get_child_nodes ancestor \\<^sub>r children - \ ancestor_child \ set children - \ cast ancestor_child \ set ancestors - \ thesis) + "heap_is_wellformed h \ ancestor \ ptr \ ancestor \ set ancestors + \ h \ get_ancestors ptr \\<^sub>r ancestors \ type_wf h \ known_ptrs h + \ (\children ancestor_child . h \ get_child_nodes ancestor \\<^sub>r children + \ ancestor_child \ set children + \ cast ancestor_child \ set ancestors + \ thesis) \ thesis" assumes get_ancestors_parent_child_rel: - "heap_is_wellformed h \ h \ get_ancestors child \\<^sub>r ancestors \ known_ptrs h \ type_wf h + "heap_is_wellformed h \ h \ get_ancestors child \\<^sub>r ancestors \ known_ptrs h \ type_wf h \ (ptr, child) \ (parent_child_rel h)\<^sup>* \ ptr \ set ancestors" -locale l_get_root_node_wf = l_heap_is_wellformed_defs + l_get_root_node_defs + l_type_wf - + l_known_ptrs + l_get_ancestors_defs + l_get_parent_defs + - assumes get_root_node_ok: - "heap_is_wellformed h \ known_ptrs h \ type_wf h \ ptr |\| object_ptr_kinds h +locale l_get_root_node_wf = l_heap_is_wellformed_defs + l_get_root_node_defs + l_type_wf + + l_known_ptrs + l_get_ancestors_defs + l_get_parent_defs + + assumes get_root_node_ok: + "heap_is_wellformed h \ known_ptrs h \ type_wf h \ ptr |\| object_ptr_kinds h \ h \ ok (get_root_node ptr)" - assumes get_root_node_ptr_in_heap: + assumes get_root_node_ptr_in_heap: "h \ ok (get_root_node ptr) \ ptr |\| object_ptr_kinds h" - assumes get_root_node_root_in_heap: - "heap_is_wellformed h \ type_wf h \ known_ptrs h + assumes get_root_node_root_in_heap: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ get_root_node ptr \\<^sub>r root \ root |\| object_ptr_kinds h" - assumes get_ancestors_same_root_node: - "heap_is_wellformed h \ type_wf h \ known_ptrs h - \ h \ get_ancestors ptr \\<^sub>r ancestors \ ptr' \ set ancestors - \ ptr'' \ set ancestors + assumes get_ancestors_same_root_node: + "heap_is_wellformed h \ type_wf h \ known_ptrs h + \ h \ get_ancestors ptr \\<^sub>r ancestors \ ptr' \ set ancestors + \ ptr'' \ set ancestors \ h \ get_root_node ptr' \\<^sub>r root_ptr \ h \ get_root_node ptr'' \\<^sub>r root_ptr" - assumes get_root_node_same_no_parent: - "heap_is_wellformed h \ type_wf h \ known_ptrs h + assumes get_root_node_same_no_parent: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ get_root_node ptr \\<^sub>r cast child \ h \ get_parent child \\<^sub>r None" - assumes get_root_node_parent_same: - "h \ get_parent child \\<^sub>r Some ptr + assumes get_root_node_parent_same: + "h \ get_parent child \\<^sub>r Some ptr \ h \ get_root_node (cast child) \\<^sub>r root \ h \ get_root_node ptr \\<^sub>r root" interpretation i_get_root_node_wf?: - l_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf known_ptrs heap_is_wellformed parent_child_rel - get_child_nodes get_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs + l_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf known_ptrs heap_is_wellformed parent_child_rel + get_child_nodes get_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs get_parent get_parent_locs get_ancestors get_ancestors_locs get_root_node get_root_node_locs using instances by(simp add: l_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) declare l_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] lemma get_ancestors_wf_is_l_get_ancestors_wf [instances]: - "l_get_ancestors_wf heap_is_wellformed parent_child_rel known_ptr known_ptrs type_wf get_ancestors + "l_get_ancestors_wf heap_is_wellformed parent_child_rel known_ptr known_ptrs type_wf get_ancestors get_ancestors_locs get_child_nodes get_parent" using known_ptrs_is_l_known_ptrs apply(auto simp add: l_get_ancestors_wf_def l_get_ancestors_wf_axioms_def)[1] using get_ancestors_never_empty apply blast using get_ancestors_ok apply blast using get_ancestors_reads apply blast using get_ancestors_ptrs_in_heap apply blast using get_ancestors_remains_not_in_ancestors apply blast using get_ancestors_also_parent apply blast using get_ancestors_obtains_children apply blast using get_ancestors_parent_child_rel apply blast using get_ancestors_parent_child_rel apply blast done lemma get_root_node_wf_is_l_get_root_node_wf [instances]: - "l_get_root_node_wf heap_is_wellformed get_root_node type_wf known_ptr known_ptrs + "l_get_root_node_wf heap_is_wellformed get_root_node type_wf known_ptr known_ptrs get_ancestors get_parent" using known_ptrs_is_l_known_ptrs apply(auto simp add: l_get_root_node_wf_def l_get_root_node_wf_axioms_def)[1] using get_root_node_ok apply blast using get_root_node_ptr_in_heap apply blast using get_root_node_root_in_heap apply blast using get_ancestors_same_root_node apply(blast, blast) using get_root_node_same_no_parent apply blast using get_root_node_parent_same apply (blast, blast) done subsection \to\_tree\_order\ -locale l_to_tree_order_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = +locale l_to_tree_order_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_to_tree_order\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_parent + l_get_parent_wf + l_heap_is_wellformed (* l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M *) begin lemma to_tree_order_ptr_in_heap: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "h \ ok (to_tree_order ptr)" shows "ptr |\| object_ptr_kinds h" proof(insert assms(1) assms(4), induct rule: heap_wellformed_induct) case (step parent) then show ?case apply(auto simp add: to_tree_order_def[of parent] map_M_pure_I elim!: bind_is_OK_E3)[1] using get_child_nodes_ptr_in_heap by blast qed lemma to_tree_order_either_ptr_or_in_children: assumes "h \ to_tree_order ptr \\<^sub>r nodes" and "node \ set nodes" and "h \ get_child_nodes ptr \\<^sub>r children" and "node \ ptr" - obtains child child_to where "child \ set children" + obtains child child_to where "child \ set children" and "h \ to_tree_order (cast child) \\<^sub>r child_to" and "node \ set child_to" proof - obtain treeorders where treeorders: "h \ map_M to_tree_order (map cast children) \\<^sub>r treeorders" using assms apply(auto simp add: to_tree_order_def elim!: bind_returns_result_E)[1] using pure_returns_heap_eq returns_result_eq by fastforce then have "node \ set (concat treeorders)" using assms[simplified to_tree_order_def] by(auto elim!: bind_returns_result_E4 dest: pure_returns_heap_eq) - then obtain treeorder where "treeorder \ set treeorders" - and node_in_treeorder: "node \ set treeorder" + then obtain treeorder where "treeorder \ set treeorders" + and node_in_treeorder: "node \ set treeorder" by auto - then obtain child where "h \ to_tree_order (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r treeorder" - and "child \ set children" + then obtain child where "h \ to_tree_order (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r treeorder" + and "child \ set children" using assms[simplified to_tree_order_def] treeorders by(auto elim!: map_M_pure_E2) then show ?thesis using node_in_treeorder returns_result_eq that by auto qed lemma to_tree_order_ptrs_in_heap: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ to_tree_order ptr \\<^sub>r to" assumes "ptr' \ set to" shows "ptr' |\| object_ptr_kinds h" proof(insert assms(1) assms(4) assms(5), induct ptr arbitrary: to rule: heap_wellformed_induct) case (step parent) have "parent |\| object_ptr_kinds h" using assms(1) assms(2) assms(3) step.prems(1) to_tree_order_ptr_in_heap by blast - then obtain children where children: "h \ get_child_nodes parent \\<^sub>r children" + then obtain children where children: "h \ get_child_nodes parent \\<^sub>r children" by (meson assms(2) assms(3) get_child_nodes_ok is_OK_returns_result_E local.known_ptrs_known_ptr) then show ?case proof (cases "children = []") case True then have "to = [parent]" using step(2) children apply(auto simp add: to_tree_order_def[of parent] map_M_pure_I elim!: bind_returns_result_E2)[1] by (metis list.distinct(1) list.map_disc_iff list.set_cases map_M_pure_E2 returns_result_eq) - then show ?thesis + then show ?thesis using \parent |\| object_ptr_kinds h\ step.prems(2) by auto next case False note f = this then show ?thesis using children step to_tree_order_either_ptr_or_in_children proof (cases "ptr' = parent") case True then show ?thesis using \parent |\| object_ptr_kinds h\ by blast next case False - then show ?thesis - using children step.hyps to_tree_order_either_ptr_or_in_children - by (metis step.prems(1) step.prems(2)) + then show ?thesis + using children step.hyps to_tree_order_either_ptr_or_in_children + by (metis step.prems(1) step.prems(2)) qed qed qed lemma to_tree_order_ok: assumes wellformed: "heap_is_wellformed h" and "ptr |\| object_ptr_kinds h" and "known_ptrs h" and type_wf: "type_wf h" shows "h \ ok (to_tree_order ptr)" proof(insert assms(1) assms(2), induct rule: heap_wellformed_induct) case (step parent) then show ?case using assms(3) type_wf apply(simp add: to_tree_order_def) apply(auto simp add: heap_is_wellformed_def intro!: map_M_ok_I bind_is_OK_pure_I map_M_pure_I)[1] using get_child_nodes_ok known_ptrs_known_ptr apply blast by (simp add: local.heap_is_wellformed_children_in_heap local.to_tree_order_def wellformed) qed lemma to_tree_order_child_subset: assumes "heap_is_wellformed h" - and "h \ to_tree_order ptr \\<^sub>r nodes" - and "h \ get_child_nodes ptr \\<^sub>r children" - and "node \ set children" - and "h \ to_tree_order (cast node) \\<^sub>r nodes'" - shows "set nodes' \ set nodes" + and "h \ to_tree_order ptr \\<^sub>r nodes" + and "h \ get_child_nodes ptr \\<^sub>r children" + and "node \ set children" + and "h \ to_tree_order (cast node) \\<^sub>r nodes'" + shows "set nodes' \ set nodes" proof fix x assume a1: "x \ set nodes'" - moreover obtain treeorders - where treeorders: "h \ map_M to_tree_order (map cast children) \\<^sub>r treeorders" + moreover obtain treeorders + where treeorders: "h \ map_M to_tree_order (map cast children) \\<^sub>r treeorders" using assms(2) assms(3) apply(auto simp add: to_tree_order_def elim!: bind_returns_result_E)[1] using pure_returns_heap_eq returns_result_eq by fastforce then have "nodes' \ set treeorders" using assms(4) assms(5) by(auto elim!: map_M_pure_E dest: returns_result_eq) moreover have "set (concat treeorders) \ set nodes" using treeorders assms(2) assms(3) by(auto simp add: to_tree_order_def elim!: bind_returns_result_E4 dest: pure_returns_heap_eq) ultimately show "x \ set nodes" by auto qed lemma to_tree_order_ptr_in_result: assumes "h \ to_tree_order ptr \\<^sub>r nodes" shows "ptr \ set nodes" using assms apply(simp add: to_tree_order_def) by(auto elim!: bind_returns_result_E2 intro!: map_M_pure_I bind_pure_I) lemma to_tree_order_subset: assumes "heap_is_wellformed h" and "h \ to_tree_order ptr \\<^sub>r nodes" and "node \ set nodes" and "h \ to_tree_order node \\<^sub>r nodes'" and "known_ptrs h" and type_wf: "type_wf h" shows "set nodes' \ set nodes" proof - - have "\nodes. h \ to_tree_order ptr \\<^sub>r nodes \ (\node. node \ set nodes + have "\nodes. h \ to_tree_order ptr \\<^sub>r nodes \ (\node. node \ set nodes \ (\nodes'. h \ to_tree_order node \\<^sub>r nodes' \ set nodes' \ set nodes))" proof(insert assms(1), induct ptr rule: heap_wellformed_induct) case (step parent) then show ?case proof safe fix nodes node nodes' x assume 1: "(\children child. h \ get_child_nodes parent \\<^sub>r children \ - child \ set children \ \nodes. h \ to_tree_order (cast child) \\<^sub>r nodes - \ (\node. node \ set nodes \ (\nodes'. h \ to_tree_order node \\<^sub>r nodes' + child \ set children \ \nodes. h \ to_tree_order (cast child) \\<^sub>r nodes + \ (\node. node \ set nodes \ (\nodes'. h \ to_tree_order node \\<^sub>r nodes' \ set nodes' \ set nodes)))" and 2: "h \ to_tree_order parent \\<^sub>r nodes" and 3: "node \ set nodes" and "h \ to_tree_order node \\<^sub>r nodes'" and "x \ set nodes'" have h1: "(\children child nodes node nodes'. h \ get_child_nodes parent \\<^sub>r children \ - child \ set children \ h \ to_tree_order (cast child) \\<^sub>r nodes + child \ set children \ h \ to_tree_order (cast child) \\<^sub>r nodes \ (node \ set nodes \ (h \ to_tree_order node \\<^sub>r nodes' \ set nodes' \ set nodes)))" using 1 by blast obtain children where children: "h \ get_child_nodes parent \\<^sub>r children" using 2 by(auto simp add: to_tree_order_def elim!: bind_returns_result_E) then have "set nodes' \ set nodes" proof (cases "children = []") case True then show ?thesis - by (metis "2" "3" \h \ to_tree_order node \\<^sub>r nodes'\ children empty_iff list.set(1) - subsetI to_tree_order_either_ptr_or_in_children) + by (metis "2" "3" \h \ to_tree_order node \\<^sub>r nodes'\ children empty_iff list.set(1) + subsetI to_tree_order_either_ptr_or_in_children) next case False then show ?thesis proof (cases "node = parent") case True then show ?thesis using "2" \h \ to_tree_order node \\<^sub>r nodes'\ returns_result_eq by fastforce next case False then obtain child nodes_of_child where "child \ set children" and "h \ to_tree_order (cast child) \\<^sub>r nodes_of_child" and "node \ set nodes_of_child" - using 2[simplified to_tree_order_def] 3 - to_tree_order_either_ptr_or_in_children[where node=node and ptr=parent] children + using 2[simplified to_tree_order_def] 3 + to_tree_order_either_ptr_or_in_children[where node=node and ptr=parent] children apply(auto elim!: bind_returns_result_E2 intro: map_M_pure_I)[1] using is_OK_returns_result_E 2 a_all_ptrs_in_heap_def assms(1) heap_is_wellformed_def using "3" by blast then have "set nodes' \ set nodes_of_child" using h1 using \h \ to_tree_order node \\<^sub>r nodes'\ children by blast moreover have "set nodes_of_child \ set nodes" - using "2" \child \ set children\ \h \ to_tree_order (cast child) \\<^sub>r nodes_of_child\ - assms children to_tree_order_child_subset by auto + using "2" \child \ set children\ \h \ to_tree_order (cast child) \\<^sub>r nodes_of_child\ + assms children to_tree_order_child_subset by auto ultimately show ?thesis by blast qed qed then show "x \ set nodes" using \x \ set nodes'\ by blast qed qed then show ?thesis using assms by blast qed lemma to_tree_order_parent: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ to_tree_order ptr \\<^sub>r nodes" assumes "h \ get_parent child \\<^sub>r Some parent" assumes "parent \ set nodes" shows "cast child \ set nodes" proof - obtain nodes' where nodes': "h \ to_tree_order parent \\<^sub>r nodes'" using assms to_tree_order_ok get_parent_parent_in_heap by (meson get_parent_parent_in_heap is_OK_returns_result_E) then have "set nodes' \ set nodes" using to_tree_order_subset assms by blast moreover obtain children where children: "h \ get_child_nodes parent \\<^sub>r children" and child: "child \ set children" using assms get_parent_child_dual by blast then obtain child_to where child_to: "h \ to_tree_order (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r child_to" - by (meson assms(1) assms(2) assms(3) assms(5) is_OK_returns_result_E is_OK_returns_result_I - get_parent_ptr_in_heap node_ptr_kinds_commutes to_tree_order_ok) + by (meson assms(1) assms(2) assms(3) assms(5) is_OK_returns_result_E is_OK_returns_result_I + get_parent_ptr_in_heap node_ptr_kinds_commutes to_tree_order_ok) then have "cast child \ set child_to" apply(simp add: to_tree_order_def) - by(auto elim!: bind_returns_result_E2 map_M_pure_E - dest!: bind_returns_result_E3[rotated, OF children, rotated] intro!: map_M_pure_I) - + by(auto elim!: bind_returns_result_E2 map_M_pure_E + dest!: bind_returns_result_E3[rotated, OF children, rotated] intro!: map_M_pure_I) + have "cast child \ set nodes'" using nodes' child apply(simp add: to_tree_order_def) - apply(auto elim!: bind_returns_result_E2 map_M_pure_E - dest!: bind_returns_result_E3[rotated, OF children, rotated] intro!: map_M_pure_I)[1] + apply(auto elim!: bind_returns_result_E2 map_M_pure_E + dest!: bind_returns_result_E3[rotated, OF children, rotated] intro!: map_M_pure_I)[1] using child_to \cast child \ set child_to\ returns_result_eq by fastforce ultimately show ?thesis by auto qed lemma to_tree_order_child: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ to_tree_order ptr \\<^sub>r nodes" assumes "h \ get_child_nodes parent \\<^sub>r children" assumes "cast child \ ptr" assumes "child \ set children" assumes "cast child \ set nodes" -shows "parent \ set nodes" -proof(insert assms(1) assms(4) assms(6) assms(8), induct ptr arbitrary: nodes - rule: heap_wellformed_induct) + shows "parent \ set nodes" +proof(insert assms(1) assms(4) assms(6) assms(8), induct ptr arbitrary: nodes + rule: heap_wellformed_induct) case (step p) have "p |\| object_ptr_kinds h" using \h \ to_tree_order p \\<^sub>r nodes\ to_tree_order_ptr_in_heap using assms(1) assms(2) assms(3) by blast then obtain children where children: "h \ get_child_nodes p \\<^sub>r children" by (meson assms(2) assms(3) get_child_nodes_ok is_OK_returns_result_E local.known_ptrs_known_ptr) then show ?case proof (cases "children = []") case True then show ?thesis using step(2) step(3) step(4) children - by(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 - dest!: bind_returns_result_E3[rotated, OF children, rotated]) + by(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 + dest!: bind_returns_result_E3[rotated, OF children, rotated]) next case False then obtain c child_to where child: "c \ set children" and child_to: "h \ to_tree_order (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c) \\<^sub>r child_to" and "cast child \ set child_to" - using step(2) children - apply(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 - dest!: bind_returns_result_E3[rotated, OF children, rotated])[1] + using step(2) children + apply(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 + dest!: bind_returns_result_E3[rotated, OF children, rotated])[1] by (metis (full_types) assms(1) assms(2) assms(3) get_parent_ptr_in_heap - is_OK_returns_result_I l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M.child_parent_dual - l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms node_ptr_kinds_commutes - returns_result_select_result step.prems(1) step.prems(2) step.prems(3) - to_tree_order_either_ptr_or_in_children to_tree_order_ok) + is_OK_returns_result_I l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M.child_parent_dual + l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms node_ptr_kinds_commutes + returns_result_select_result step.prems(1) step.prems(2) step.prems(3) + to_tree_order_either_ptr_or_in_children to_tree_order_ok) then have "set child_to \ set nodes" using assms(1) child children step.prems(1) to_tree_order_child_subset by auto show ?thesis proof (cases "c = child") case True then have "parent = p" using step(3) children child assms(5) assms(7) by (meson assms(1) assms(2) assms(3) child_parent_dual option.inject returns_result_eq) - + then show ?thesis using step.prems(1) to_tree_order_ptr_in_result by blast next case False - then show ?thesis - using step(1)[OF children child child_to] step(3) step(4) - using \set child_to \ set nodes\ - using \cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child \ set child_to\ by auto - qed + then show ?thesis + using step(1)[OF children child child_to] step(3) step(4) + using \set child_to \ set nodes\ + using \cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child \ set child_to\ by auto + qed qed qed lemma to_tree_order_node_ptrs: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ to_tree_order ptr \\<^sub>r nodes" assumes "ptr' \ ptr" assumes "ptr' \ set nodes" shows "is_node_ptr_kind ptr'" -proof(insert assms(1) assms(4) assms(5) assms(6), induct ptr arbitrary: nodes - rule: heap_wellformed_induct) +proof(insert assms(1) assms(4) assms(5) assms(6), induct ptr arbitrary: nodes + rule: heap_wellformed_induct) case (step p) have "p |\| object_ptr_kinds h" using \h \ to_tree_order p \\<^sub>r nodes\ to_tree_order_ptr_in_heap using assms(1) assms(2) assms(3) by blast then obtain children where children: "h \ get_child_nodes p \\<^sub>r children" by (meson assms(2) assms(3) get_child_nodes_ok is_OK_returns_result_E local.known_ptrs_known_ptr) then show ?case proof (cases "children = []") case True then show ?thesis using step(2) step(3) step(4) children - by(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 - dest!: bind_returns_result_E3[rotated, OF children, rotated])[1] + by(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 + dest!: bind_returns_result_E3[rotated, OF children, rotated])[1] next case False then obtain c child_to where child: "c \ set children" and child_to: "h \ to_tree_order (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c) \\<^sub>r child_to" and "ptr' \ set child_to" - using step(2) children - apply(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 - dest!: bind_returns_result_E3[rotated, OF children, rotated])[1] - using step.prems(1) step.prems(2) step.prems(3) to_tree_order_either_ptr_or_in_children by blast + using step(2) children + apply(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 + dest!: bind_returns_result_E3[rotated, OF children, rotated])[1] + using step.prems(1) step.prems(2) step.prems(3) to_tree_order_either_ptr_or_in_children by blast then have "set child_to \ set nodes" using assms(1) child children step.prems(1) to_tree_order_child_subset by auto show ?thesis proof (cases "cast c = ptr") case True then show ?thesis using step \ptr' \ set child_to\ assms(5) child child_to children by blast next case False then show ?thesis using \ptr' \ set child_to\ child child_to children is_node_ptr_kind_cast step.hyps by blast qed qed qed lemma to_tree_order_child2: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ to_tree_order ptr \\<^sub>r nodes" assumes "cast child \ ptr" assumes "cast child \ set nodes" obtains parent where "h \ get_parent child \\<^sub>r Some parent" and "parent \ set nodes" proof - assume 1: "(\parent. h \ get_parent child \\<^sub>r Some parent \ parent \ set nodes \ thesis)" show thesis proof(insert assms(1) assms(4) assms(5) assms(6) 1, induct ptr arbitrary: nodes - rule: heap_wellformed_induct) + rule: heap_wellformed_induct) case (step p) have "p |\| object_ptr_kinds h" using \h \ to_tree_order p \\<^sub>r nodes\ to_tree_order_ptr_in_heap using assms(1) assms(2) assms(3) by blast then obtain children where children: "h \ get_child_nodes p \\<^sub>r children" by (meson assms(2) assms(3) get_child_nodes_ok is_OK_returns_result_E local.known_ptrs_known_ptr) then show ?case proof (cases "children = []") case True then show ?thesis using step(2) step(3) step(4) children - by(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 - dest!: bind_returns_result_E3[rotated, OF children, rotated]) + by(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 + dest!: bind_returns_result_E3[rotated, OF children, rotated]) next case False then obtain c child_to where child: "c \ set children" and child_to: "h \ to_tree_order (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r c) \\<^sub>r child_to" and "cast child \ set child_to" - using step(2) children - apply(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 - dest!: bind_returns_result_E3[rotated, OF children, rotated])[1] - using step.prems(1) step.prems(2) step.prems(3) to_tree_order_either_ptr_or_in_children + using step(2) children + apply(auto simp add: to_tree_order_def[of p] map_M_pure_I elim!: bind_returns_result_E2 + dest!: bind_returns_result_E3[rotated, OF children, rotated])[1] + using step.prems(1) step.prems(2) step.prems(3) to_tree_order_either_ptr_or_in_children by blast then have "set child_to \ set nodes" using assms(1) child children step.prems(1) to_tree_order_child_subset by auto have "cast child |\| object_ptr_kinds h" using assms(1) assms(2) assms(3) assms(4) assms(6) to_tree_order_ptrs_in_heap by blast then obtain parent_opt where parent_opt: "h \ get_parent child \\<^sub>r parent_opt" by (meson assms(2) assms(3) is_OK_returns_result_E get_parent_ok node_ptr_kinds_commutes) then show ?thesis proof (induct parent_opt) case None then show ?case - by (metis \cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child \ set child_to\ assms(1) assms(2) assms(3) - cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_inject child child_parent_dual child_to children - option.distinct(1) returns_result_eq step.hyps) + by (metis \cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child \ set child_to\ assms(1) assms(2) assms(3) + cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_inject child child_parent_dual child_to children + option.distinct(1) returns_result_eq step.hyps) next case (Some option) - then show ?case - by (meson assms(1) assms(2) assms(3) get_parent_child_dual step.prems(1) step.prems(2) - step.prems(3) step.prems(4) to_tree_order_child) + then show ?case + by (meson assms(1) assms(2) assms(3) get_parent_child_dual step.prems(1) step.prems(2) + step.prems(3) step.prems(4) to_tree_order_child) qed qed qed qed lemma to_tree_order_parent_child_rel: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ to_tree_order ptr \\<^sub>r to" shows "(ptr, child) \ (parent_child_rel h)\<^sup>* \ child \ set to" proof assume 3: "(ptr, child) \ (parent_child_rel h)\<^sup>*" show "child \ set to" proof (insert 3, induct child rule: heap_wellformed_induct_rev[OF assms(1)]) case (1 child) then show ?case proof (cases "ptr = child") case True then show ?thesis using assms(4) apply(simp add: to_tree_order_def) by(auto simp add: map_M_pure_I elim!: bind_returns_result_E2) next case False obtain child_parent where "(ptr, child_parent) \ (parent_child_rel h)\<^sup>*" and "(child_parent, child) \ (parent_child_rel h)" using \ptr \ child\ by (metis "1.prems" rtranclE) obtain child_node where child_node: "cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child_node = child" - using \(child_parent, child) \ parent_child_rel h\ node_ptr_casts_commute3 - parent_child_rel_node_ptr + using \(child_parent, child) \ parent_child_rel h\ node_ptr_casts_commute3 + parent_child_rel_node_ptr by blast then have "h \ get_parent child_node \\<^sub>r Some child_parent" using \(child_parent, child) \ (parent_child_rel h)\ - by (meson assms(1) assms(2) assms(3) is_OK_returns_result_E l_get_parent_wf.child_parent_dual - l_heap_is_wellformed.parent_child_rel_child local.get_child_nodes_ok - local.known_ptrs_known_ptr local.l_get_parent_wf_axioms - local.l_heap_is_wellformed_axioms local.parent_child_rel_parent_in_heap) + by (meson assms(1) assms(2) assms(3) is_OK_returns_result_E l_get_parent_wf.child_parent_dual + l_heap_is_wellformed.parent_child_rel_child local.get_child_nodes_ok + local.known_ptrs_known_ptr local.l_get_parent_wf_axioms + local.l_heap_is_wellformed_axioms local.parent_child_rel_parent_in_heap) then show ?thesis using 1(1) child_node \(ptr, child_parent) \ (parent_child_rel h)\<^sup>*\ using assms(1) assms(2) assms(3) assms(4) to_tree_order_parent by blast qed qed next assume "child \ set to" then show "(ptr, child) \ (parent_child_rel h)\<^sup>*" proof (induct child rule: heap_wellformed_induct_rev[OF assms(1)]) case (1 child) then show ?case proof (cases "ptr = child") case True then show ?thesis by simp next case False then have "\parent. (parent, child) \ (parent_child_rel h)" - using 1(2) assms(4) to_tree_order_child2[OF assms(1) assms(2) assms(3) assms(4)] - to_tree_order_node_ptrs + using 1(2) assms(4) to_tree_order_child2[OF assms(1) assms(2) assms(3) assms(4)] + to_tree_order_node_ptrs by (metis assms(1) assms(2) assms(3) node_ptr_casts_commute3 parent_child_rel_parent) then obtain child_node where child_node: "cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child_node = child" using node_ptr_casts_commute3 parent_child_rel_node_ptr by blast then obtain child_parent where child_parent: "h \ get_parent child_node \\<^sub>r Some child_parent" using \\parent. (parent, child) \ (parent_child_rel h)\ by (metis "1.prems" False assms(1) assms(2) assms(3) assms(4) to_tree_order_child2) then have "(child_parent, child) \ (parent_child_rel h)" using assms(1) child_node parent_child_rel_parent by blast moreover have "child_parent \ set to" - by (metis "1.prems" False assms(1) assms(2) assms(3) assms(4) child_node child_parent - get_parent_child_dual to_tree_order_child) + by (metis "1.prems" False assms(1) assms(2) assms(3) assms(4) child_node child_parent + get_parent_child_dual to_tree_order_child) then have "(ptr, child_parent) \ (parent_child_rel h)\<^sup>*" using 1 child_node child_parent by blast ultimately show ?thesis by auto qed qed qed end -interpretation i_to_tree_order_wf?: l_to_tree_order_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes - get_child_nodes_locs to_tree_order known_ptrs get_parent - get_parent_locs heap_is_wellformed parent_child_rel - get_disconnected_nodes get_disconnected_nodes_locs +interpretation i_to_tree_order_wf?: l_to_tree_order_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes + get_child_nodes_locs to_tree_order known_ptrs get_parent + get_parent_locs heap_is_wellformed parent_child_rel + get_disconnected_nodes get_disconnected_nodes_locs using instances apply(simp add: l_to_tree_order_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) done declare l_to_tree_order_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms [instances] -locale l_to_tree_order_wf = l_heap_is_wellformed_defs + l_type_wf + l_known_ptrs - + l_to_tree_order_defs - + l_get_parent_defs + l_get_child_nodes_defs + - assumes to_tree_order_ok: - "heap_is_wellformed h \ ptr |\| object_ptr_kinds h \ known_ptrs h \ type_wf h +locale l_to_tree_order_wf = l_heap_is_wellformed_defs + l_type_wf + l_known_ptrs + + l_to_tree_order_defs + + l_get_parent_defs + l_get_child_nodes_defs + + assumes to_tree_order_ok: + "heap_is_wellformed h \ ptr |\| object_ptr_kinds h \ known_ptrs h \ type_wf h \ h \ ok (to_tree_order ptr)" - assumes to_tree_order_ptrs_in_heap: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r to + assumes to_tree_order_ptrs_in_heap: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r to \ ptr' \ set to \ ptr' |\| object_ptr_kinds h" assumes to_tree_order_parent_child_rel: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r to + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r to \ (ptr, child_ptr) \ (parent_child_rel h)\<^sup>* \ child_ptr \ set to" - assumes to_tree_order_child2: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r nodes - \ cast child \ ptr \ cast child \ set nodes - \ (\parent. h \ get_parent child \\<^sub>r Some parent - \ parent \ set nodes \ thesis) + assumes to_tree_order_child2: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r nodes + \ cast child \ ptr \ cast child \ set nodes + \ (\parent. h \ get_parent child \\<^sub>r Some parent + \ parent \ set nodes \ thesis) \ thesis" - assumes to_tree_order_node_ptrs: + assumes to_tree_order_node_ptrs: "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r nodes \ ptr' \ ptr \ ptr' \ set nodes \ is_node_ptr_kind ptr'" - assumes to_tree_order_child: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r nodes - \ h \ get_child_nodes parent \\<^sub>r children \ cast child \ ptr - \ child \ set children \ cast child \ set nodes + assumes to_tree_order_child: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r nodes + \ h \ get_child_nodes parent \\<^sub>r children \ cast child \ ptr + \ child \ set children \ cast child \ set nodes \ parent \ set nodes" - assumes to_tree_order_ptr_in_result: + assumes to_tree_order_ptr_in_result: "h \ to_tree_order ptr \\<^sub>r nodes \ ptr \ set nodes" - assumes to_tree_order_parent: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r nodes - \ h \ get_parent child \\<^sub>r Some parent \ parent \ set nodes + assumes to_tree_order_parent: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r nodes + \ h \ get_parent child \\<^sub>r Some parent \ parent \ set nodes \ cast child \ set nodes" assumes to_tree_order_subset: - "heap_is_wellformed h \ h \ to_tree_order ptr \\<^sub>r nodes \ node \ set nodes - \ h \ to_tree_order node \\<^sub>r nodes' \ known_ptrs h + "heap_is_wellformed h \ h \ to_tree_order ptr \\<^sub>r nodes \ node \ set nodes + \ h \ to_tree_order node \\<^sub>r nodes' \ known_ptrs h \ type_wf h \ set nodes' \ set nodes" -lemma to_tree_order_wf_is_l_to_tree_order_wf [instances]: - "l_to_tree_order_wf heap_is_wellformed parent_child_rel type_wf known_ptr known_ptrs +lemma to_tree_order_wf_is_l_to_tree_order_wf [instances]: + "l_to_tree_order_wf heap_is_wellformed parent_child_rel type_wf known_ptr known_ptrs to_tree_order get_parent get_child_nodes" using instances apply(auto simp add: l_to_tree_order_wf_def l_to_tree_order_wf_axioms_def)[1] - using to_tree_order_ok + using to_tree_order_ok apply blast - using to_tree_order_ptrs_in_heap + using to_tree_order_ptrs_in_heap apply blast using to_tree_order_parent_child_rel apply(blast, blast) using to_tree_order_child2 apply blast using to_tree_order_node_ptrs apply blast - using to_tree_order_child + using to_tree_order_child apply blast using to_tree_order_ptr_in_result apply blast using to_tree_order_parent apply blast using to_tree_order_subset apply blast done subsubsection \get\_root\_node\ locale l_to_tree_order_wf_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_to_tree_order_wf begin lemma to_tree_order_get_root_node: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ to_tree_order ptr \\<^sub>r to" assumes "ptr' \ set to" assumes "h \ get_root_node ptr' \\<^sub>r root_ptr" assumes "ptr'' \ set to" shows "h \ get_root_node ptr'' \\<^sub>r root_ptr" proof - obtain ancestors' where ancestors': "h \ get_ancestors ptr' \\<^sub>r ancestors'" - by (meson assms(1) assms(2) assms(3) assms(4) assms(5) get_ancestors_ok is_OK_returns_result_E - to_tree_order_ptrs_in_heap ) + by (meson assms(1) assms(2) assms(3) assms(4) assms(5) get_ancestors_ok is_OK_returns_result_E + to_tree_order_ptrs_in_heap ) moreover have "ptr \ set ancestors'" using \h \ get_ancestors ptr' \\<^sub>r ancestors'\ - using assms(1) assms(2) assms(3) assms(4) assms(5) get_ancestors_parent_child_rel - to_tree_order_parent_child_rel by blast + using assms(1) assms(2) assms(3) assms(4) assms(5) get_ancestors_parent_child_rel + to_tree_order_parent_child_rel by blast ultimately have "h \ get_root_node ptr \\<^sub>r root_ptr" using \h \ get_root_node ptr' \\<^sub>r root_ptr\ using assms(1) assms(2) assms(3) get_ancestors_ptr get_ancestors_same_root_node by blast - + obtain ancestors'' where ancestors'': "h \ get_ancestors ptr'' \\<^sub>r ancestors''" - by (meson assms(1) assms(2) assms(3) assms(4) assms(7) get_ancestors_ok is_OK_returns_result_E - to_tree_order_ptrs_in_heap) + by (meson assms(1) assms(2) assms(3) assms(4) assms(7) get_ancestors_ok is_OK_returns_result_E + to_tree_order_ptrs_in_heap) moreover have "ptr \ set ancestors''" using \h \ get_ancestors ptr'' \\<^sub>r ancestors''\ - using assms(1) assms(2) assms(3) assms(4) assms(7) get_ancestors_parent_child_rel - to_tree_order_parent_child_rel by blast + using assms(1) assms(2) assms(3) assms(4) assms(7) get_ancestors_parent_child_rel + to_tree_order_parent_child_rel by blast ultimately show ?thesis - using \h \ get_root_node ptr \\<^sub>r root_ptr\ assms(1) assms(2) assms(3) get_ancestors_ptr - get_ancestors_same_root_node by blast + using \h \ get_root_node ptr \\<^sub>r root_ptr\ assms(1) assms(2) assms(3) get_ancestors_ptr + get_ancestors_same_root_node by blast qed lemma to_tree_order_same_root: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_root_node ptr \\<^sub>r root_ptr" assumes "h \ to_tree_order root_ptr \\<^sub>r to" assumes "ptr' \ set to" shows "h \ get_root_node ptr' \\<^sub>r root_ptr" proof (insert assms(1)(* assms(4) assms(5) *) assms(6), induct ptr' rule: heap_wellformed_induct_rev) case (step child) then show ?case proof (cases "h \ get_root_node child \\<^sub>r child") case True then have "child = root_ptr" using assms(1) assms(2) assms(3) assms(5) step.prems - by (metis (no_types, lifting) get_root_node_same_no_parent node_ptr_casts_commute3 - option.simps(3) returns_result_eq to_tree_order_child2 to_tree_order_node_ptrs) + by (metis (no_types, lifting) get_root_node_same_no_parent node_ptr_casts_commute3 + option.simps(3) returns_result_eq to_tree_order_child2 to_tree_order_node_ptrs) then show ?thesis using True by blast next case False - then obtain child_node parent where "cast child_node = child" - and "h \ get_parent child_node \\<^sub>r Some parent" - by (metis assms(1) assms(2) assms(3) assms(4) assms(5) local.get_root_node_no_parent - local.get_root_node_not_node_same local.get_root_node_same_no_parent - local.to_tree_order_child2 local.to_tree_order_ptrs_in_heap node_ptr_casts_commute3 - step.prems) + then obtain child_node parent where "cast child_node = child" + and "h \ get_parent child_node \\<^sub>r Some parent" + by (metis assms(1) assms(2) assms(3) assms(4) assms(5) local.get_root_node_no_parent + local.get_root_node_not_node_same local.get_root_node_same_no_parent + local.to_tree_order_child2 local.to_tree_order_ptrs_in_heap node_ptr_casts_commute3 + step.prems) then show ?thesis proof (cases "child = root_ptr") case True then have "h \ get_root_node root_ptr \\<^sub>r root_ptr" using assms(4) - using \cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child_node = child\ assms(1) assms(2) assms(3) - get_root_node_no_parent get_root_node_same_no_parent + using \cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child_node = child\ assms(1) assms(2) assms(3) + get_root_node_no_parent get_root_node_same_no_parent by blast then show ?thesis using step assms(4) using True by blast next case False then have "parent \ set to" - using assms(5) step(2) to_tree_order_child \h \ get_parent child_node \\<^sub>r Some parent\ - \cast child_node = child\ + using assms(5) step(2) to_tree_order_child \h \ get_parent child_node \\<^sub>r Some parent\ + \cast child_node = child\ by (metis False assms(1) assms(2) assms(3) get_parent_child_dual) then show ?thesis - using \cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child_node = child\ \h \ get_parent child_node \\<^sub>r Some parent\ - get_root_node_parent_same + using \cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child_node = child\ \h \ get_parent child_node \\<^sub>r Some parent\ + get_root_node_parent_same using step.hyps by blast qed - + qed qed end -interpretation i_to_tree_order_wf_get_root_node_wf?: l_to_tree_order_wf_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - known_ptr type_wf known_ptrs heap_is_wellformed parent_child_rel get_child_nodes get_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs get_parent get_parent_locs get_ancestors get_ancestors_locs get_root_node get_root_node_locs to_tree_order +interpretation i_to_tree_order_wf_get_root_node_wf?: l_to_tree_order_wf_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + known_ptr type_wf known_ptrs heap_is_wellformed parent_child_rel get_child_nodes + get_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs get_parent get_parent_locs + get_ancestors get_ancestors_locs get_root_node get_root_node_locs to_tree_order using instances by(simp add: l_to_tree_order_wf_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) -locale l_to_tree_order_wf_get_root_node_wf = l_type_wf + l_known_ptrs + l_to_tree_order_defs - + l_get_root_node_defs + l_heap_is_wellformed_defs + - assumes to_tree_order_get_root_node: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r to - \ ptr' \ set to \ h \ get_root_node ptr' \\<^sub>r root_ptr +locale l_to_tree_order_wf_get_root_node_wf = l_type_wf + l_known_ptrs + l_to_tree_order_defs + + l_get_root_node_defs + l_heap_is_wellformed_defs + + assumes to_tree_order_get_root_node: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ to_tree_order ptr \\<^sub>r to + \ ptr' \ set to \ h \ get_root_node ptr' \\<^sub>r root_ptr \ ptr'' \ set to \ h \ get_root_node ptr'' \\<^sub>r root_ptr" - assumes to_tree_order_same_root: - "heap_is_wellformed h \ type_wf h \ known_ptrs h - \ h \ get_root_node ptr \\<^sub>r root_ptr - \ h \ to_tree_order root_ptr \\<^sub>r to \ ptr' \ set to + assumes to_tree_order_same_root: + "heap_is_wellformed h \ type_wf h \ known_ptrs h + \ h \ get_root_node ptr \\<^sub>r root_ptr + \ h \ to_tree_order root_ptr \\<^sub>r to \ ptr' \ set to \ h \ get_root_node ptr' \\<^sub>r root_ptr" lemma to_tree_order_wf_get_root_node_wf_is_l_to_tree_order_wf_get_root_node_wf [instances]: - "l_to_tree_order_wf_get_root_node_wf type_wf known_ptr known_ptrs to_tree_order + "l_to_tree_order_wf_get_root_node_wf type_wf known_ptr known_ptrs to_tree_order get_root_node heap_is_wellformed" using instances - apply(auto simp add: l_to_tree_order_wf_get_root_node_wf_def + apply(auto simp add: l_to_tree_order_wf_get_root_node_wf_def l_to_tree_order_wf_get_root_node_wf_axioms_def)[1] using to_tree_order_get_root_node apply blast using to_tree_order_same_root apply blast done subsection \get\_owner\_document\ - + locale l_get_owner_document_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_known_ptrs + l_heap_is_wellformed + l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_ancestors + l_get_ancestors_wf + l_get_parent + l_get_parent_wf + l_get_root_node_wf + l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma get_owner_document_disconnected_nodes: assumes "heap_is_wellformed h" assumes "h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes" assumes "node_ptr \ set disc_nodes" assumes known_ptrs: "known_ptrs h" assumes type_wf: "type_wf h" shows "h \ get_owner_document (cast node_ptr) \\<^sub>r document_ptr" proof - have 2: "node_ptr |\| node_ptr_kinds h" using assms heap_is_wellformed_disc_nodes_in_heap by blast have 3: "document_ptr |\| document_ptr_kinds h" using assms(2) get_disconnected_nodes_ptr_in_heap by blast - have 0: - "\!document_ptr\set |h \ document_ptr_kinds_M|\<^sub>r. node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r" - by (metis (no_types, lifting) "3" DocumentMonad.ptr_kinds_ptr_kinds_M assms(1) assms(2) assms(3) - disjoint_iff_not_equal l_heap_is_wellformed.heap_is_wellformed_one_disc_parent - local.get_disconnected_nodes_ok local.l_heap_is_wellformed_axioms - returns_result_select_result select_result_I2 type_wf) + have 0: + "\!document_ptr\set |h \ document_ptr_kinds_M|\<^sub>r. node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r" + by (metis (no_types, lifting) "3" DocumentMonad.ptr_kinds_ptr_kinds_M assms(1) assms(2) assms(3) + disjoint_iff_not_equal l_heap_is_wellformed.heap_is_wellformed_one_disc_parent + local.get_disconnected_nodes_ok local.l_heap_is_wellformed_axioms + returns_result_select_result select_result_I2 type_wf) have "h \ get_parent node_ptr \\<^sub>r None" using heap_is_wellformed_children_disc_nodes_different child_parent_dual assms - using "2" disjoint_iff_not_equal local.get_parent_child_dual local.get_parent_ok - returns_result_select_result split_option_ex + using "2" disjoint_iff_not_equal local.get_parent_child_dual local.get_parent_ok + returns_result_select_result split_option_ex by (metis (no_types, lifting)) then have 4: "h \ get_root_node (cast node_ptr) \\<^sub>r cast node_ptr" using 2 get_root_node_no_parent by blast obtain document_ptrs where document_ptrs: "h \ document_ptr_kinds_M \\<^sub>r document_ptrs" by simp - + then have "h \ ok (filter_M (\document_ptr. do { disconnected_nodes \ get_disconnected_nodes document_ptr; return (((cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr)) \ cast ` set disconnected_nodes) }) document_ptrs)" using assms(1) get_disconnected_nodes_ok type_wf unfolding heap_is_wellformed_def by(auto intro!: bind_is_OK_I2 filter_M_is_OK_I bind_pure_I) - then obtain candidates where + then obtain candidates where candidates: "h \ filter_M (\document_ptr. do { disconnected_nodes \ get_disconnected_nodes document_ptr; return (((cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr)) \ cast ` set disconnected_nodes) }) document_ptrs \\<^sub>r candidates" by auto - have eq: "\document_ptr. document_ptr |\| document_ptr_kinds h + have eq: "\document_ptr. document_ptr |\| document_ptr_kinds h \ node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r \ |h \ do { disconnected_nodes \ get_disconnected_nodes document_ptr; return (((cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr)) \ cast ` set disconnected_nodes) }|\<^sub>r" - apply(auto dest!: get_disconnected_nodes_ok[OF type_wf] - intro!: select_result_I[where P=id, simplified] elim!: bind_returns_result_E2)[1] + apply(auto dest!: get_disconnected_nodes_ok[OF type_wf] + intro!: select_result_I[where P=id, simplified] elim!: bind_returns_result_E2)[1] apply(drule select_result_E[where P=id, simplified]) by(auto elim!: bind_returns_result_E2) have filter: "filter (\document_ptr. |h \ do { disconnected_nodes \ get_disconnected_nodes document_ptr; return (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr \ cast ` set disconnected_nodes) }|\<^sub>r) document_ptrs = [document_ptr]" apply(rule filter_ex1) using 0 document_ptrs apply(simp)[1] using eq using local.get_disconnected_nodes_ok apply auto[1] using assms(2) assms(3) - apply(auto intro!: intro!: select_result_I[where P=id, simplified] - elim!: bind_returns_result_E2)[1] + apply(auto intro!: intro!: select_result_I[where P=id, simplified] + elim!: bind_returns_result_E2)[1] using returns_result_eq apply fastforce using document_ptrs 3 apply(simp) using document_ptrs by simp have "h \ filter_M (\document_ptr. do { disconnected_nodes \ get_disconnected_nodes document_ptr; return (((cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr)) \ cast ` set disconnected_nodes) }) document_ptrs \\<^sub>r [document_ptr]" apply(rule filter_M_filter2) - using get_disconnected_nodes_ok document_ptrs 3 assms(1) type_wf filter + using get_disconnected_nodes_ok document_ptrs 3 assms(1) type_wf filter unfolding heap_is_wellformed_def by(auto intro: bind_pure_I bind_is_OK_I2) with 4 document_ptrs have "h \ a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr () \\<^sub>r document_ptr" by(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def - intro!: bind_pure_returns_result_I filter_M_pure_I bind_pure_I - split: option.splits)[1] + intro!: bind_pure_returns_result_I filter_M_pure_I bind_pure_I + split: option.splits)[1] moreover have "known_ptr (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr)" using "4" assms(1) known_ptrs type_wf known_ptrs_known_ptr "2" node_ptr_kinds_commutes by blast ultimately show ?thesis using 2 apply(auto simp add: known_ptr_impl get_owner_document_def a_get_owner_document_tups_def)[1] apply(split invoke_splits, (rule conjI | rule impI)+)+ - apply(drule(1) known_ptr_not_document_ptr[folded known_ptr_impl]) - apply(drule(1) known_ptr_not_character_data_ptr) + apply(drule(1) known_ptr_not_document_ptr[folded known_ptr_impl]) + apply(drule(1) known_ptr_not_character_data_ptr) apply(drule(1) known_ptr_not_element_ptr) apply(simp add: NodeClass.known_ptr_defs) by(auto split: option.splits intro!: bind_pure_returns_result_I) qed lemma in_disconnected_nodes_no_parent: assumes "heap_is_wellformed h" and "h \ get_parent node_ptr \\<^sub>r None" and "h \ get_owner_document (cast node_ptr) \\<^sub>r owner_document" and "h \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" shows "node_ptr \ set disc_nodes" proof - have 2: "cast node_ptr |\| object_ptr_kinds h" using assms(3) get_owner_document_ptr_in_heap by fast then have 3: "h \ get_root_node (cast node_ptr) \\<^sub>r cast node_ptr" using assms(2) local.get_root_node_no_parent by blast - have "\(\parent_ptr. parent_ptr |\| object_ptr_kinds h \ node_ptr \ set |h \ get_child_nodes parent_ptr|\<^sub>r)" + have "\(\parent_ptr. parent_ptr |\| object_ptr_kinds h \ +node_ptr \ set |h \ get_child_nodes parent_ptr|\<^sub>r)" apply(auto)[1] using assms(2) child_parent_dual[OF assms(1)] type_wf - assms(1) assms(5) get_child_nodes_ok known_ptrs_known_ptr option.simps(3) - returns_result_eq returns_result_select_result + assms(1) assms(5) get_child_nodes_ok known_ptrs_known_ptr option.simps(3) + returns_result_eq returns_result_select_result by (metis (no_types, hide_lams)) moreover have "node_ptr |\| node_ptr_kinds h" using assms(2) get_parent_ptr_in_heap by blast ultimately have 0: "\document_ptr\set |h \ document_ptr_kinds_M|\<^sub>r. node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r" by (metis DocumentMonad.ptr_kinds_ptr_kinds_M assms(1) finite_set_in heap_is_wellformed_children_disc_nodes) then obtain document_ptr where document_ptr: "document_ptr\set |h \ document_ptr_kinds_M|\<^sub>r" and node_ptr_in_disc_nodes: "node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r" by auto then show ?thesis using get_owner_document_disconnected_nodes known_ptrs type_wf assms - using DocumentMonad.ptr_kinds_ptr_kinds_M assms(1) assms(3) assms(4) get_disconnected_nodes_ok - returns_result_select_result select_result_I2 + using DocumentMonad.ptr_kinds_ptr_kinds_M assms(1) assms(3) assms(4) get_disconnected_nodes_ok + returns_result_select_result select_result_I2 by (metis (no_types, hide_lams) ) qed -lemma get_owner_document_owner_document_in_heap: +lemma get_owner_document_owner_document_in_heap: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_owner_document ptr \\<^sub>r owner_document" shows "owner_document |\| document_ptr_kinds h" using assms apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def)[1] apply(split invoke_split_asm)+ proof - assume "h \ invoke [] ptr () \\<^sub>r owner_document" then show "owner_document |\| document_ptr_kinds h" by (meson invoke_empty is_OK_returns_result_I) next assume "h \ Heap_Error_Monad.bind (check_in_heap ptr) (\_. (local.a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r) ptr ()) \\<^sub>r owner_document" then show "owner_document |\| document_ptr_kinds h" by(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 split: if_splits) next assume 0: "heap_is_wellformed h" and 1: "type_wf h" and 2: "known_ptrs h" and 3: "\ is_element_ptr\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr" and 4: "is_character_data_ptr\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr" - and 5: "h \ Heap_Error_Monad.bind (check_in_heap ptr) (\_. (local.a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r) ptr ()) \\<^sub>r owner_document" + and 5: "h \ Heap_Error_Monad.bind (check_in_heap ptr) +(\_. (local.a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r) ptr ()) \\<^sub>r owner_document" then obtain root where root: "h \ get_root_node ptr \\<^sub>r root" - by(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 split: option.splits) + by(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 + split: option.splits) then show ?thesis proof (cases "is_document_ptr root") case True then show ?thesis - using 4 5 root - apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 intro!: filter_M_pure_I bind_pure_I split: option.splits)[1] + using 4 5 root + apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 + intro!: filter_M_pure_I bind_pure_I split: option.splits)[1] apply(drule(1) returns_result_eq) apply(auto)[1] using "0" "1" "2" document_ptr_kinds_commutes local.get_root_node_root_in_heap by blast next case False have "known_ptr root" using "0" "1" "2" local.get_root_node_root_in_heap local.known_ptrs_known_ptr root by blast have "root |\| object_ptr_kinds h" using root using "0" "1" "2" local.get_root_node_root_in_heap by blast then have "is_node_ptr_kind root" using False \known_ptr root\ - apply(simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs) + apply(simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs) using is_node_ptr_kind_none by force then - have "(\document_ptr \ fset (document_ptr_kinds h). root \ cast ` set |h \ get_disconnected_nodes document_ptr|\<^sub>r)" - by (metis (no_types, lifting) "0" "1" "2" \root |\| object_ptr_kinds h\ local.child_parent_dual local.get_child_nodes_ok local.get_root_node_same_no_parent local.heap_is_wellformed_children_disc_nodes local.known_ptrs_known_ptr node_ptr_casts_commute3 node_ptr_inclusion node_ptr_kinds_commutes notin_fset option.distinct(1) returns_result_eq returns_result_select_result root) - then obtain some_owner_document where - "some_owner_document |\| document_ptr_kinds h" and - "root \ cast ` set |h \ get_disconnected_nodes some_owner_document|\<^sub>r" - by auto - then - obtain candidates where - candidates: "h \ filter_M - (\document_ptr. - Heap_Error_Monad.bind (get_disconnected_nodes document_ptr) - (\disconnected_nodes. return (root \ cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ` set disconnected_nodes))) - (sorted_list_of_set (fset (document_ptr_kinds h))) - \\<^sub>r candidates" - by (metis (no_types, lifting) "1" bind_is_OK_I2 bind_pure_I filter_M_is_OK_I finite_fset is_OK_returns_result_E local.get_disconnected_nodes_ok local.get_disconnected_nodes_pure notin_fset return_ok return_pure sorted_list_of_set(1)) - then have "some_owner_document \ set candidates" - apply(rule filter_M_in_result_if_ok) - using \some_owner_document |\| document_ptr_kinds h\ \root \ cast ` set |h \ get_disconnected_nodes some_owner_document|\<^sub>r\ - apply(auto intro!: bind_pure_I bind_pure_returns_result_I)[1] - apply (simp add: \some_owner_document |\| document_ptr_kinds h\) - using "1" \root \ cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ` set |h \ get_disconnected_nodes some_owner_document|\<^sub>r\ \some_owner_document |\| document_ptr_kinds h\ - local.get_disconnected_nodes_ok by auto - then have "candidates \ []" - by auto - then have "owner_document \ set candidates" - using 5 root 4 - apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 intro!: filter_M_pure_I bind_pure_I split: option.splits)[1] - apply (metis candidates list.set_sel(1) returns_result_eq) - by (metis \is_node_ptr_kind root\ node_ptr_no_document_ptr_cast returns_result_eq) - - then show ?thesis - using candidates - by (meson bind_pure_I bind_returns_result_E2 filter_M_holds_for_result is_OK_returns_result_I local.get_disconnected_nodes_ptr_in_heap local.get_disconnected_nodes_pure return_pure) - qed -next - assume 0: "heap_is_wellformed h" - and 1: "type_wf h" - and 2: "known_ptrs h" - and 3: "is_element_ptr\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr" - and 4: "h \ Heap_Error_Monad.bind (check_in_heap ptr) (\_. (local.a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r) ptr ()) \\<^sub>r owner_document" - then obtain root where - root: "h \ get_root_node ptr \\<^sub>r root" - by(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 split: option.splits) - - then show ?thesis - proof (cases "is_document_ptr root") - case True - then show ?thesis - using 3 4 root - apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 intro!: filter_M_pure_I bind_pure_I split: option.splits)[1] - apply(drule(1) returns_result_eq) apply(auto)[1] - using "0" "1" "2" document_ptr_kinds_commutes local.get_root_node_root_in_heap by blast - next - case False - have "known_ptr root" - using "0" "1" "2" local.get_root_node_root_in_heap local.known_ptrs_known_ptr root by blast - have "root |\| object_ptr_kinds h" - using root - using "0" "1" "2" local.get_root_node_root_in_heap - by blast - then have "is_node_ptr_kind root" - using False \known_ptr root\ - apply(simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs) - using is_node_ptr_kind_none by force - then - have "(\document_ptr \ fset (document_ptr_kinds h). root \ cast ` set |h \ get_disconnected_nodes document_ptr|\<^sub>r)" - by (metis (no_types, lifting) "0" "1" "2" \root |\| object_ptr_kinds h\ local.child_parent_dual local.get_child_nodes_ok local.get_root_node_same_no_parent local.heap_is_wellformed_children_disc_nodes local.known_ptrs_known_ptr node_ptr_casts_commute3 node_ptr_inclusion node_ptr_kinds_commutes notin_fset option.distinct(1) returns_result_eq returns_result_select_result root) + have "(\document_ptr \ fset (document_ptr_kinds h). +root \ cast ` set |h \ get_disconnected_nodes document_ptr|\<^sub>r)" + by (metis (no_types, lifting) "0" "1" "2" \root |\| object_ptr_kinds h\ local.child_parent_dual + local.get_child_nodes_ok local.get_root_node_same_no_parent local.heap_is_wellformed_children_disc_nodes + local.known_ptrs_known_ptr node_ptr_casts_commute3 node_ptr_inclusion node_ptr_kinds_commutes notin_fset + option.distinct(1) returns_result_eq returns_result_select_result root) then obtain some_owner_document where "some_owner_document |\| document_ptr_kinds h" and "root \ cast ` set |h \ get_disconnected_nodes some_owner_document|\<^sub>r" by auto then obtain candidates where candidates: "h \ filter_M (\document_ptr. Heap_Error_Monad.bind (get_disconnected_nodes document_ptr) (\disconnected_nodes. return (root \ cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ` set disconnected_nodes))) (sorted_list_of_set (fset (document_ptr_kinds h))) \\<^sub>r candidates" - by (metis (no_types, lifting) "1" bind_is_OK_I2 bind_pure_I filter_M_is_OK_I finite_fset is_OK_returns_result_E local.get_disconnected_nodes_ok local.get_disconnected_nodes_pure notin_fset return_ok return_pure sorted_list_of_set(1)) + by (metis (no_types, lifting) "1" bind_is_OK_I2 bind_pure_I filter_M_is_OK_I finite_fset + is_OK_returns_result_E local.get_disconnected_nodes_ok local.get_disconnected_nodes_pure notin_fset + return_ok return_pure sorted_list_of_set(1)) then have "some_owner_document \ set candidates" apply(rule filter_M_in_result_if_ok) - using \some_owner_document |\| document_ptr_kinds h\ \root \ cast ` set |h \ get_disconnected_nodes some_owner_document|\<^sub>r\ - apply(auto intro!: bind_pure_I bind_pure_returns_result_I) + using \some_owner_document |\| document_ptr_kinds h\ + \root \ cast ` set |h \ get_disconnected_nodes some_owner_document|\<^sub>r\ + apply(auto intro!: bind_pure_I bind_pure_returns_result_I)[1] + apply (simp add: \some_owner_document |\| document_ptr_kinds h\) + using "1" \root \ cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ` set |h \ get_disconnected_nodes some_owner_document|\<^sub>r\ + \some_owner_document |\| document_ptr_kinds h\ + local.get_disconnected_nodes_ok by auto + then have "candidates \ []" + by auto + then have "owner_document \ set candidates" + using 5 root 4 + apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 + intro!: filter_M_pure_I bind_pure_I split: option.splits)[1] + apply (metis candidates list.set_sel(1) returns_result_eq) + by (metis \is_node_ptr_kind root\ node_ptr_no_document_ptr_cast returns_result_eq) + + then show ?thesis + using candidates + by (meson bind_pure_I bind_returns_result_E2 filter_M_holds_for_result is_OK_returns_result_I + local.get_disconnected_nodes_ptr_in_heap local.get_disconnected_nodes_pure return_pure) + qed +next + assume 0: "heap_is_wellformed h" + and 1: "type_wf h" + and 2: "known_ptrs h" + and 3: "is_element_ptr\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr" + and 4: "h \ Heap_Error_Monad.bind (check_in_heap ptr) +(\_. (local.a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r \ the \ cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r) ptr ()) \\<^sub>r owner_document" + then obtain root where + root: "h \ get_root_node ptr \\<^sub>r root" + by(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 + split: option.splits) + + then show ?thesis + proof (cases "is_document_ptr root") + case True + then show ?thesis + using 3 4 root + apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 + intro!: filter_M_pure_I bind_pure_I split: option.splits)[1] + apply(drule(1) returns_result_eq) apply(auto)[1] + using "0" "1" "2" document_ptr_kinds_commutes local.get_root_node_root_in_heap by blast + next + case False + have "known_ptr root" + using "0" "1" "2" local.get_root_node_root_in_heap local.known_ptrs_known_ptr root by blast + have "root |\| object_ptr_kinds h" + using root + using "0" "1" "2" local.get_root_node_root_in_heap + by blast + then have "is_node_ptr_kind root" + using False \known_ptr root\ + apply(simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs) + using is_node_ptr_kind_none by force + then + have "(\document_ptr \ fset (document_ptr_kinds h). root \ +cast ` set |h \ get_disconnected_nodes document_ptr|\<^sub>r)" + by (metis (no_types, lifting) "0" "1" "2" \root |\| object_ptr_kinds h\ + local.child_parent_dual local.get_child_nodes_ok local.get_root_node_same_no_parent + local.heap_is_wellformed_children_disc_nodes local.known_ptrs_known_ptr node_ptr_casts_commute3 + node_ptr_inclusion node_ptr_kinds_commutes notin_fset option.distinct(1) returns_result_eq + returns_result_select_result root) + then obtain some_owner_document where + "some_owner_document |\| document_ptr_kinds h" and + "root \ cast ` set |h \ get_disconnected_nodes some_owner_document|\<^sub>r" + by auto + then + obtain candidates where + candidates: "h \ filter_M + (\document_ptr. + Heap_Error_Monad.bind (get_disconnected_nodes document_ptr) + (\disconnected_nodes. return (root \ cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ` set disconnected_nodes))) + (sorted_list_of_set (fset (document_ptr_kinds h))) + \\<^sub>r candidates" + by (metis (no_types, lifting) "1" bind_is_OK_I2 bind_pure_I filter_M_is_OK_I finite_fset + is_OK_returns_result_E local.get_disconnected_nodes_ok local.get_disconnected_nodes_pure notin_fset + return_ok return_pure sorted_list_of_set(1)) + then have "some_owner_document \ set candidates" + apply(rule filter_M_in_result_if_ok) + using \some_owner_document |\| document_ptr_kinds h\ + \root \ cast ` set |h \ get_disconnected_nodes some_owner_document|\<^sub>r\ + apply(auto intro!: bind_pure_I bind_pure_returns_result_I)[1] + using \some_owner_document |\| document_ptr_kinds h\ + \root \ cast ` set |h \ get_disconnected_nodes some_owner_document|\<^sub>r\ + apply(auto intro!: bind_pure_I bind_pure_returns_result_I)[1] + using \some_owner_document |\| document_ptr_kinds h\ + \root \ cast ` set |h \ get_disconnected_nodes some_owner_document|\<^sub>r\ + apply(auto intro!: bind_pure_I bind_pure_returns_result_I)[1] by (simp add: "1" local.get_disconnected_nodes_ok) then have "candidates \ []" by auto then have "owner_document \ set candidates" using 4 root 3 - apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 intro!: filter_M_pure_I bind_pure_I split: option.splits)[1] + apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 + intro!: filter_M_pure_I bind_pure_I split: option.splits)[1] apply (metis candidates list.set_sel(1) returns_result_eq) by (metis \is_node_ptr_kind root\ node_ptr_no_document_ptr_cast returns_result_eq) then show ?thesis using candidates - by (meson bind_pure_I bind_returns_result_E2 filter_M_holds_for_result is_OK_returns_result_I local.get_disconnected_nodes_ptr_in_heap local.get_disconnected_nodes_pure return_pure) + by (meson bind_pure_I bind_returns_result_E2 filter_M_holds_for_result is_OK_returns_result_I + local.get_disconnected_nodes_ptr_in_heap local.get_disconnected_nodes_pure return_pure) qed qed -lemma get_owner_document_ok: +lemma get_owner_document_ok: assumes "heap_is_wellformed h" "known_ptrs h" "type_wf h" assumes "ptr |\| object_ptr_kinds h" shows "h \ ok (get_owner_document ptr)" proof - have "known_ptr ptr" using assms(2) assms(4) local.known_ptrs_known_ptr by blast then show ?thesis apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def)[1] apply(split invoke_splits, (rule conjI | rule impI)+)+ apply(auto simp add: known_ptr_impl)[1] - using NodeClass.a_known_ptr_def known_ptr_not_character_data_ptr known_ptr_not_document_ptr known_ptr_not_element_ptr + using NodeClass.a_known_ptr_def known_ptr_not_character_data_ptr known_ptr_not_document_ptr + known_ptr_not_element_ptr apply blast using assms(4) - apply(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro!: bind_is_OK_pure_I)[1] - apply (metis (no_types, lifting) document_ptr_casts_commute3 document_ptr_kinds_commutes is_document_ptr_kind_none option.case_eq_if) - using assms(4) - apply(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro!: bind_is_OK_pure_I)[1] - apply (metis (no_types, lifting) assms(1) assms(2) assms(3) is_node_ptr_kind_none local.get_root_node_ok node_ptr_casts_commute3 option.case_eq_if) + apply(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def + intro!: bind_is_OK_pure_I)[1] + apply (metis (no_types, lifting) document_ptr_casts_commute3 document_ptr_kinds_commutes + is_document_ptr_kind_none option.case_eq_if) using assms(4) - apply(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro!: bind_is_OK_pure_I)[1] - apply(auto split: option.splits intro!: bind_is_OK_pure_I filter_M_pure_I bind_pure_I filter_M_is_OK_I)[1] - using assms(3) local.get_disconnected_nodes_ok + apply(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def + intro!: bind_is_OK_pure_I)[1] + apply (metis (no_types, lifting) assms(1) assms(2) assms(3) is_node_ptr_kind_none + local.get_root_node_ok node_ptr_casts_commute3 option.case_eq_if) + using assms(4) + apply(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def + intro!: bind_is_OK_pure_I)[1] + apply(auto split: option.splits + intro!: bind_is_OK_pure_I filter_M_pure_I bind_pure_I filter_M_is_OK_I)[1] + using assms(3) local.get_disconnected_nodes_ok apply blast - apply (simp add: assms(1) assms(2) assms(3) local.get_root_node_ok) + apply (simp add: assms(1) assms(2) assms(3) local.get_root_node_ok) using assms(4) - apply(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro!: bind_is_OK_pure_I)[1] - apply(auto split: option.splits intro!: bind_is_OK_pure_I filter_M_pure_I bind_pure_I filter_M_is_OK_I)[1] + apply(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def + intro!: bind_is_OK_pure_I)[1] + apply(auto split: option.splits + intro!: bind_is_OK_pure_I filter_M_pure_I bind_pure_I filter_M_is_OK_I)[1] apply (simp add: assms(1) assms(2) assms(3) local.get_root_node_ok)[1] - apply(auto split: option.splits intro!: bind_is_OK_pure_I filter_M_pure_I bind_pure_I filter_M_is_OK_I)[1] + apply(auto split: option.splits + intro!: bind_is_OK_pure_I filter_M_pure_I bind_pure_I filter_M_is_OK_I)[1] using assms(3) local.get_disconnected_nodes_ok by blast qed lemma get_owner_document_child_same: assumes "heap_is_wellformed h" "known_ptrs h" "type_wf h" assumes "h \ get_child_nodes ptr \\<^sub>r children" assumes "child \ set children" shows "h \ get_owner_document ptr \\<^sub>r owner_document \ h \ get_owner_document (cast child) \\<^sub>r owner_document" proof - have "ptr |\| object_ptr_kinds h" - by (meson assms(4) is_OK_returns_result_I local.get_child_nodes_ptr_in_heap) + by (meson assms(4) is_OK_returns_result_I local.get_child_nodes_ptr_in_heap) then have "known_ptr ptr" - using assms(2) local.known_ptrs_known_ptr by blast + using assms(2) local.known_ptrs_known_ptr by blast have "cast child |\| object_ptr_kinds h" - using assms(1) assms(4) assms(5) local.heap_is_wellformed_children_in_heap node_ptr_kinds_commutes by blast + using assms(1) assms(4) assms(5) local.heap_is_wellformed_children_in_heap node_ptr_kinds_commutes + by blast then have "known_ptr (cast child)" - using assms(2) local.known_ptrs_known_ptr by blast + using assms(2) local.known_ptrs_known_ptr by blast obtain root where root: "h \ get_root_node ptr \\<^sub>r root" - by (meson \ptr |\| object_ptr_kinds h\ assms(1) assms(2) assms(3) is_OK_returns_result_E local.get_root_node_ok) + by (meson \ptr |\| object_ptr_kinds h\ assms(1) assms(2) assms(3) is_OK_returns_result_E + local.get_root_node_ok) then have "h \ get_root_node (cast child) \\<^sub>r root" - using assms(1) assms(2) assms(3) assms(4) assms(5) local.child_parent_dual local.get_root_node_parent_same by blast + using assms(1) assms(2) assms(3) assms(4) assms(5) local.child_parent_dual + local.get_root_node_parent_same + by blast have "h \ get_owner_document ptr \\<^sub>r owner_document \ h \ a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r child () \\<^sub>r owner_document" proof (cases "is_document_ptr ptr") case True then obtain document_ptr where document_ptr: "cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r document_ptr = ptr" - using case_optionE document_ptr_casts_commute by blast + using case_optionE document_ptr_casts_commute by blast then have "root = cast document_ptr" using root - by(auto simp add: get_root_node_def get_ancestors_def elim!: bind_returns_result_E2 split: option.splits) - - then have "h \ a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r document_ptr () \\<^sub>r owner_document \ h \ a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r child () \\<^sub>r owner_document" - using document_ptr \h \ get_root_node (cast child) \\<^sub>r root\[simplified \root = cast document_ptr\ document_ptr] - apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 dest!: bind_returns_result_E3[rotated, OF \h \ get_root_node (cast child) \\<^sub>r root\[simplified \root = cast document_ptr\ document_ptr], rotated] intro!: bind_pure_returns_result_I filter_M_pure_I bind_pure_I split: if_splits option.splits)[1] - using \ptr |\| object_ptr_kinds h\ document_ptr_kinds_commutes by blast + by(auto simp add: get_root_node_def get_ancestors_def elim!: bind_returns_result_E2 + split: option.splits) + + then have "h \ a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r document_ptr () \\<^sub>r owner_document \ +h \ a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r child () \\<^sub>r owner_document" + using document_ptr + \h \ get_root_node (cast child) \\<^sub>r root\[simplified \root = cast document_ptr\ document_ptr] + apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def + elim!: bind_returns_result_E2 + dest!: bind_returns_result_E3[rotated, OF \h \ get_root_node (cast child) \\<^sub>r root\ + [simplified \root = cast document_ptr\ document_ptr], rotated] + intro!: bind_pure_returns_result_I filter_M_pure_I bind_pure_I + split: if_splits option.splits)[1] + using \ptr |\| object_ptr_kinds h\ document_ptr_kinds_commutes + by blast then show ?thesis using \known_ptr ptr\ apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def known_ptr_impl)[1] apply(split invoke_splits, ((rule conjI | rule impI)+)?)+ apply(drule(1) known_ptr_not_document_ptr[folded known_ptr_impl]) apply(drule(1) known_ptr_not_character_data_ptr) apply(drule(1) known_ptr_not_element_ptr) apply(simp add: NodeClass.known_ptr_defs) using \ptr |\| object_ptr_kinds h\ True - by(auto simp add: document_ptr[symmetric] intro!: bind_pure_returns_result_I split: option.splits) + by(auto simp add: document_ptr[symmetric] + intro!: bind_pure_returns_result_I + split: option.splits) next case False then obtain node_ptr where node_ptr: "cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr = ptr" using \known_ptr ptr\ - by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) - then have "h \ a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr () \\<^sub>r owner_document \ h \ a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r child () \\<^sub>r owner_document" + by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs + split: option.splits) + then have "h \ a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr () \\<^sub>r owner_document \ +h \ a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r child () \\<^sub>r owner_document" using root \h \ get_root_node (cast child) \\<^sub>r root\ unfolding a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def by (meson bind_pure_returns_result_I bind_returns_result_E3 local.get_root_node_pure) then show ?thesis using \known_ptr ptr\ - apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def known_ptr_impl) + apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def known_ptr_impl)[1] apply(split invoke_splits, ((rule conjI | rule impI)+)?)+ apply(drule(1) known_ptr_not_document_ptr[folded known_ptr_impl]) apply(drule(1) known_ptr_not_character_data_ptr) apply(drule(1) known_ptr_not_element_ptr) apply(simp add: NodeClass.known_ptr_defs) using \cast child |\| object_ptr_kinds h\ \ptr |\| object_ptr_kinds h\ False apply(auto simp add: node_ptr[symmetric] intro!: bind_pure_returns_result_I split: )[1] using \cast child |\| object_ptr_kinds h\ \ptr |\| object_ptr_kinds h\ False apply(auto simp add: node_ptr[symmetric] intro!: bind_pure_returns_result_I split: )[1] using \cast child |\| object_ptr_kinds h\ \ptr |\| object_ptr_kinds h\ False apply(auto simp add: node_ptr[symmetric] intro!: bind_pure_returns_result_I split: )[1] using \cast child |\| object_ptr_kinds h\ \ptr |\| object_ptr_kinds h\ False apply(auto simp add: node_ptr[symmetric] intro!: bind_pure_returns_result_I split: )[1] apply(split invoke_splits, ((rule conjI | rule impI)+)?)+ apply(auto simp add: node_ptr[symmetric] intro!: bind_pure_returns_result_I split: )[1] apply (meson invoke_empty is_OK_returns_result_I) apply(auto simp add: node_ptr[symmetric] intro!: bind_pure_returns_result_I split: )[1] - apply(auto simp add: node_ptr[symmetric] intro!: bind_pure_returns_result_I split: )[1] - by(auto simp add: node_ptr[symmetric] intro!: bind_pure_returns_result_I split: )[1] + apply(auto simp add: node_ptr[symmetric] intro!: bind_pure_returns_result_I split: )[1] + by(auto simp add: node_ptr[symmetric] intro!: bind_pure_returns_result_I split: )[1] qed then show ?thesis using \known_ptr (cast child)\ - apply(auto simp add: get_owner_document_def[of "cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child"] a_get_owner_document_tups_def known_ptr_impl)[1] + apply(auto simp add: get_owner_document_def[of "cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child"] + a_get_owner_document_tups_def known_ptr_impl)[1] apply(split invoke_splits, ((rule conjI | rule impI)+)?)+ apply(drule(1) known_ptr_not_document_ptr[folded known_ptr_impl]) apply(drule(1) known_ptr_not_character_data_ptr) apply(drule(1) known_ptr_not_element_ptr) apply(simp add: NodeClass.known_ptr_defs) using \cast child |\| object_ptr_kinds h\ \ptr |\| object_ptr_kinds h\ apply(auto intro!: bind_pure_returns_result_I split: option.splits)[1] using \cast child |\| object_ptr_kinds h\ \ptr |\| object_ptr_kinds h\ apply(auto intro!: bind_pure_returns_result_I split: option.splits)[1] using \cast child |\| object_ptr_kinds h\ \ptr |\| object_ptr_kinds h\ apply(auto intro!: bind_pure_returns_result_I split: option.splits)[1] using \cast child |\| object_ptr_kinds h\ \ptr |\| object_ptr_kinds h\ apply(auto intro!: bind_pure_returns_result_I split: option.splits)[1] - by (smt \cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child |\| object_ptr_kinds h\ cast_document_ptr_not_node_ptr(1) comp_apply invoke_empty invoke_not invoke_returns_result is_OK_returns_result_I node_ptr_casts_commute2 option.sel) + by (smt \cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child |\| object_ptr_kinds h\ cast_document_ptr_not_node_ptr(1) + comp_apply invoke_empty invoke_not invoke_returns_result is_OK_returns_result_I + node_ptr_casts_commute2 option.sel) qed end -locale l_get_owner_document_wf = l_heap_is_wellformed_defs + l_type_wf + l_known_ptrs - + l_get_disconnected_nodes_defs + l_get_owner_document_defs - + l_get_parent_defs + +locale l_get_owner_document_wf = l_heap_is_wellformed_defs + l_type_wf + l_known_ptrs + + l_get_disconnected_nodes_defs + l_get_owner_document_defs + + l_get_parent_defs + assumes get_owner_document_disconnected_nodes: "heap_is_wellformed h \ known_ptrs h \ type_wf h \ h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes \ node_ptr \ set disc_nodes \ h \ get_owner_document (cast node_ptr) \\<^sub>r document_ptr" assumes in_disconnected_nodes_no_parent: - "heap_is_wellformed h \ + "heap_is_wellformed h \ h \ get_parent node_ptr \\<^sub>r None\ h \ get_owner_document (cast node_ptr) \\<^sub>r owner_document \ h \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes \ known_ptrs h \ type_wf h\ node_ptr \ set disc_nodes" - assumes get_owner_document_owner_document_in_heap: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ get_owner_document ptr \\<^sub>r owner_document \ owner_document |\| document_ptr_kinds h" - assumes get_owner_document_ok: - "heap_is_wellformed h \ known_ptrs h \ type_wf h \ ptr |\| object_ptr_kinds h + assumes get_owner_document_owner_document_in_heap: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ +h \ get_owner_document ptr \\<^sub>r owner_document \ +owner_document |\| document_ptr_kinds h" + assumes get_owner_document_ok: + "heap_is_wellformed h \ known_ptrs h \ type_wf h \ ptr |\| object_ptr_kinds h \ h \ ok (get_owner_document ptr)" interpretation i_get_owner_document_wf?: l_get_owner_document_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - known_ptr known_ptrs type_wf heap_is_wellformed parent_child_rel get_child_nodes get_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs get_parent get_parent_locs get_ancestors get_ancestors_locs get_root_node get_root_node_locs get_owner_document + known_ptr known_ptrs type_wf heap_is_wellformed parent_child_rel get_child_nodes + get_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs get_parent get_parent_locs + get_ancestors get_ancestors_locs get_root_node get_root_node_locs get_owner_document by(auto simp add: l_get_owner_document_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def instances) declare l_get_owner_document_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms [instances] lemma get_owner_document_wf_is_l_get_owner_document_wf [instances]: - "l_get_owner_document_wf heap_is_wellformed type_wf known_ptr known_ptrs get_disconnected_nodes + "l_get_owner_document_wf heap_is_wellformed type_wf known_ptr known_ptrs get_disconnected_nodes get_owner_document get_parent" using known_ptrs_is_l_known_ptrs apply(auto simp add: l_get_owner_document_wf_def l_get_owner_document_wf_axioms_def)[1] using get_owner_document_disconnected_nodes apply fast using in_disconnected_nodes_no_parent apply fast using get_owner_document_owner_document_in_heap apply fast using get_owner_document_ok apply fast done subsubsection \get\_root\_node\ locale l_get_owner_document_wf_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_root_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_root_node_wf + l_get_owner_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_owner_document_wf begin lemma get_root_node_document: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_root_node ptr \\<^sub>r root" assumes "is_document_ptr_kind root" shows "h \ get_owner_document ptr \\<^sub>r the (cast root)" proof - have "ptr |\| object_ptr_kinds h" using assms(4) by (meson is_OK_returns_result_I local.get_root_node_ptr_in_heap) then have "known_ptr ptr" using assms(3) local.known_ptrs_known_ptr by blast { assume "is_document_ptr_kind ptr" then have "ptr = root" using assms(4) - by(auto simp add: get_root_node_def get_ancestors_def elim!: bind_returns_result_E2 split: option.splits) + by(auto simp add: get_root_node_def get_ancestors_def elim!: bind_returns_result_E2 + split: option.splits) then have ?thesis using \is_document_ptr_kind ptr\ \known_ptr ptr\ \ptr |\| object_ptr_kinds h\ apply(auto simp add: known_ptr_impl get_owner_document_def a_get_owner_document_tups_def)[1] apply(split invoke_splits, (rule conjI | rule impI)+)+ apply(drule(1) known_ptr_not_document_ptr[folded known_ptr_impl]) apply(drule(1) known_ptr_not_character_data_ptr) apply(drule(1) known_ptr_not_element_ptr) apply(simp add: NodeClass.known_ptr_defs) - by(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro!: bind_pure_returns_result_I split: option.splits) + by(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro!: bind_pure_returns_result_I + split: option.splits) } moreover { assume "is_node_ptr_kind ptr" then have ?thesis using \known_ptr ptr\ \ptr |\| object_ptr_kinds h\ - apply(auto simp add: known_ptr_impl get_owner_document_def a_get_owner_document_tups_def) + apply(auto simp add: known_ptr_impl get_owner_document_def a_get_owner_document_tups_def)[1] apply(split invoke_splits, (rule conjI | rule impI)+)+ apply(drule(1) known_ptr_not_document_ptr[folded known_ptr_impl]) apply(drule(1) known_ptr_not_character_data_ptr) apply(drule(1) known_ptr_not_element_ptr) apply(simp add: NodeClass.known_ptr_defs) apply(auto split: option.splits)[1] using \h \ get_root_node ptr \\<^sub>r root\ assms(5) - by(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def is_document_ptr_kind_def intro!: bind_pure_returns_result_I split: option.splits)[2] + by(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def is_document_ptr_kind_def + intro!: bind_pure_returns_result_I + split: option.splits)[2] } - ultimately + ultimately show ?thesis using \known_ptr ptr\ - by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs + split: option.splits) qed lemma get_root_node_same_owner_document: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_root_node ptr \\<^sub>r root" shows "h \ get_owner_document ptr \\<^sub>r owner_document \ h \ get_owner_document root \\<^sub>r owner_document" proof - have "ptr |\| object_ptr_kinds h" by (meson assms(4) is_OK_returns_result_I local.get_root_node_ptr_in_heap) have "root |\| object_ptr_kinds h" using assms(1) assms(2) assms(3) assms(4) local.get_root_node_root_in_heap by blast have "known_ptr ptr" using \ptr |\| object_ptr_kinds h\ assms(3) local.known_ptrs_known_ptr by blast have "known_ptr root" using \root |\| object_ptr_kinds h\ assms(3) local.known_ptrs_known_ptr by blast show ?thesis proof (cases "is_document_ptr_kind ptr") case True then have "ptr = root" using assms(4) apply(auto simp add: get_root_node_def elim!: bind_returns_result_E2)[1] - by (metis document_ptr_casts_commute3 last_ConsL local.get_ancestors_not_node node_ptr_no_document_ptr_cast) + by (metis document_ptr_casts_commute3 last_ConsL local.get_ancestors_not_node + node_ptr_no_document_ptr_cast) then show ?thesis by auto next case False then have "is_node_ptr_kind ptr" using \known_ptr ptr\ - by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs + split: option.splits) then obtain node_ptr where node_ptr: "ptr = cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr" by (metis node_ptr_casts_commute3) show ?thesis proof assume "h \ get_owner_document ptr \\<^sub>r owner_document" then have "h \ local.a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr () \\<^sub>r owner_document" using node_ptr apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def)[1] apply(split invoke_splits)+ apply (meson invoke_empty is_OK_returns_result_I) by(auto elim!: bind_returns_result_E2 split: option.splits) show "h \ get_owner_document root \\<^sub>r owner_document" proof (cases "is_document_ptr_kind root") case True have "is_document_ptr root" using True \known_ptr root\ - by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) have "root = cast owner_document" - using True - by (smt \h \ get_owner_document ptr \\<^sub>r owner_document\ assms(1) assms(2) assms(3) assms(4) document_ptr_casts_commute3 get_root_node_document returns_result_eq) + using True + by (smt \h \ get_owner_document ptr \\<^sub>r owner_document\ assms(1) assms(2) assms(3) assms(4) + document_ptr_casts_commute3 get_root_node_document returns_result_eq) then show ?thesis - apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def) + apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def)[1] apply(split invoke_splits, (rule conjI | rule impI)+)+ using \is_document_ptr\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r root\ apply blast using \root |\| object_ptr_kinds h\ by(auto simp add: a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def is_node_ptr_kind_none) next case False then have "is_node_ptr_kind root" using \known_ptr root\ - by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) then obtain root_node_ptr where root_node_ptr: "root = cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r root_node_ptr" by (metis node_ptr_casts_commute3) then have "h \ local.a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r root_node_ptr () \\<^sub>r owner_document" using \h \ local.a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr () \\<^sub>r owner_document\ assms(4) - apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 intro!: bind_pure_returns_result_I filter_M_pure_I bind_pure_I split: option.splits) - apply (metis assms(1) assms(2) assms(3) local.get_root_node_no_parent local.get_root_node_same_no_parent node_ptr returns_result_eq) + apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 + intro!: bind_pure_returns_result_I filter_M_pure_I bind_pure_I split: option.splits)[1] + apply (metis assms(1) assms(2) assms(3) local.get_root_node_no_parent + local.get_root_node_same_no_parent node_ptr returns_result_eq) using \is_node_ptr_kind root\ node_ptr returns_result_eq by fastforce then show ?thesis - apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def) + apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def)[1] apply(split invoke_splits, (rule conjI | rule impI)+)+ using \is_node_ptr_kind root\ \known_ptr root\ - apply(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits)[2] + apply(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs + CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs + split: option.splits)[1] + apply(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs + CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs + split: option.splits)[1] using \root |\| object_ptr_kinds h\ by(auto simp add: root_node_ptr) qed next assume "h \ get_owner_document root \\<^sub>r owner_document" show "h \ get_owner_document ptr \\<^sub>r owner_document" proof (cases "is_document_ptr_kind root") case True have "root = cast owner_document" using \h \ get_owner_document root \\<^sub>r owner_document\ - apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def) + apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def)[1] apply(split invoke_splits)+ apply (meson invoke_empty is_OK_returns_result_I) - apply(auto simp add: True a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 split: if_splits) - apply (metis True cast_document_ptr_not_node_ptr(2) is_document_ptr_kind_obtains is_node_ptr_kind_none node_ptr_casts_commute3 option.case_eq_if) - by (metis True cast_document_ptr_not_node_ptr(1) document_ptr_casts_commute3 is_node_ptr_kind_none node_ptr_casts_commute3 option.case_eq_if) + apply(auto simp add: True a_get_owner_document\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 + split: if_splits)[1] + apply (metis True cast_document_ptr_not_node_ptr(2) is_document_ptr_kind_obtains + is_node_ptr_kind_none node_ptr_casts_commute3 option.case_eq_if) + by (metis True cast_document_ptr_not_node_ptr(1) document_ptr_casts_commute3 + is_node_ptr_kind_none node_ptr_casts_commute3 option.case_eq_if) then show ?thesis using assms(1) assms(2) assms(3) assms(4) get_root_node_document by fastforce next case False then have "is_node_ptr_kind root" using \known_ptr root\ - by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs + CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs + split: option.splits) then obtain root_node_ptr where root_node_ptr: "root = cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r root_node_ptr" by (metis node_ptr_casts_commute3) then have "h \ local.a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r root_node_ptr () \\<^sub>r owner_document" using \h \ get_owner_document root \\<^sub>r owner_document\ - apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def) + apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def)[1] apply(split invoke_splits)+ apply (meson invoke_empty is_OK_returns_result_I) by(auto simp add: is_document_ptr_kind_none elim!: bind_returns_result_E2) then have "h \ local.a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r node_ptr () \\<^sub>r owner_document" - apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 intro!: bind_pure_returns_result_I filter_M_pure_I bind_pure_I split: option.splits) - using assms(1) assms(2) assms(3) assms(4) local.get_root_node_no_parent local.get_root_node_same_no_parent node_ptr returns_result_eq root_node_ptr + apply(auto simp add: a_get_owner_document\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 + intro!: bind_pure_returns_result_I filter_M_pure_I bind_pure_I split: option.splits)[1] + using assms(1) assms(2) assms(3) assms(4) local.get_root_node_no_parent + local.get_root_node_same_no_parent node_ptr returns_result_eq root_node_ptr by fastforce+ then show ?thesis - apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def) + apply(auto simp add: get_owner_document_def a_get_owner_document_tups_def)[1] apply(split invoke_splits, (rule conjI | rule impI)+)+ using node_ptr \known_ptr ptr\ \ptr |\| object_ptr_kinds h\ - by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs intro!: bind_pure_returns_result_I split: option.splits) + by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs + CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs + intro!: bind_pure_returns_result_I split: option.splits) qed qed qed qed end -interpretation get_owner_document_wf_get_root_node_wf?: l_get_owner_document_wf_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M type_wf known_ptr known_ptrs get_parent get_parent_locs get_child_nodes get_child_nodes_locs get_ancestors get_ancestors_locs get_root_node get_root_node_locs heap_is_wellformed parent_child_rel get_disconnected_nodes get_disconnected_nodes_locs get_owner_document +interpretation get_owner_document_wf_get_root_node_wf?: l_get_owner_document_wf_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + type_wf known_ptr known_ptrs get_parent get_parent_locs get_child_nodes get_child_nodes_locs + get_ancestors get_ancestors_locs get_root_node get_root_node_locs heap_is_wellformed parent_child_rel + get_disconnected_nodes get_disconnected_nodes_locs get_owner_document by(auto simp add: l_get_owner_document_wf_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def instances) declare l_get_owner_document_wf_get_root_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms [instances] -locale l_get_owner_document_wf_get_root_node_wf = l_heap_is_wellformed_defs + l_type_wf + l_known_ptrs + l_get_root_node_defs + l_get_owner_document_defs + - assumes get_root_node_document: "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ get_root_node ptr \\<^sub>r root \ is_document_ptr_kind root \ h \ get_owner_document ptr \\<^sub>r the (cast root)" - assumes get_root_node_same_owner_document: "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ get_root_node ptr \\<^sub>r root \ h \ get_owner_document ptr \\<^sub>r owner_document \ h \ get_owner_document root \\<^sub>r owner_document" +locale l_get_owner_document_wf_get_root_node_wf = l_heap_is_wellformed_defs + l_type_wf + + l_known_ptrs + l_get_root_node_defs + l_get_owner_document_defs + + assumes get_root_node_document: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ get_root_node ptr \\<^sub>r root \ +is_document_ptr_kind root \ h \ get_owner_document ptr \\<^sub>r the (cast root)" + assumes get_root_node_same_owner_document: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ get_root_node ptr \\<^sub>r root \ +h \ get_owner_document ptr \\<^sub>r owner_document \ h \ get_owner_document root \\<^sub>r owner_document" lemma get_owner_document_wf_get_root_node_wf_is_l_get_owner_document_wf_get_root_node_wf [instances]: - "l_get_owner_document_wf_get_root_node_wf heap_is_wellformed type_wf known_ptr known_ptrs get_root_node get_owner_document" - apply(auto simp add: l_get_owner_document_wf_get_root_node_wf_def l_get_owner_document_wf_get_root_node_wf_axioms_def instances) + "l_get_owner_document_wf_get_root_node_wf heap_is_wellformed type_wf known_ptr known_ptrs +get_root_node get_owner_document" + apply(auto simp add: l_get_owner_document_wf_get_root_node_wf_def + l_get_owner_document_wf_get_root_node_wf_axioms_def instances)[1] using get_root_node_document apply blast using get_root_node_same_owner_document apply (blast, blast) done subsection \Preserving heap-wellformedness\ subsection \set\_attribute\ locale l_set_attribute_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_get_parent_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + - l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + - l_set_attribute_get_disconnected_nodes + + l_set_attribute\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + + l_set_attribute_get_disconnected_nodes + l_set_attribute_get_child_nodes begin lemma set_attribute_preserves_wellformedness: assumes "heap_is_wellformed h" and "h \ set_attribute element_ptr k v \\<^sub>h h'" shows "heap_is_wellformed h'" thm preserves_wellformedness_writes_needed apply(rule preserves_wellformedness_writes_needed[OF assms set_attribute_writes]) using set_attribute_get_child_nodes - apply(fast) + apply(fast) using set_attribute_get_disconnected_nodes apply(fast) by(auto simp add: all_args_def set_attribute_locs_def) end subsection \remove\_child\ locale l_remove_child_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_remove_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_heap_is_wellformed + l_set_disconnected_nodes_get_child_nodes begin lemma remove_child_removes_parent: assumes wellformed: "heap_is_wellformed h" and remove_child: "h \ remove_child ptr child \\<^sub>h h2" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" shows "h2 \ get_parent child \\<^sub>r None" proof - obtain children where children: "h \ get_child_nodes ptr \\<^sub>r children" using remove_child remove_child_def by auto then have "child \ set children" using remove_child remove_child_def by(auto elim!: bind_returns_heap_E dest: returns_result_eq split: if_splits) - then have h1: "\other_ptr other_children. other_ptr \ ptr + then have h1: "\other_ptr other_children. other_ptr \ ptr \ h \ get_child_nodes other_ptr \\<^sub>r other_children \ child \ set other_children" using assms(1) known_ptrs type_wf child_parent_dual by (meson child_parent_dual children option.inject returns_result_eq) have known_ptr: "known_ptr ptr" using known_ptrs - by (meson is_OK_returns_heap_I l_known_ptrs.known_ptrs_known_ptr l_known_ptrs_axioms - remove_child remove_child_ptr_in_heap) + by (meson is_OK_returns_heap_I l_known_ptrs.known_ptrs_known_ptr l_known_ptrs_axioms + remove_child remove_child_ptr_in_heap) obtain owner_document disc_nodes h' where - owner_document: "h \ get_owner_document (cast child) \\<^sub>r owner_document" and + owner_document: "h \ get_owner_document (cast child) \\<^sub>r owner_document" and disc_nodes: "h \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes" and h': "h \ set_disconnected_nodes owner_document (child # disc_nodes) \\<^sub>h h'" and h2: "h' \ set_child_nodes ptr (remove1 child children) \\<^sub>h h2" using assms children unfolding remove_child_def apply(auto split: if_splits elim!: bind_returns_heap_E)[1] - by (metis (full_types) get_child_nodes_pure get_disconnected_nodes_pure - get_owner_document_pure pure_returns_heap_eq returns_result_eq) + by (metis (full_types) get_child_nodes_pure get_disconnected_nodes_pure + get_owner_document_pure pure_returns_heap_eq returns_result_eq) have "object_ptr_kinds h = object_ptr_kinds h2" using remove_child_writes remove_child unfolding remove_child_locs_def apply(rule writes_small_big) using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved by(auto simp add: reflp_def transp_def) then have "|h \ object_ptr_kinds_M|\<^sub>r = |h2 \ object_ptr_kinds_M|\<^sub>r" unfolding object_ptr_kinds_M_defs by simp have "type_wf h'" - using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", - OF set_disconnected_nodes_writes h'] + using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", + OF set_disconnected_nodes_writes h'] using set_disconnected_nodes_types_preserved type_wf by(auto simp add: reflp_def transp_def) have "type_wf h2" - using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", - OF remove_child_writes remove_child] unfolding remove_child_locs_def - using set_disconnected_nodes_types_preserved set_child_nodes_types_preserved type_wf + using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", + OF remove_child_writes remove_child] unfolding remove_child_locs_def + using set_disconnected_nodes_types_preserved set_child_nodes_types_preserved type_wf apply(auto simp add: reflp_def transp_def)[1] by blast then obtain children' where children': "h2 \ get_child_nodes ptr \\<^sub>r children'" using h2 set_child_nodes_get_child_nodes known_ptr - by (metis \object_ptr_kinds h = object_ptr_kinds h2\ children get_child_nodes_ok - get_child_nodes_ptr_in_heap is_OK_returns_result_E is_OK_returns_result_I) + by (metis \object_ptr_kinds h = object_ptr_kinds h2\ children get_child_nodes_ok + get_child_nodes_ptr_in_heap is_OK_returns_result_E is_OK_returns_result_I) have "child \ set children'" - by (metis (mono_tags, lifting) \type_wf h'\ children children' distinct_remove1_removeAll h2 - known_ptr local.heap_is_wellformed_children_distinct - local.set_child_nodes_get_child_nodes member_remove remove_code(1) select_result_I2 - wellformed) - - - moreover have "\other_ptr other_children. other_ptr \ ptr + by (metis (mono_tags, lifting) \type_wf h'\ children children' distinct_remove1_removeAll h2 + known_ptr local.heap_is_wellformed_children_distinct + local.set_child_nodes_get_child_nodes member_remove remove_code(1) select_result_I2 + wellformed) + + + moreover have "\other_ptr other_children. other_ptr \ ptr \ h' \ get_child_nodes other_ptr \\<^sub>r other_children \ child \ set other_children" proof - fix other_ptr other_children assume a1: "other_ptr \ ptr" and a3: "h' \ get_child_nodes other_ptr \\<^sub>r other_children" have "h \ get_child_nodes other_ptr \\<^sub>r other_children" - using get_child_nodes_reads set_disconnected_nodes_writes h' a3 + using get_child_nodes_reads set_disconnected_nodes_writes h' a3 apply(rule reads_writes_separate_backwards) using set_disconnected_nodes_get_child_nodes by fast show "child \ set other_children" using \h \ get_child_nodes other_ptr \\<^sub>r other_children\ a1 h1 by blast qed - then have "\other_ptr other_children. other_ptr \ ptr + then have "\other_ptr other_children. other_ptr \ ptr \ h2 \ get_child_nodes other_ptr \\<^sub>r other_children \ child \ set other_children" proof - fix other_ptr other_children assume a1: "other_ptr \ ptr" and a3: "h2 \ get_child_nodes other_ptr \\<^sub>r other_children" have "h' \ get_child_nodes other_ptr \\<^sub>r other_children" using get_child_nodes_reads set_child_nodes_writes h2 a3 apply(rule reads_writes_separate_backwards) - using set_disconnected_nodes_get_child_nodes a1 set_child_nodes_get_child_nodes_different_pointers + using set_disconnected_nodes_get_child_nodes a1 set_child_nodes_get_child_nodes_different_pointers by metis then show "child \ set other_children" - using \\other_ptr other_children. \other_ptr \ ptr; h' \ get_child_nodes other_ptr \\<^sub>r other_children\ + using \\other_ptr other_children. \other_ptr \ ptr; h' \ get_child_nodes other_ptr \\<^sub>r other_children\ \ child \ set other_children\ a1 by blast qed - ultimately have ha: "\other_ptr other_children. h2 \ get_child_nodes other_ptr \\<^sub>r other_children + ultimately have ha: "\other_ptr other_children. h2 \ get_child_nodes other_ptr \\<^sub>r other_children \ child \ set other_children" by (metis (full_types) children' returns_result_eq) moreover obtain ptrs where ptrs: "h2 \ object_ptr_kinds_M \\<^sub>r ptrs" by (simp add: object_ptr_kinds_M_defs) moreover have "\ptr. ptr \ set ptrs \ h2 \ ok (get_child_nodes ptr)" using \type_wf h2\ ptrs get_child_nodes_ok known_ptr - using \object_ptr_kinds h = object_ptr_kinds h2\ known_ptrs local.known_ptrs_known_ptr by auto - ultimately show "h2 \ get_parent child \\<^sub>r None" + using \object_ptr_kinds h = object_ptr_kinds h2\ known_ptrs local.known_ptrs_known_ptr by auto + ultimately show "h2 \ get_parent child \\<^sub>r None" apply(auto simp add: get_parent_def intro!: bind_pure_returns_result_I filter_M_pure_I bind_pure_I)[1] proof - have "cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child |\| object_ptr_kinds h" using get_owner_document_ptr_in_heap owner_document by blast then show "h2 \ check_in_heap (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r ()" by (simp add: \object_ptr_kinds h = object_ptr_kinds h2\ check_in_heap_def) next - show "(\other_ptr other_children. h2 \ get_child_nodes other_ptr \\<^sub>r other_children + show "(\other_ptr other_children. h2 \ get_child_nodes other_ptr \\<^sub>r other_children \ child \ set other_children) \ ptrs = sorted_list_of_set (fset (object_ptr_kinds h2)) \ (\ptr. ptr |\| object_ptr_kinds h2 \ h2 \ ok get_child_nodes ptr) \ - h2 \ filter_M (\ptr. Heap_Error_Monad.bind (get_child_nodes ptr) + h2 \ filter_M (\ptr. Heap_Error_Monad.bind (get_child_nodes ptr) (\children. return (child \ set children))) (sorted_list_of_set (fset (object_ptr_kinds h2))) \\<^sub>r []" by(auto intro!: filter_M_empty_I bind_pure_I) qed qed end locale l_remove_child_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_remove_child_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin lemma remove_child_parent_child_rel_subset: assumes "heap_is_wellformed h" and "h \ remove_child ptr child \\<^sub>h h'" and "known_ptrs h" and type_wf: "type_wf h" shows "parent_child_rel h' \ parent_child_rel h" proof (standard, safe) obtain owner_document children_h h2 disconnected_nodes_h where owner_document: "h \ get_owner_document (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r owner_document" and - children_h: "h \ get_child_nodes ptr \\<^sub>r children_h" and + children_h: "h \ get_child_nodes ptr \\<^sub>r children_h" and child_in_children_h: "child \ set children_h" and disconnected_nodes_h: "h \ get_disconnected_nodes owner_document \\<^sub>r disconnected_nodes_h" and h2: "h \ set_disconnected_nodes owner_document (child # disconnected_nodes_h) \\<^sub>h h2" and h': "h2 \ set_child_nodes ptr (remove1 child children_h) \\<^sub>h h'" using assms(2) - apply(auto simp add: remove_child_def elim!: bind_returns_heap_E - dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] - pure_returns_heap_eq[rotated, OF get_child_nodes_pure] - split: if_splits)[1] + apply(auto simp add: remove_child_def elim!: bind_returns_heap_E + dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] + pure_returns_heap_eq[rotated, OF get_child_nodes_pure] + split: if_splits)[1] using pure_returns_heap_eq by fastforce have object_ptr_kinds_eq3: "object_ptr_kinds h = object_ptr_kinds h'" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF remove_child_writes assms(2)]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF remove_child_writes assms(2)]) unfolding remove_child_locs_def - using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved + using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) then have object_ptr_kinds_eq: "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h' \ object_ptr_kinds_M \\<^sub>r ptrs" unfolding object_ptr_kinds_M_defs by simp then have object_ptr_kinds_eq2: "|h \ object_ptr_kinds_M|\<^sub>r = |h' \ object_ptr_kinds_M|\<^sub>r" using select_result_eq by force then have node_ptr_kinds_eq2: "|h \ node_ptr_kinds_M|\<^sub>r = |h' \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by auto then have node_ptr_kinds_eq3: "node_ptr_kinds h = node_ptr_kinds h'" using node_ptr_kinds_M_eq by auto have document_ptr_kinds_eq2: "|h \ document_ptr_kinds_M|\<^sub>r = |h' \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_eq2 document_ptr_kinds_M_eq by auto then have document_ptr_kinds_eq3: "document_ptr_kinds h = document_ptr_kinds h'" using document_ptr_kinds_M_eq by auto - have children_eq: - "\ptr' children. ptr \ ptr' \ h \ get_child_nodes ptr' \\<^sub>r children = h' \ get_child_nodes ptr' \\<^sub>r children" - apply(rule reads_writes_preserved[OF get_child_nodes_reads remove_child_writes assms(2)]) + have children_eq: + "\ptr' children. ptr \ ptr' \ +h \ get_child_nodes ptr' \\<^sub>r children =h' \ get_child_nodes ptr' \\<^sub>r children" + apply(rule reads_writes_preserved[OF get_child_nodes_reads remove_child_writes assms(2)]) unfolding remove_child_locs_def - using set_disconnected_nodes_get_child_nodes set_child_nodes_get_child_nodes_different_pointers + using set_disconnected_nodes_get_child_nodes set_child_nodes_get_child_nodes_different_pointers by fast - then have children_eq2: + then have children_eq2: "\ptr' children. ptr \ ptr' \ |h \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force - have disconnected_nodes_eq: - "\document_ptr disconnected_nodes. document_ptr \ owner_document + have disconnected_nodes_eq: + "\document_ptr disconnected_nodes. document_ptr \ owner_document \ h \ get_disconnected_nodes document_ptr \\<^sub>r disconnected_nodes = h' \ get_disconnected_nodes document_ptr \\<^sub>r disconnected_nodes" - apply(rule reads_writes_preserved[OF get_disconnected_nodes_reads remove_child_writes assms(2)]) + apply(rule reads_writes_preserved[OF get_disconnected_nodes_reads remove_child_writes assms(2)]) unfolding remove_child_locs_def using set_child_nodes_get_disconnected_nodes set_disconnected_nodes_get_disconnected_nodes_different_pointers by (metis (no_types, lifting) Un_iff owner_document select_result_I2) - then have disconnected_nodes_eq2: - "\document_ptr. document_ptr \ owner_document + then have disconnected_nodes_eq2: + "\document_ptr. document_ptr \ owner_document \ |h \ get_disconnected_nodes document_ptr|\<^sub>r = |h' \ get_disconnected_nodes document_ptr|\<^sub>r" using select_result_eq by force have "h2 \ get_child_nodes ptr \\<^sub>r children_h" - apply(rule reads_writes_separate_forwards[OF get_child_nodes_reads set_disconnected_nodes_writes h2 children_h] ) + apply(rule reads_writes_separate_forwards[OF get_child_nodes_reads set_disconnected_nodes_writes + h2 children_h] ) by (simp add: set_disconnected_nodes_get_child_nodes) have "known_ptr ptr" using assms(3) using children_h get_child_nodes_ptr_in_heap local.known_ptrs_known_ptr by blast have "type_wf h2" - using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h2] + using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes + h2] using set_disconnected_nodes_types_preserved type_wf by(auto simp add: reflp_def transp_def) then have "type_wf h'" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_child_nodes_writes h'] - using set_child_nodes_types_preserved + using set_child_nodes_types_preserved by(auto simp add: reflp_def transp_def) have children_h': "h' \ get_child_nodes ptr \\<^sub>r remove1 child children_h" using assms(2) owner_document h2 disconnected_nodes_h children_h apply(auto simp add: remove_child_def split: if_splits)[1] apply(drule bind_returns_heap_E3) apply(auto split: if_splits)[1] apply(simp) apply(auto split: if_splits)[1] apply(drule bind_returns_heap_E3) apply(auto)[1] apply(simp) apply(drule bind_returns_heap_E3) apply(auto)[1] apply(simp) apply(drule bind_returns_heap_E4) apply(auto)[1] apply(simp) using \type_wf h2\ set_child_nodes_get_child_nodes \known_ptr ptr\ h' by blast fix parent child assume a1: "(parent, child) \ parent_child_rel h'" then show "(parent, child) \ parent_child_rel h" proof (cases "parent = ptr") case True then show ?thesis - using a1 remove_child_removes_parent[OF assms(1) assms(2)] children_h children_h' - get_child_nodes_ptr_in_heap + using a1 remove_child_removes_parent[OF assms(1) assms(2)] children_h children_h' + get_child_nodes_ptr_in_heap apply(auto simp add: parent_child_rel_def object_ptr_kinds_eq )[1] by (metis notin_set_remove1) next case False then show ?thesis using a1 by(auto simp add: parent_child_rel_def object_ptr_kinds_eq3 children_eq2) qed qed lemma remove_child_heap_is_wellformed_preserved: assumes "heap_is_wellformed h" and "h \ remove_child ptr child \\<^sub>h h'" and "known_ptrs h" and type_wf: "type_wf h" shows "type_wf h'" and "known_ptrs h'" and "heap_is_wellformed h'" proof - obtain owner_document children_h h2 disconnected_nodes_h where owner_document: "h \ get_owner_document (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r owner_document" and - children_h: "h \ get_child_nodes ptr \\<^sub>r children_h" and + children_h: "h \ get_child_nodes ptr \\<^sub>r children_h" and child_in_children_h: "child \ set children_h" and disconnected_nodes_h: "h \ get_disconnected_nodes owner_document \\<^sub>r disconnected_nodes_h" and h2: "h \ set_disconnected_nodes owner_document (child # disconnected_nodes_h) \\<^sub>h h2" and h': "h2 \ set_child_nodes ptr (remove1 child children_h) \\<^sub>h h'" using assms(2) apply(auto simp add: remove_child_def elim!: bind_returns_heap_E - dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] - pure_returns_heap_eq[rotated, OF get_child_nodes_pure] split: if_splits)[1] + dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] + pure_returns_heap_eq[rotated, OF get_child_nodes_pure] split: if_splits)[1] using pure_returns_heap_eq by fastforce have object_ptr_kinds_eq3: "object_ptr_kinds h = object_ptr_kinds h'" apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF remove_child_writes assms(2)]) + OF remove_child_writes assms(2)]) unfolding remove_child_locs_def - using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved + using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) then have object_ptr_kinds_eq: "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h' \ object_ptr_kinds_M \\<^sub>r ptrs" unfolding object_ptr_kinds_M_defs by simp then have object_ptr_kinds_eq2: "|h \ object_ptr_kinds_M|\<^sub>r = |h' \ object_ptr_kinds_M|\<^sub>r" using select_result_eq by force then have node_ptr_kinds_eq2: "|h \ node_ptr_kinds_M|\<^sub>r = |h' \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by auto then have node_ptr_kinds_eq3: "node_ptr_kinds h = node_ptr_kinds h'" using node_ptr_kinds_M_eq by auto have document_ptr_kinds_eq2: "|h \ document_ptr_kinds_M|\<^sub>r = |h' \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_eq2 document_ptr_kinds_M_eq by auto then have document_ptr_kinds_eq3: "document_ptr_kinds h = document_ptr_kinds h'" using document_ptr_kinds_M_eq by auto - have children_eq: - "\ptr' children. ptr \ ptr' \ h \ get_child_nodes ptr' \\<^sub>r children = h' \ get_child_nodes ptr' \\<^sub>r children" - apply(rule reads_writes_preserved[OF get_child_nodes_reads remove_child_writes assms(2)]) + have children_eq: + "\ptr' children. ptr \ ptr' \ +h \ get_child_nodes ptr' \\<^sub>r children = h' \ get_child_nodes ptr' \\<^sub>r children" + apply(rule reads_writes_preserved[OF get_child_nodes_reads remove_child_writes assms(2)]) unfolding remove_child_locs_def - using set_disconnected_nodes_get_child_nodes set_child_nodes_get_child_nodes_different_pointers + using set_disconnected_nodes_get_child_nodes set_child_nodes_get_child_nodes_different_pointers by fast - then have children_eq2: - "\ptr' children. ptr \ ptr' \ |h \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" + then have children_eq2: + "\ptr' children. ptr \ ptr' \ |h \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force - have disconnected_nodes_eq: "\document_ptr disconnected_nodes. document_ptr \ owner_document - \ h \ get_disconnected_nodes document_ptr \\<^sub>r disconnected_nodes + have disconnected_nodes_eq: "\document_ptr disconnected_nodes. document_ptr \ owner_document + \ h \ get_disconnected_nodes document_ptr \\<^sub>r disconnected_nodes = h' \ get_disconnected_nodes document_ptr \\<^sub>r disconnected_nodes" - apply(rule reads_writes_preserved[OF get_disconnected_nodes_reads remove_child_writes assms(2)]) + apply(rule reads_writes_preserved[OF get_disconnected_nodes_reads remove_child_writes assms(2)]) unfolding remove_child_locs_def using set_child_nodes_get_disconnected_nodes set_disconnected_nodes_get_disconnected_nodes_different_pointers by (metis (no_types, lifting) Un_iff owner_document select_result_I2) - then have disconnected_nodes_eq2: - "\document_ptr. document_ptr \ owner_document + then have disconnected_nodes_eq2: + "\document_ptr. document_ptr \ owner_document \ |h \ get_disconnected_nodes document_ptr|\<^sub>r = |h' \ get_disconnected_nodes document_ptr|\<^sub>r" using select_result_eq by force have "h2 \ get_child_nodes ptr \\<^sub>r children_h" - apply(rule reads_writes_separate_forwards[OF get_child_nodes_reads set_disconnected_nodes_writes h2 children_h] ) + apply(rule reads_writes_separate_forwards[OF get_child_nodes_reads set_disconnected_nodes_writes + h2 children_h] ) by (simp add: set_disconnected_nodes_get_child_nodes) show "known_ptrs h'" using object_ptr_kinds_eq3 known_ptrs_preserved \known_ptrs h\ by blast have "known_ptr ptr" using assms(3) using children_h get_child_nodes_ptr_in_heap local.known_ptrs_known_ptr by blast -have "type_wf h2" - using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h2] + have "type_wf h2" + using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", + OF set_disconnected_nodes_writes h2] using set_disconnected_nodes_types_preserved type_wf by(auto simp add: reflp_def transp_def) then show "type_wf h'" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_child_nodes_writes h'] - using set_child_nodes_types_preserved + using set_child_nodes_types_preserved by(auto simp add: reflp_def transp_def) have children_h': "h' \ get_child_nodes ptr \\<^sub>r remove1 child children_h" using assms(2) owner_document h2 disconnected_nodes_h children_h apply(auto simp add: remove_child_def split: if_splits)[1] apply(drule bind_returns_heap_E3) apply(auto split: if_splits)[1] apply(simp) apply(auto split: if_splits)[1] apply(drule bind_returns_heap_E3) apply(auto)[1] apply(simp) apply(drule bind_returns_heap_E3) apply(auto)[1] apply(simp) apply(drule bind_returns_heap_E4) apply(auto)[1] apply simp using \type_wf h2\ set_child_nodes_get_child_nodes \known_ptr ptr\ h' by blast have disconnected_nodes_h2: "h2 \ get_disconnected_nodes owner_document \\<^sub>r child # disconnected_nodes_h" using owner_document assms(2) h2 disconnected_nodes_h apply (auto simp add: remove_child_def split: if_splits)[1] apply(drule bind_returns_heap_E2) apply(auto split: if_splits)[1] apply(simp) by(auto simp add: local.set_disconnected_nodes_get_disconnected_nodes split: if_splits) then have disconnected_nodes_h': "h' \ get_disconnected_nodes owner_document \\<^sub>r child # disconnected_nodes_h" apply(rule reads_writes_separate_forwards[OF get_disconnected_nodes_reads set_child_nodes_writes h']) by (simp add: set_child_nodes_get_disconnected_nodes) moreover have "a_acyclic_heap h" using assms(1) by (simp add: heap_is_wellformed_def) have "parent_child_rel h' \ parent_child_rel h" proof (standard, safe) fix parent child assume a1: "(parent, child) \ parent_child_rel h'" then show "(parent, child) \ parent_child_rel h" proof (cases "parent = ptr") case True then show ?thesis - using a1 remove_child_removes_parent[OF assms(1) assms(2)] children_h children_h' - get_child_nodes_ptr_in_heap + using a1 remove_child_removes_parent[OF assms(1) assms(2)] children_h children_h' + get_child_nodes_ptr_in_heap apply(auto simp add: parent_child_rel_def object_ptr_kinds_eq )[1] by (metis imageI notin_set_remove1) next case False then show ?thesis using a1 by(auto simp add: parent_child_rel_def object_ptr_kinds_eq3 children_eq2) qed qed then have "a_acyclic_heap h'" using \a_acyclic_heap h\ acyclic_heap_def acyclic_subset by blast moreover have "a_all_ptrs_in_heap h" using assms(1) by (simp add: heap_is_wellformed_def) then have "a_all_ptrs_in_heap h'" apply(auto simp add: a_all_ptrs_in_heap_def node_ptr_kinds_eq3 disconnected_nodes_eq)[1] - apply (metis (no_types, lifting) \type_wf h'\ assms(2) assms(3) local.get_child_nodes_ok local.known_ptrs_known_ptr local.remove_child_children_subset notin_fset object_ptr_kinds_eq3 returns_result_select_result subset_code(1) type_wf) - apply (metis (no_types, lifting) assms(2) disconnected_nodes_eq2 disconnected_nodes_h disconnected_nodes_h' document_ptr_kinds_eq3 finite_set_in local.remove_child_child_in_heap node_ptr_kinds_eq3 select_result_I2 set_ConsD subset_code(1)) + apply (metis (no_types, lifting) \type_wf h'\ assms(2) assms(3) local.get_child_nodes_ok + local.known_ptrs_known_ptr local.remove_child_children_subset notin_fset object_ptr_kinds_eq3 + returns_result_select_result subset_code(1) type_wf) + apply (metis (no_types, lifting) assms(2) disconnected_nodes_eq2 disconnected_nodes_h + disconnected_nodes_h' document_ptr_kinds_eq3 finite_set_in local.remove_child_child_in_heap + node_ptr_kinds_eq3 select_result_I2 set_ConsD subset_code(1)) done moreover have "a_owner_document_valid h" using assms(1) by (simp add: heap_is_wellformed_def) then have "a_owner_document_valid h'" - apply(auto simp add: a_owner_document_valid_def object_ptr_kinds_eq3 document_ptr_kinds_eq3 - node_ptr_kinds_eq3)[1] + apply(auto simp add: a_owner_document_valid_def object_ptr_kinds_eq3 document_ptr_kinds_eq3 + node_ptr_kinds_eq3)[1] proof - fix node_ptr -assume 0: "\node_ptr\fset (node_ptr_kinds h'). (\document_ptr. document_ptr |\| document_ptr_kinds h' \ node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r) \ (\parent_ptr. parent_ptr |\| object_ptr_kinds h' \ node_ptr \ set |h \ get_child_nodes parent_ptr|\<^sub>r)" - and 1: "node_ptr |\| node_ptr_kinds h'" - and 2: "\parent_ptr. parent_ptr |\| object_ptr_kinds h' \ node_ptr \ set |h' \ get_child_nodes parent_ptr|\<^sub>r" - then show "\document_ptr. document_ptr |\| document_ptr_kinds h' + assume 0: "\node_ptr\fset (node_ptr_kinds h'). (\document_ptr. document_ptr |\| document_ptr_kinds h' \ +node_ptr \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r) \ +(\parent_ptr. parent_ptr |\| object_ptr_kinds h' \ node_ptr \ set |h \ get_child_nodes parent_ptr|\<^sub>r)" + and 1: "node_ptr |\| node_ptr_kinds h'" + and 2: "\parent_ptr. parent_ptr |\| object_ptr_kinds h' \ +node_ptr \ set |h' \ get_child_nodes parent_ptr|\<^sub>r" + then show "\document_ptr. document_ptr |\| document_ptr_kinds h' \ node_ptr \ set |h' \ get_disconnected_nodes document_ptr|\<^sub>r" proof (cases "node_ptr = child") case True - show ?thesis + show ?thesis apply(rule exI[where x=owner_document]) using children_eq2 disconnected_nodes_eq2 children_h children_h' disconnected_nodes_h' True - by (metis (no_types, lifting) get_disconnected_nodes_ptr_in_heap is_OK_returns_result_I - list.set_intros(1) select_result_I2) + by (metis (no_types, lifting) get_disconnected_nodes_ptr_in_heap is_OK_returns_result_I + list.set_intros(1) select_result_I2) next case False then show ?thesis - using 0 1 2 children_eq2 children_h children_h' disconnected_nodes_eq2 disconnected_nodes_h - disconnected_nodes_h' + using 0 1 2 children_eq2 children_h children_h' disconnected_nodes_eq2 disconnected_nodes_h + disconnected_nodes_h' apply(auto simp add: children_eq2 disconnected_nodes_eq2 dest!: select_result_I2)[1] by (metis children_eq2 disconnected_nodes_eq2 finite_set_in in_set_remove1 list.set_intros(2)) qed qed - moreover + moreover { have h0: "a_distinct_lists h" using assms(1) by (simp add: heap_is_wellformed_def) - moreover have ha1: "(\x\set |h \ object_ptr_kinds_M|\<^sub>r. set |h \ get_child_nodes x|\<^sub>r) + moreover have ha1: "(\x\set |h \ object_ptr_kinds_M|\<^sub>r. set |h \ get_child_nodes x|\<^sub>r) \ (\x\set |h \ document_ptr_kinds_M|\<^sub>r. set |h \ get_disconnected_nodes x|\<^sub>r) = {}" using \a_distinct_lists h\ unfolding a_distinct_lists_def by(auto) have ha2: "ptr |\| object_ptr_kinds h" using children_h get_child_nodes_ptr_in_heap by blast have ha3: "child \ set |h \ get_child_nodes ptr|\<^sub>r" using child_in_children_h children_h by(simp) - have child_not_in: "\document_ptr. document_ptr |\| document_ptr_kinds h + have child_not_in: "\document_ptr. document_ptr |\| document_ptr_kinds h \ child \ set |h \ get_disconnected_nodes document_ptr|\<^sub>r" - using ha1 ha2 ha3 + using ha1 ha2 ha3 apply(simp) using IntI by fastforce moreover have "distinct |h \ object_ptr_kinds_M|\<^sub>r" apply(rule select_result_I) by(auto simp add: object_ptr_kinds_M_defs) moreover have "distinct |h \ document_ptr_kinds_M|\<^sub>r" apply(rule select_result_I) by(auto simp add: document_ptr_kinds_M_defs) ultimately have "a_distinct_lists h'" proof(simp (no_asm) add: a_distinct_lists_def, safe) assume 1: "a_distinct_lists h" and 3: "distinct |h \ object_ptr_kinds_M|\<^sub>r" assume 1: "a_distinct_lists h" and 3: "distinct |h \ object_ptr_kinds_M|\<^sub>r" have 4: "distinct (concat ((map (\ptr. |h \ get_child_nodes ptr|\<^sub>r) |h \ object_ptr_kinds_M|\<^sub>r)))" using 1 by(auto simp add: a_distinct_lists_def) - show "distinct (concat (map (\ptr. |h' \ get_child_nodes ptr|\<^sub>r) + show "distinct (concat (map (\ptr. |h' \ get_child_nodes ptr|\<^sub>r) (sorted_list_of_set (fset (object_ptr_kinds h')))))" proof(rule distinct_concat_map_I[OF 3[unfolded object_ptr_kinds_eq2], simplified]) fix x assume 5: "x |\| object_ptr_kinds h'" then have 6: "distinct |h \ get_child_nodes x|\<^sub>r" using 4 distinct_concat_map_E object_ptr_kinds_eq2 by fastforce - obtain children where children: "h \ get_child_nodes x \\<^sub>r children" - and distinct_children: "distinct children" - by (metis "5" "6" type_wf assms(3) get_child_nodes_ok local.known_ptrs_known_ptr - object_ptr_kinds_eq3 select_result_I) + obtain children where children: "h \ get_child_nodes x \\<^sub>r children" + and distinct_children: "distinct children" + by (metis "5" "6" type_wf assms(3) get_child_nodes_ok local.known_ptrs_known_ptr + object_ptr_kinds_eq3 select_result_I) obtain children' where children': "h' \ get_child_nodes x \\<^sub>r children'" using children children_eq children_h' by fastforce then have "distinct children'" proof (cases "ptr = x") case True - then show ?thesis + then show ?thesis using children distinct_children children_h children_h' by (metis children' distinct_remove1 returns_result_eq) next case False - then show ?thesis + then show ?thesis using children distinct_children children_eq[OF False] using children' distinct_lists_children h0 using select_result_I2 by fastforce qed then show "distinct |h' \ get_child_nodes x|\<^sub>r" using children' by(auto simp add: ) next fix x y assume 5: "x |\| object_ptr_kinds h'" and 6: "y |\| object_ptr_kinds h'" and 7: "x \ y" obtain children_x where children_x: "h \ get_child_nodes x \\<^sub>r children_x" - by (metis "5" type_wf assms(3) get_child_nodes_ok is_OK_returns_result_E - local.known_ptrs_known_ptr object_ptr_kinds_eq3) + by (metis "5" type_wf assms(3) get_child_nodes_ok is_OK_returns_result_E + local.known_ptrs_known_ptr object_ptr_kinds_eq3) obtain children_y where children_y: "h \ get_child_nodes y \\<^sub>r children_y" - by (metis "6" type_wf assms(3) get_child_nodes_ok is_OK_returns_result_E - local.known_ptrs_known_ptr object_ptr_kinds_eq3) + by (metis "6" type_wf assms(3) get_child_nodes_ok is_OK_returns_result_E + local.known_ptrs_known_ptr object_ptr_kinds_eq3) obtain children_x' where children_x': "h' \ get_child_nodes x \\<^sub>r children_x'" using children_eq children_h' children_x by fastforce obtain children_y' where children_y': "h' \ get_child_nodes y \\<^sub>r children_y'" using children_eq children_h' children_y by fastforce have "distinct (concat (map (\ptr. |h \ get_child_nodes ptr|\<^sub>r) |h \ object_ptr_kinds_M|\<^sub>r))" using h0 by(auto simp add: a_distinct_lists_def) then have 8: "set children_x \ set children_y = {}" using "7" assms(1) children_x children_y local.heap_is_wellformed_one_parent by blast have "set children_x' \ set children_y' = {}" proof (cases "ptr = x") case True then have "ptr \ y" by(simp add: 7) have "children_x' = remove1 child children_x" using children_h children_h' children_x children_x' True returns_result_eq by fastforce moreover have "children_y' = children_y" using children_y children_y' children_eq[OF \ptr \ y\] by auto ultimately show ?thesis using 8 set_remove1_subset by fastforce next case False then show ?thesis proof (cases "ptr = y") case True have "children_y' = remove1 child children_y" using children_h children_h' children_y children_y' True returns_result_eq by fastforce moreover have "children_x' = children_x" using children_x children_x' children_eq[OF \ptr \ x\] by auto ultimately show ?thesis using 8 set_remove1_subset by fastforce next case False have "children_x' = children_x" using children_x children_x' children_eq[OF \ptr \ x\] by auto moreover have "children_y' = children_y" using children_y children_y' children_eq[OF \ptr \ y\] by auto ultimately show ?thesis using 8 by simp qed qed then show "set |h' \ get_child_nodes x|\<^sub>r \ set |h' \ get_child_nodes y|\<^sub>r = {}" using children_x' children_y' by (metis (no_types, lifting) select_result_I2) qed next assume 2: "distinct |h \ document_ptr_kinds_M|\<^sub>r" then have 4: "distinct (sorted_list_of_set (fset (document_ptr_kinds h')))" by simp - have 3: "distinct (concat (map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) + have 3: "distinct (concat (map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h')))))" using h0 by(simp add: a_distinct_lists_def document_ptr_kinds_eq3) - show "distinct (concat (map (\document_ptr. |h' \ get_disconnected_nodes document_ptr|\<^sub>r) + show "distinct (concat (map (\document_ptr. |h' \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h')))))" proof(rule distinct_concat_map_I[OF 4[unfolded document_ptr_kinds_eq3]]) fix x assume 4: "x \ set (sorted_list_of_set (fset (document_ptr_kinds h')))" have 5: "distinct |h \ get_disconnected_nodes x|\<^sub>r" using distinct_lists_disconnected_nodes[OF h0] 4 get_disconnected_nodes_ok by (simp add: type_wf document_ptr_kinds_eq3 select_result_I) show "distinct |h' \ get_disconnected_nodes x|\<^sub>r" proof (cases "x = owner_document") case True have "child \ set |h \ get_disconnected_nodes x|\<^sub>r" using child_not_in document_ptr_kinds_eq2 "4" by fastforce moreover have "|h' \ get_disconnected_nodes x|\<^sub>r = child # |h \ get_disconnected_nodes x|\<^sub>r" using disconnected_nodes_h' disconnected_nodes_h unfolding True by(simp) ultimately show ?thesis using 5 unfolding True - by simp + by simp next case False show ?thesis using "5" False disconnected_nodes_eq2 by auto qed next fix x y assume 4: "x \ set (sorted_list_of_set (fset (document_ptr_kinds h')))" and 5: "y \ set (sorted_list_of_set (fset (document_ptr_kinds h')))" and "x \ y" obtain disc_nodes_x where disc_nodes_x: "h \ get_disconnected_nodes x \\<^sub>r disc_nodes_x" using 4 get_disconnected_nodes_ok[OF \type_wf h\, of x] document_ptr_kinds_eq2 by auto obtain disc_nodes_y where disc_nodes_y: "h \ get_disconnected_nodes y \\<^sub>r disc_nodes_y" using 5 get_disconnected_nodes_ok[OF \type_wf h\, of y] document_ptr_kinds_eq2 by auto obtain disc_nodes_x' where disc_nodes_x': "h' \ get_disconnected_nodes x \\<^sub>r disc_nodes_x'" using 4 get_disconnected_nodes_ok[OF \type_wf h'\, of x] document_ptr_kinds_eq2 by auto obtain disc_nodes_y' where disc_nodes_y': "h' \ get_disconnected_nodes y \\<^sub>r disc_nodes_y'" using 5 get_disconnected_nodes_ok[OF \type_wf h'\, of y] document_ptr_kinds_eq2 by auto - have "distinct + have "distinct (concat (map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) |h \ document_ptr_kinds_M|\<^sub>r))" using h0 by (simp add: a_distinct_lists_def) then have 6: "set disc_nodes_x \ set disc_nodes_y = {}" - using \x \ y\ assms(1) disc_nodes_x disc_nodes_y local.heap_is_wellformed_one_disc_parent + using \x \ y\ assms(1) disc_nodes_x disc_nodes_y local.heap_is_wellformed_one_disc_parent by blast have "set disc_nodes_x' \ set disc_nodes_y' = {}" proof (cases "x = owner_document") case True then have "y \ owner_document" using \x \ y\ by simp then have "disc_nodes_y' = disc_nodes_y" - using disconnected_nodes_eq[OF \y \ owner_document\] disc_nodes_y disc_nodes_y' + using disconnected_nodes_eq[OF \y \ owner_document\] disc_nodes_y disc_nodes_y' by auto have "disc_nodes_x' = child # disc_nodes_x" - using disconnected_nodes_h' disc_nodes_x disc_nodes_x' True disconnected_nodes_h returns_result_eq + using disconnected_nodes_h' disc_nodes_x disc_nodes_x' True disconnected_nodes_h + returns_result_eq by fastforce have "child \ set disc_nodes_y" using child_not_in disc_nodes_y 5 using document_ptr_kinds_eq2 by fastforce then show ?thesis apply(unfold \disc_nodes_x' = child # disc_nodes_x\ \disc_nodes_y' = disc_nodes_y\) using 6 by auto next case False then show ?thesis proof (cases "y = owner_document") case True then have "disc_nodes_x' = disc_nodes_x" - using disconnected_nodes_eq[OF \x \ owner_document\] disc_nodes_x disc_nodes_x' by auto + using disconnected_nodes_eq[OF \x \ owner_document\] disc_nodes_x disc_nodes_x' + by auto have "disc_nodes_y' = child # disc_nodes_y" - using disconnected_nodes_h' disc_nodes_y disc_nodes_y' True disconnected_nodes_h returns_result_eq + using disconnected_nodes_h' disc_nodes_y disc_nodes_y' True disconnected_nodes_h + returns_result_eq by fastforce have "child \ set disc_nodes_x" using child_not_in disc_nodes_x 4 using document_ptr_kinds_eq2 by fastforce then show ?thesis apply(unfold \disc_nodes_y' = child # disc_nodes_y\ \disc_nodes_x' = disc_nodes_x\) using 6 by auto next case False have "disc_nodes_x' = disc_nodes_x" - using disconnected_nodes_eq[OF \x \ owner_document\] disc_nodes_x disc_nodes_x' by auto + using disconnected_nodes_eq[OF \x \ owner_document\] disc_nodes_x disc_nodes_x' + by auto have "disc_nodes_y' = disc_nodes_y" - using disconnected_nodes_eq[OF \y \ owner_document\] disc_nodes_y disc_nodes_y' by auto - then show ?thesis + using disconnected_nodes_eq[OF \y \ owner_document\] disc_nodes_y disc_nodes_y' + by auto + then show ?thesis apply(unfold \disc_nodes_y' = disc_nodes_y\ \disc_nodes_x' = disc_nodes_x\) using 6 by auto qed qed then show "set |h' \ get_disconnected_nodes x|\<^sub>r \ set |h' \ get_disconnected_nodes y|\<^sub>r = {}" using disc_nodes_x' disc_nodes_y' by auto qed next -fix x xa xb -assume 1: "xa \ fset (object_ptr_kinds h')" - and 2: "x \ set |h' \ get_child_nodes xa|\<^sub>r" - and 3: "xb \ fset (document_ptr_kinds h')" - and 4: "x \ set |h' \ get_disconnected_nodes xb|\<^sub>r" + fix x xa xb + assume 1: "xa \ fset (object_ptr_kinds h')" + and 2: "x \ set |h' \ get_child_nodes xa|\<^sub>r" + and 3: "xb \ fset (document_ptr_kinds h')" + and 4: "x \ set |h' \ get_disconnected_nodes xb|\<^sub>r" obtain disc_nodes where disc_nodes: "h \ get_disconnected_nodes xb \\<^sub>r disc_nodes" using 3 get_disconnected_nodes_ok[OF \type_wf h\, of xb] document_ptr_kinds_eq2 by auto obtain disc_nodes' where disc_nodes': "h' \ get_disconnected_nodes xb \\<^sub>r disc_nodes'" using 3 get_disconnected_nodes_ok[OF \type_wf h'\, of xb] document_ptr_kinds_eq2 by auto obtain children where children: "h \ get_child_nodes xa \\<^sub>r children" - by (metis "1" type_wf assms(3) finite_set_in get_child_nodes_ok is_OK_returns_result_E - local.known_ptrs_known_ptr object_ptr_kinds_eq3) + by (metis "1" type_wf assms(3) finite_set_in get_child_nodes_ok is_OK_returns_result_E + local.known_ptrs_known_ptr object_ptr_kinds_eq3) obtain children' where children': "h' \ get_child_nodes xa \\<^sub>r children'" using children children_eq children_h' by fastforce have "\x. x \ set |h \ get_child_nodes xa|\<^sub>r \ x \ set |h \ get_disconnected_nodes xb|\<^sub>r \ False" - using 1 3 - apply(fold \ object_ptr_kinds h = object_ptr_kinds h'\) - apply(fold \ document_ptr_kinds h = document_ptr_kinds h'\) + using 1 3 + apply(fold \ object_ptr_kinds h = object_ptr_kinds h'\) + apply(fold \ document_ptr_kinds h = document_ptr_kinds h'\) using children disc_nodes h0 apply(auto simp add: a_distinct_lists_def)[1] - by (metis (no_types, lifting) h0 local.distinct_lists_no_parent select_result_I2) + by (metis (no_types, lifting) h0 local.distinct_lists_no_parent select_result_I2) then have 5: "\x. x \ set children \ x \ set disc_nodes \ False" using children disc_nodes by fastforce have 6: "|h' \ get_child_nodes xa|\<^sub>r = children'" using children' by (simp add: ) have 7: "|h' \ get_disconnected_nodes xb|\<^sub>r = disc_nodes'" using disc_nodes' by (simp add: ) have "False" proof (cases "xa = ptr") case True have "distinct children_h" using children_h distinct_lists_children h0 \known_ptr ptr\ by blast have "|h' \ get_child_nodes ptr|\<^sub>r = remove1 child children_h" using children_h' by(simp add: ) have "children = children_h" using True children children_h by auto show ?thesis using disc_nodes' children' 5 2 4 children_h \distinct children_h\ disconnected_nodes_h' - apply(auto simp add: 6 7 - \xa = ptr\ \|h' \ get_child_nodes ptr|\<^sub>r = remove1 child children_h\ \children = children_h\)[1] - by (metis (no_types, lifting) disc_nodes disconnected_nodes_eq2 disconnected_nodes_h - select_result_I2 set_ConsD) + apply(auto simp add: 6 7 + \xa = ptr\ \|h' \ get_child_nodes ptr|\<^sub>r = remove1 child children_h\ \children = children_h\)[1] + by (metis (no_types, lifting) disc_nodes disconnected_nodes_eq2 disconnected_nodes_h + select_result_I2 set_ConsD) next case False have "children' = children" using children' children children_eq[OF False[symmetric]] - by auto + by auto then show ?thesis proof (cases "xb = owner_document") case True then show ?thesis using disc_nodes disconnected_nodes_h disconnected_nodes_h' - using "2" "4" "5" "6" "7" False \children' = children\ assms(1) child_in_children_h - child_parent_dual children children_h disc_nodes' get_child_nodes_ptr_in_heap - list.set_cases list.simps(3) option.simps(1) returns_result_eq set_ConsD + using "2" "4" "5" "6" "7" False \children' = children\ assms(1) child_in_children_h + child_parent_dual children children_h disc_nodes' get_child_nodes_ptr_in_heap + list.set_cases list.simps(3) option.simps(1) returns_result_eq set_ConsD by (metis (no_types, hide_lams) assms(3) type_wf) next case False then show ?thesis - using "2" "4" "5" "6" "7" \children' = children\ disc_nodes disc_nodes' - disconnected_nodes_eq returns_result_eq + using "2" "4" "5" "6" "7" \children' = children\ disc_nodes disc_nodes' + disconnected_nodes_eq returns_result_eq by metis qed qed then show "x \ {}" by simp qed } ultimately show "heap_is_wellformed h'" using heap_is_wellformed_def by blast qed lemma remove_heap_is_wellformed_preserved: assumes "heap_is_wellformed h" and "h \ remove child \\<^sub>h h'" and "known_ptrs h" and type_wf: "type_wf h" shows "type_wf h'" and "known_ptrs h'" and "heap_is_wellformed h'" using assms - by(auto simp add: remove_def intro: remove_child_heap_is_wellformed_preserved elim!: bind_returns_heap_E2 split: option.splits) + by(auto simp add: remove_def intro: remove_child_heap_is_wellformed_preserved + elim!: bind_returns_heap_E2 split: option.splits) lemma remove_child_removes_child: assumes wellformed: "heap_is_wellformed h" and remove_child: "h \ remove_child ptr' child \\<^sub>h h'" and children: "h' \ get_child_nodes ptr \\<^sub>r children" -and known_ptrs: "known_ptrs h" -and type_wf: "type_wf h" -shows "child \ set children" + and known_ptrs: "known_ptrs h" + and type_wf: "type_wf h" + shows "child \ set children" proof - obtain owner_document children_h h2 disconnected_nodes_h where owner_document: "h \ get_owner_document (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r owner_document" and - children_h: "h \ get_child_nodes ptr' \\<^sub>r children_h" and + children_h: "h \ get_child_nodes ptr' \\<^sub>r children_h" and child_in_children_h: "child \ set children_h" and disconnected_nodes_h: "h \ get_disconnected_nodes owner_document \\<^sub>r disconnected_nodes_h" and h2: "h \ set_disconnected_nodes owner_document (child # disconnected_nodes_h) \\<^sub>h h2" and h': "h2 \ set_child_nodes ptr' (remove1 child children_h) \\<^sub>h h'" using assms(2) - apply(auto simp add: remove_child_def elim!: bind_returns_heap_E - dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] - pure_returns_heap_eq[rotated, OF get_child_nodes_pure] - split: if_splits)[1] + apply(auto simp add: remove_child_def elim!: bind_returns_heap_E + dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] + pure_returns_heap_eq[rotated, OF get_child_nodes_pure] + split: if_splits)[1] using pure_returns_heap_eq by fastforce have "object_ptr_kinds h = object_ptr_kinds h'" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF remove_child_writes remove_child]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF remove_child_writes remove_child]) unfolding remove_child_locs_def using set_child_nodes_pointers_preserved set_disconnected_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) moreover have "type_wf h'" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF remove_child_writes assms(2)] using set_child_nodes_types_preserved set_disconnected_nodes_types_preserved type_wf unfolding remove_child_locs_def apply(auto simp add: reflp_def transp_def)[1] by blast ultimately show ?thesis using remove_child_removes_parent remove_child_heap_is_wellformed_preserved child_parent_dual - by (meson children known_ptrs local.known_ptrs_preserved option.distinct(1) remove_child - returns_result_eq type_wf wellformed) + by (meson children known_ptrs local.known_ptrs_preserved option.distinct(1) remove_child + returns_result_eq type_wf wellformed) qed lemma remove_child_removes_first_child: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_child_nodes ptr \\<^sub>r node_ptr # children" assumes "h \ remove_child ptr node_ptr \\<^sub>h h'" shows "h' \ get_child_nodes ptr \\<^sub>r children" proof - obtain h2 disc_nodes owner_document where "h \ get_owner_document (cast node_ptr) \\<^sub>r owner_document" and "h \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes" and h2: "h \ set_disconnected_nodes owner_document (node_ptr # disc_nodes) \\<^sub>h h2" and "h2 \ set_child_nodes ptr children \\<^sub>h h'" using assms(5) - apply(auto simp add: remove_child_def - dest!: bind_returns_heap_E3[rotated, OF assms(4) get_child_nodes_pure, rotated])[1] + apply(auto simp add: remove_child_def + dest!: bind_returns_heap_E3[rotated, OF assms(4) get_child_nodes_pure, rotated])[1] by(auto elim!: bind_returns_heap_E - bind_returns_heap_E2[rotated,OF get_owner_document_pure, rotated] - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated]) + bind_returns_heap_E2[rotated,OF get_owner_document_pure, rotated] + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated]) have "known_ptr ptr" by (meson assms(3) assms(4) is_OK_returns_result_I get_child_nodes_ptr_in_heap known_ptrs_known_ptr) moreover have "h2 \ get_child_nodes ptr \\<^sub>r node_ptr # children" apply(rule reads_writes_separate_forwards[OF get_child_nodes_reads set_disconnected_nodes_writes h2 assms(4)]) - using set_disconnected_nodes_get_child_nodes set_child_nodes_get_child_nodes_different_pointers + using set_disconnected_nodes_get_child_nodes set_child_nodes_get_child_nodes_different_pointers by fast moreover have "type_wf h2" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h2] using \type_wf h\ set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) ultimately show ?thesis using set_child_nodes_get_child_nodes\h2 \ set_child_nodes ptr children \\<^sub>h h'\ by fast qed lemma remove_removes_child: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_child_nodes ptr \\<^sub>r node_ptr # children" assumes "h \ remove node_ptr \\<^sub>h h'" shows "h' \ get_child_nodes ptr \\<^sub>r children" proof - have "h \ get_parent node_ptr \\<^sub>r Some ptr" using child_parent_dual assms by fastforce show ?thesis using assms remove_child_removes_first_child - by(auto simp add: remove_def - dest!: bind_returns_heap_E3[rotated, OF \h \ get_parent node_ptr \\<^sub>r Some ptr\, rotated] - bind_returns_heap_E3[rotated, OF assms(4) get_child_nodes_pure, rotated]) + by(auto simp add: remove_def + dest!: bind_returns_heap_E3[rotated, OF \h \ get_parent node_ptr \\<^sub>r Some ptr\, rotated] + bind_returns_heap_E3[rotated, OF assms(4) get_child_nodes_pure, rotated]) qed lemma remove_for_all_empty_children: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_child_nodes ptr \\<^sub>r children" assumes "h \ forall_M remove children \\<^sub>h h'" shows "h' \ get_child_nodes ptr \\<^sub>r []" using assms proof(induct children arbitrary: h h') case Nil - then show ?case + then show ?case by simp next case (Cons a children) have "h \ get_parent a \\<^sub>r Some ptr" using child_parent_dual Cons by fastforce with Cons show ?case proof(auto elim!: bind_returns_heap_E)[1] fix h2 - assume 0: "(\h h'. heap_is_wellformed h \ type_wf h \ known_ptrs h - \ h \ get_child_nodes ptr \\<^sub>r children + assume 0: "(\h h'. heap_is_wellformed h \ type_wf h \ known_ptrs h + \ h \ get_child_nodes ptr \\<^sub>r children \ h \ forall_M remove children \\<^sub>h h' \ h' \ get_child_nodes ptr \\<^sub>r [])" and 1: "heap_is_wellformed h" and 2: "type_wf h" and 3: "known_ptrs h" and 4: "h \ get_child_nodes ptr \\<^sub>r a # children" and 5: "h \ get_parent a \\<^sub>r Some ptr" and 7: "h \ remove a \\<^sub>h h2" and 8: "h2 \ forall_M remove children \\<^sub>h h'" then have "h2 \ get_child_nodes ptr \\<^sub>r children" using remove_removes_child by blast moreover have "heap_is_wellformed h2" using 7 1 2 3 remove_child_heap_is_wellformed_preserved(3) by(auto simp add: remove_def - elim!: bind_returns_heap_E - bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] - split: option.splits) + elim!: bind_returns_heap_E + bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] + split: option.splits) moreover have "type_wf h2" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF remove_writes 7] using \type_wf h\ remove_child_types_preserved by(auto simp add: a_remove_child_locs_def reflp_def transp_def) moreover have "object_ptr_kinds h = object_ptr_kinds h2" using 7 - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF remove_writes]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF remove_writes]) using remove_child_pointers_preserved by (auto simp add: reflp_def transp_def) then have "known_ptrs h2" using 3 known_ptrs_preserved by blast ultimately show "h' \ get_child_nodes ptr \\<^sub>r []" using 0 8 by fast qed qed end -locale l_remove_child_wf2 = l_type_wf + l_known_ptrs + l_remove_child_defs + l_heap_is_wellformed_defs - + l_get_child_nodes_defs + l_remove_defs + - assumes remove_child_preserves_type_wf: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ remove_child ptr child \\<^sub>h h' +locale l_remove_child_wf2 = l_type_wf + l_known_ptrs + l_remove_child_defs + l_heap_is_wellformed_defs + + l_get_child_nodes_defs + l_remove_defs + + assumes remove_child_preserves_type_wf: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ remove_child ptr child \\<^sub>h h' \ type_wf h'" - assumes remove_child_preserves_known_ptrs: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ remove_child ptr child \\<^sub>h h' + assumes remove_child_preserves_known_ptrs: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ remove_child ptr child \\<^sub>h h' \ known_ptrs h'" assumes remove_child_heap_is_wellformed_preserved: "type_wf h \ known_ptrs h \ heap_is_wellformed h \ h \ remove_child ptr child \\<^sub>h h' \ heap_is_wellformed h'" - assumes remove_preserves_type_wf: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ remove child \\<^sub>h h' + assumes remove_preserves_type_wf: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ remove child \\<^sub>h h' \ type_wf h'" - assumes remove_preserves_known_ptrs: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ remove child \\<^sub>h h' + assumes remove_preserves_known_ptrs: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ remove child \\<^sub>h h' \ known_ptrs h'" assumes remove_heap_is_wellformed_preserved: "type_wf h \ known_ptrs h \ heap_is_wellformed h \ h \ remove child \\<^sub>h h' \ heap_is_wellformed h'" assumes remove_child_removes_child: "heap_is_wellformed h \ h \ remove_child ptr' child \\<^sub>h h' \ h' \ get_child_nodes ptr \\<^sub>r children \ known_ptrs h \ type_wf h \ child \ set children" - assumes remove_child_removes_first_child: - "heap_is_wellformed h \ type_wf h \ known_ptrs h - \ h \ get_child_nodes ptr \\<^sub>r node_ptr # children - \ h \ remove_child ptr node_ptr \\<^sub>h h' + assumes remove_child_removes_first_child: + "heap_is_wellformed h \ type_wf h \ known_ptrs h + \ h \ get_child_nodes ptr \\<^sub>r node_ptr # children + \ h \ remove_child ptr node_ptr \\<^sub>h h' \ h' \ get_child_nodes ptr \\<^sub>r children" - assumes remove_removes_child: - "heap_is_wellformed h \ type_wf h \ known_ptrs h - \ h \ get_child_nodes ptr \\<^sub>r node_ptr # children + assumes remove_removes_child: + "heap_is_wellformed h \ type_wf h \ known_ptrs h + \ h \ get_child_nodes ptr \\<^sub>r node_ptr # children \ h \ remove node_ptr \\<^sub>h h' \ h' \ get_child_nodes ptr \\<^sub>r children" - assumes remove_for_all_empty_children: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ get_child_nodes ptr \\<^sub>r children + assumes remove_for_all_empty_children: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ get_child_nodes ptr \\<^sub>r children \ h \ forall_M remove children \\<^sub>h h' \ h' \ get_child_nodes ptr \\<^sub>r []" -interpretation i_remove_child_wf2?: l_remove_child_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_child_nodes get_child_nodes_locs - set_child_nodes set_child_nodes_locs get_parent get_parent_locs get_owner_document - get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes - set_disconnected_nodes_locs remove_child remove_child_locs remove type_wf known_ptr known_ptrs - heap_is_wellformed parent_child_rel +interpretation i_remove_child_wf2?: l_remove_child_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_child_nodes get_child_nodes_locs + set_child_nodes set_child_nodes_locs get_parent get_parent_locs get_owner_document + get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes + set_disconnected_nodes_locs remove_child remove_child_locs remove type_wf known_ptr known_ptrs + heap_is_wellformed parent_child_rel by unfold_locales -lemma remove_child_wf2_is_l_remove_child_wf2 [instances]: +lemma remove_child_wf2_is_l_remove_child_wf2 [instances]: "l_remove_child_wf2 type_wf known_ptr known_ptrs remove_child heap_is_wellformed get_child_nodes remove" apply(auto simp add: l_remove_child_wf2_def l_remove_child_wf2_axioms_def instances)[1] using remove_child_heap_is_wellformed_preserved apply(fast, fast, fast) using remove_heap_is_wellformed_preserved apply(fast, fast, fast) using remove_child_removes_child apply fast using remove_child_removes_first_child apply fast using remove_removes_child apply fast using remove_for_all_empty_children apply fast done - + subsection \adopt\_node\ - + locale l_adopt_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_parent_wf + l_get_owner_document_wf + l_remove_child_wf2 + l_heap_is_wellformed begin lemma adopt_node_removes_first_child: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ adopt_node owner_document node \\<^sub>h h'" assumes "h \ get_child_nodes ptr' \\<^sub>r node # children" shows "h' \ get_child_nodes ptr' \\<^sub>r children" proof - obtain old_document parent_opt h2 where old_document: "h \ get_owner_document (cast node) \\<^sub>r old_document" and parent_opt: "h \ get_parent node \\<^sub>r parent_opt" and - h2: "h \ (case parent_opt of Some parent \ do { remove_child parent node } + h2: "h \ (case parent_opt of Some parent \ do { remove_child parent node } | None \ do { return ()}) \\<^sub>h h2" and h': "h2 \ (if owner_document \ old_document then do { old_disc_nodes \ get_disconnected_nodes old_document; set_disconnected_nodes old_document (remove1 node old_disc_nodes); disc_nodes \ get_disconnected_nodes owner_document; set_disconnected_nodes owner_document (node # disc_nodes) } else do { return () }) \\<^sub>h h'" using assms(4) - by(auto simp add: adopt_node_def elim!: bind_returns_heap_E - dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] - pure_returns_heap_eq[rotated, OF get_parent_pure]) + by(auto simp add: adopt_node_def elim!: bind_returns_heap_E + dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] + pure_returns_heap_eq[rotated, OF get_parent_pure]) have "h2 \ get_child_nodes ptr' \\<^sub>r children" using h2 remove_child_removes_first_child assms(1) assms(2) assms(3) assms(5) by (metis list.set_intros(1) local.child_parent_dual option.simps(5) parent_opt returns_result_eq) then show ?thesis using h' - by(auto elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] - dest!: reads_writes_separate_forwards[OF get_child_nodes_reads set_disconnected_nodes_writes] - split: if_splits) + by(auto elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] + dest!: reads_writes_separate_forwards[OF get_child_nodes_reads set_disconnected_nodes_writes] + split: if_splits) qed -lemma adopt_node_document_in_heap: +lemma adopt_node_document_in_heap: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "h \ ok (adopt_node owner_document node)" shows "owner_document |\| document_ptr_kinds h" proof - obtain old_document parent_opt h2 h' where old_document: "h \ get_owner_document (cast node) \\<^sub>r old_document" and parent_opt: "h \ get_parent node \\<^sub>r parent_opt" and - h2: "h \ (case parent_opt of Some parent \ do { remove_child parent node } | None \ do { return ()}) \\<^sub>h h2" + h2: "h \ (case parent_opt of Some parent \ do { remove_child parent node } | None \ do { return ()}) \\<^sub>h h2" and h': "h2 \ (if owner_document \ old_document then do { old_disc_nodes \ get_disconnected_nodes old_document; set_disconnected_nodes old_document (remove1 node old_disc_nodes); disc_nodes \ get_disconnected_nodes owner_document; set_disconnected_nodes owner_document (node # disc_nodes) } else do { return () }) \\<^sub>h h'" using assms(4) - by(auto simp add: adopt_node_def - elim!: bind_returns_heap_E - dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] - pure_returns_heap_eq[rotated, OF get_parent_pure]) + by(auto simp add: adopt_node_def + elim!: bind_returns_heap_E + dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] + pure_returns_heap_eq[rotated, OF get_parent_pure]) show ?thesis proof (cases "owner_document = old_document") case True then show ?thesis using old_document get_owner_document_owner_document_in_heap assms(1) assms(2) assms(3) by auto next case False then obtain h3 old_disc_nodes disc_nodes where old_disc_nodes: "h2 \ get_disconnected_nodes old_document \\<^sub>r old_disc_nodes" and h3: "h2 \ set_disconnected_nodes old_document (remove1 node old_disc_nodes) \\<^sub>h h3" and old_disc_nodes: "h3 \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes" and h': "h3 \ set_disconnected_nodes owner_document (node # disc_nodes) \\<^sub>h h'" using h' - by(auto elim!: bind_returns_heap_E - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] ) + by(auto elim!: bind_returns_heap_E + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] ) then have "owner_document |\| document_ptr_kinds h3" by (meson is_OK_returns_result_I local.get_disconnected_nodes_ptr_in_heap) moreover have "object_ptr_kinds h = object_ptr_kinds h2" using h2 apply(simp split: option.splits) - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", OF remove_child_writes]) using remove_child_pointers_preserved by (auto simp add: reflp_def transp_def) moreover have "object_ptr_kinds h2 = object_ptr_kinds h3" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", OF set_disconnected_nodes_writes h3]) - using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved + using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) ultimately show ?thesis by(auto simp add: document_ptr_kinds_def) qed qed end - + locale l_adopt_node_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_adopt_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_parent_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_root_node + l_get_owner_document_wf + l_remove_child_wf2 + l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M begin -lemma adopt_node_removes_child: +lemma adopt_node_removes_child_step: assumes wellformed: "heap_is_wellformed h" and adopt_node: "h \ adopt_node owner_document node_ptr \\<^sub>h h2" and children: "h2 \ get_child_nodes ptr \\<^sub>r children" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" shows "node_ptr \ set children" proof - obtain old_document parent_opt h' where old_document: "h \ get_owner_document (cast node_ptr) \\<^sub>r old_document" and parent_opt: "h \ get_parent node_ptr \\<^sub>r parent_opt" and h': "h \ (case parent_opt of Some parent \ remove_child parent node_ptr | None \ return () ) \\<^sub>h h'" - using adopt_node get_parent_pure + using adopt_node get_parent_pure by(auto simp add: adopt_node_def - elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] - bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] - split: if_splits) + elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] + bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] + split: if_splits) then have "h' \ get_child_nodes ptr \\<^sub>r children" - using adopt_node - apply(auto simp add: adopt_node_def - dest!: bind_returns_heap_E3[rotated, OF old_document, rotated] - bind_returns_heap_E3[rotated, OF parent_opt, rotated] - elim!: bind_returns_heap_E4[rotated, OF h', rotated])[1] - apply(auto split: if_splits - elim!: bind_returns_heap_E - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated])[1] - apply (simp add: set_disconnected_nodes_get_child_nodes children - reads_writes_preserved[OF get_child_nodes_reads set_disconnected_nodes_writes]) + using adopt_node + apply(auto simp add: adopt_node_def + dest!: bind_returns_heap_E3[rotated, OF old_document, rotated] + bind_returns_heap_E3[rotated, OF parent_opt, rotated] + elim!: bind_returns_heap_E4[rotated, OF h', rotated])[1] + apply(auto split: if_splits + elim!: bind_returns_heap_E + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated])[1] + apply (simp add: set_disconnected_nodes_get_child_nodes children + reads_writes_preserved[OF get_child_nodes_reads set_disconnected_nodes_writes]) using children by blast show ?thesis proof(insert parent_opt h', induct parent_opt) case None then show ?case - using child_parent_dual wellformed known_ptrs type_wf - \h' \ get_child_nodes ptr \\<^sub>r children\ returns_result_eq + using child_parent_dual wellformed known_ptrs type_wf + \h' \ get_child_nodes ptr \\<^sub>r children\ returns_result_eq by fastforce next case (Some option) then show ?case - using remove_child_removes_child \h' \ get_child_nodes ptr \\<^sub>r children\ known_ptrs type_wf - wellformed + using remove_child_removes_child \h' \ get_child_nodes ptr \\<^sub>r children\ known_ptrs type_wf + wellformed by auto qed qed -lemma adopt_node_removes_child_thesis: +lemma adopt_node_removes_child: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "h \ adopt_node owner_document node_ptr \\<^sub>h h'" -shows "\ptr' children'. + shows "\ptr' children'. h' \ get_child_nodes ptr' \\<^sub>r children' \ node_ptr \ set children'" - using adopt_node_removes_child assms by blast + using adopt_node_removes_child_step assms by blast lemma adopt_node_preserves_wellformedness: assumes "heap_is_wellformed h" and "h \ adopt_node document_ptr child \\<^sub>h h'" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" shows "heap_is_wellformed h'" and "known_ptrs h'" and "type_wf h'" proof - obtain old_document parent_opt h2 where - old_document: "h \ get_owner_document (cast child) \\<^sub>r old_document" - and - parent_opt: "h \ get_parent child \\<^sub>r parent_opt" - and - h2: "h \ (case parent_opt of Some parent \ remove_child parent child | None \ return ()) \\<^sub>h h2" - and + old_document: "h \ get_owner_document (cast child) \\<^sub>r old_document" + and + parent_opt: "h \ get_parent child \\<^sub>r parent_opt" + and + h2: "h \ (case parent_opt of Some parent \ remove_child parent child | None \ return ()) \\<^sub>h h2" + and h': "h2 \ (if document_ptr \ old_document then do { old_disc_nodes \ get_disconnected_nodes old_document; set_disconnected_nodes old_document (remove1 child old_disc_nodes); disc_nodes \ get_disconnected_nodes document_ptr; set_disconnected_nodes document_ptr (child # disc_nodes) } else do { return () }) \\<^sub>h h'" using assms(2) - by(auto simp add: adopt_node_def elim!: bind_returns_heap_E - dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] - pure_returns_heap_eq[rotated, OF get_parent_pure]) + by(auto simp add: adopt_node_def elim!: bind_returns_heap_E + dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] + pure_returns_heap_eq[rotated, OF get_parent_pure]) have object_ptr_kinds_h_eq3: "object_ptr_kinds h = object_ptr_kinds h2" using h2 apply(simp split: option.splits) - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF remove_child_writes]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF remove_child_writes]) using remove_child_pointers_preserved by (auto simp add: reflp_def transp_def) - then have object_ptr_kinds_M_eq_h: - "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h2 \ object_ptr_kinds_M \\<^sub>r ptrs" + then have object_ptr_kinds_M_eq_h: + "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h2 \ object_ptr_kinds_M \\<^sub>r ptrs" unfolding object_ptr_kinds_M_defs by simp then have object_ptr_kinds_eq_h: "|h \ object_ptr_kinds_M|\<^sub>r = |h2 \ object_ptr_kinds_M|\<^sub>r" by simp then have node_ptr_kinds_eq_h: "|h \ node_ptr_kinds_M|\<^sub>r = |h2 \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast have wellformed_h2: "heap_is_wellformed h2" using h2 remove_child_heap_is_wellformed_preserved known_ptrs type_wf - by (metis (no_types, lifting) assms(1) option.case_eq_if pure_returns_heap_eq return_pure) + by (metis (no_types, lifting) assms(1) option.case_eq_if pure_returns_heap_eq return_pure) have "type_wf h2" using h2 remove_child_preserves_type_wf known_ptrs type_wf - by (metis (no_types, lifting) assms(1) option.case_eq_if pure_returns_heap_eq return_pure) + by (metis (no_types, lifting) assms(1) option.case_eq_if pure_returns_heap_eq return_pure) have "known_ptrs h2" using h2 remove_child_preserves_known_ptrs known_ptrs type_wf - by (metis (no_types, lifting) assms(1) option.case_eq_if pure_returns_heap_eq return_pure) + by (metis (no_types, lifting) assms(1) option.case_eq_if pure_returns_heap_eq return_pure) have "heap_is_wellformed h' \ known_ptrs h' \ type_wf h'" proof(cases "document_ptr = old_document") case True then show ?thesis using h' wellformed_h2 \type_wf h2\ \known_ptrs h2\ by auto next case False then obtain h3 old_disc_nodes disc_nodes_document_ptr_h3 where docs_neq: "document_ptr \ old_document" and old_disc_nodes: "h2 \ get_disconnected_nodes old_document \\<^sub>r old_disc_nodes" and h3: "h2 \ set_disconnected_nodes old_document (remove1 child old_disc_nodes) \\<^sub>h h3" and - disc_nodes_document_ptr_h3: - "h3 \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_document_ptr_h3" and + disc_nodes_document_ptr_h3: + "h3 \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_document_ptr_h3" and h': "h3 \ set_disconnected_nodes document_ptr (child # disc_nodes_document_ptr_h3) \\<^sub>h h'" using h' - by(auto elim!: bind_returns_heap_E - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] ) + by(auto elim!: bind_returns_heap_E + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] ) have object_ptr_kinds_h2_eq3: "object_ptr_kinds h2 = object_ptr_kinds h3" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF set_disconnected_nodes_writes h3]) - using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF set_disconnected_nodes_writes h3]) + using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) - then have object_ptr_kinds_M_eq_h2: - "\ptrs. h2 \ object_ptr_kinds_M \\<^sub>r ptrs = h3 \ object_ptr_kinds_M \\<^sub>r ptrs" + then have object_ptr_kinds_M_eq_h2: + "\ptrs. h2 \ object_ptr_kinds_M \\<^sub>r ptrs = h3 \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs) then have object_ptr_kinds_eq_h2: "|h2 \ object_ptr_kinds_M|\<^sub>r = |h3 \ object_ptr_kinds_M|\<^sub>r" by(simp) then have node_ptr_kinds_eq_h2: "|h2 \ node_ptr_kinds_M|\<^sub>r = |h3 \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast then have node_ptr_kinds_eq3_h2: "node_ptr_kinds h2 = node_ptr_kinds h3" by auto have document_ptr_kinds_eq2_h2: "|h2 \ document_ptr_kinds_M|\<^sub>r = |h3 \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_eq_h2 document_ptr_kinds_M_eq by auto then have document_ptr_kinds_eq3_h2: "document_ptr_kinds h2 = document_ptr_kinds h3" using object_ptr_kinds_eq_h2 document_ptr_kinds_M_eq by auto - have children_eq_h2: + have children_eq_h2: "\ptr children. h2 \ get_child_nodes ptr \\<^sub>r children = h3 \ get_child_nodes ptr \\<^sub>r children" using get_child_nodes_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_preserved) by (simp add: set_disconnected_nodes_get_child_nodes) then have children_eq2_h2: "\ptr. |h2 \ get_child_nodes ptr|\<^sub>r = |h3 \ get_child_nodes ptr|\<^sub>r" using select_result_eq by force have object_ptr_kinds_h3_eq3: "object_ptr_kinds h3 = object_ptr_kinds h'" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF set_disconnected_nodes_writes h']) - using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF set_disconnected_nodes_writes h']) + using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) - then have object_ptr_kinds_M_eq_h3: + then have object_ptr_kinds_M_eq_h3: "\ptrs. h3 \ object_ptr_kinds_M \\<^sub>r ptrs = h' \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs) then have object_ptr_kinds_eq_h3: "|h3 \ object_ptr_kinds_M|\<^sub>r = |h' \ object_ptr_kinds_M|\<^sub>r" by(simp) then have node_ptr_kinds_eq_h3: "|h3 \ node_ptr_kinds_M|\<^sub>r = |h' \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast then have node_ptr_kinds_eq3_h3: "node_ptr_kinds h3 = node_ptr_kinds h'" by auto have document_ptr_kinds_eq2_h3: "|h3 \ document_ptr_kinds_M|\<^sub>r = |h' \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_eq_h3 document_ptr_kinds_M_eq by auto then have document_ptr_kinds_eq3_h3: "document_ptr_kinds h3 = document_ptr_kinds h'" using object_ptr_kinds_eq_h3 document_ptr_kinds_M_eq by auto - have children_eq_h3: + have children_eq_h3: "\ptr children. h3 \ get_child_nodes ptr \\<^sub>r children = h' \ get_child_nodes ptr \\<^sub>r children" using get_child_nodes_reads set_disconnected_nodes_writes h' apply(rule reads_writes_preserved) by (simp add: set_disconnected_nodes_get_child_nodes) then have children_eq2_h3: "\ptr. |h3 \ get_child_nodes ptr|\<^sub>r = |h' \ get_child_nodes ptr|\<^sub>r" using select_result_eq by force - have disconnected_nodes_eq_h2: - "\doc_ptr disc_nodes. old_document \ doc_ptr + have disconnected_nodes_eq_h2: + "\doc_ptr disc_nodes. old_document \ doc_ptr \ h2 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_preserved) by (simp add: set_disconnected_nodes_get_disconnected_nodes_different_pointers) - then have disconnected_nodes_eq2_h2: - "\doc_ptr. old_document \ doc_ptr + then have disconnected_nodes_eq2_h2: + "\doc_ptr. old_document \ doc_ptr \ |h2 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - obtain disc_nodes_old_document_h2 where disc_nodes_old_document_h2: + obtain disc_nodes_old_document_h2 where disc_nodes_old_document_h2: "h2 \ get_disconnected_nodes old_document \\<^sub>r disc_nodes_old_document_h2" using old_disc_nodes by blast then have disc_nodes_old_document_h3: "h3 \ get_disconnected_nodes old_document \\<^sub>r remove1 child disc_nodes_old_document_h2" - using h3 old_disc_nodes returns_result_eq set_disconnected_nodes_get_disconnected_nodes + using h3 old_disc_nodes returns_result_eq set_disconnected_nodes_get_disconnected_nodes by fastforce have "distinct disc_nodes_old_document_h2" - using disc_nodes_old_document_h2 local.heap_is_wellformed_disconnected_nodes_distinct wellformed_h2 + using disc_nodes_old_document_h2 local.heap_is_wellformed_disconnected_nodes_distinct wellformed_h2 by blast have "type_wf h2" proof (insert h2, induct parent_opt) case None then show ?case using type_wf by simp next case (Some option) then show ?case - using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF remove_child_writes] - type_wf remove_child_types_preserved + using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF remove_child_writes] + type_wf remove_child_types_preserved by (simp add: reflp_def transp_def) qed then have "type_wf h3" - using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h3] - using set_disconnected_nodes_types_preserved + using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", + OF set_disconnected_nodes_writes h3] + using set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) then have "type_wf h'" - using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h'] - using set_disconnected_nodes_types_preserved + using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", + OF set_disconnected_nodes_writes h'] + using set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) have "known_ptrs h3" - using known_ptrs local.known_ptrs_preserved object_ptr_kinds_h2_eq3 object_ptr_kinds_h_eq3 by blast + using known_ptrs local.known_ptrs_preserved object_ptr_kinds_h2_eq3 object_ptr_kinds_h_eq3 + by blast then have "known_ptrs h'" using local.known_ptrs_preserved object_ptr_kinds_h3_eq3 by blast - have disconnected_nodes_eq_h3: - "\doc_ptr disc_nodes. document_ptr \ doc_ptr + have disconnected_nodes_eq_h3: + "\doc_ptr disc_nodes. document_ptr \ doc_ptr \ h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h' \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads set_disconnected_nodes_writes h' apply(rule reads_writes_preserved) by (simp add: set_disconnected_nodes_get_disconnected_nodes_different_pointers) - then have disconnected_nodes_eq2_h3: - "\doc_ptr. document_ptr \ doc_ptr + then have disconnected_nodes_eq2_h3: + "\doc_ptr. document_ptr \ doc_ptr \ |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h' \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - have disc_nodes_document_ptr_h2: + have disc_nodes_document_ptr_h2: "h2 \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_document_ptr_h3" using disconnected_nodes_eq_h2 docs_neq disc_nodes_document_ptr_h3 by auto have disc_nodes_document_ptr_h': " h' \ get_disconnected_nodes document_ptr \\<^sub>r child # disc_nodes_document_ptr_h3" using h' disc_nodes_document_ptr_h3 using set_disconnected_nodes_get_disconnected_nodes by blast have document_ptr_in_heap: "document_ptr |\| document_ptr_kinds h2" using disc_nodes_document_ptr_h3 document_ptr_kinds_eq2_h2 get_disconnected_nodes_ok assms(1) unfolding heap_is_wellformed_def - using disc_nodes_document_ptr_h2 get_disconnected_nodes_ptr_in_heap by blast + using disc_nodes_document_ptr_h2 get_disconnected_nodes_ptr_in_heap by blast have old_document_in_heap: "old_document |\| document_ptr_kinds h2" using disc_nodes_old_document_h3 document_ptr_kinds_eq2_h2 get_disconnected_nodes_ok assms(1) unfolding heap_is_wellformed_def - using get_disconnected_nodes_ptr_in_heap old_disc_nodes by blast + using get_disconnected_nodes_ptr_in_heap old_disc_nodes by blast have "child \ set disc_nodes_old_document_h2" proof (insert parent_opt h2, induct parent_opt) case None then have "h = h2" by(auto) moreover have "a_owner_document_valid h" using assms(1) heap_is_wellformed_def by(simp add: heap_is_wellformed_def) - ultimately show ?case - using old_document disc_nodes_old_document_h2 None(1) child_parent_dual[OF assms(1)] - in_disconnected_nodes_no_parent assms(1) known_ptrs type_wf by blast + ultimately show ?case + using old_document disc_nodes_old_document_h2 None(1) child_parent_dual[OF assms(1)] + in_disconnected_nodes_no_parent assms(1) known_ptrs type_wf by blast next case (Some option) then show ?case apply(simp split: option.splits) - using assms(1) disc_nodes_old_document_h2 old_document remove_child_in_disconnected_nodes known_ptrs + using assms(1) disc_nodes_old_document_h2 old_document remove_child_in_disconnected_nodes + known_ptrs by blast qed have "child \ set (remove1 child disc_nodes_old_document_h2)" - using disc_nodes_old_document_h3 h3 known_ptrs wellformed_h2 \distinct disc_nodes_old_document_h2\ + using disc_nodes_old_document_h3 h3 known_ptrs wellformed_h2 \distinct disc_nodes_old_document_h2\ by auto have "child \ set disc_nodes_document_ptr_h3" proof - have "a_distinct_lists h2" using heap_is_wellformed_def wellformed_h2 by blast - then have 0: "distinct (concat (map (\document_ptr. |h2 \ get_disconnected_nodes document_ptr|\<^sub>r) + then have 0: "distinct (concat (map (\document_ptr. |h2 \ get_disconnected_nodes document_ptr|\<^sub>r) |h2 \ document_ptr_kinds_M|\<^sub>r))" by(simp add: a_distinct_lists_def) show ?thesis - using distinct_concat_map_E(1)[OF 0] \child \ set disc_nodes_old_document_h2\ - disc_nodes_old_document_h2 disc_nodes_document_ptr_h2 - by (meson \type_wf h2\ docs_neq known_ptrs local.get_owner_document_disconnected_nodes - local.known_ptrs_preserved object_ptr_kinds_h_eq3 returns_result_eq wellformed_h2) + using distinct_concat_map_E(1)[OF 0] \child \ set disc_nodes_old_document_h2\ + disc_nodes_old_document_h2 disc_nodes_document_ptr_h2 + by (meson \type_wf h2\ docs_neq known_ptrs local.get_owner_document_disconnected_nodes + local.known_ptrs_preserved object_ptr_kinds_h_eq3 returns_result_eq wellformed_h2) qed have child_in_heap: "child |\| node_ptr_kinds h" - using get_owner_document_ptr_in_heap[OF is_OK_returns_result_I[OF old_document]] - node_ptr_kinds_commutes by blast + using get_owner_document_ptr_in_heap[OF is_OK_returns_result_I[OF old_document]] + node_ptr_kinds_commutes by blast have "a_acyclic_heap h2" using wellformed_h2 by (simp add: heap_is_wellformed_def) have "parent_child_rel h' \ parent_child_rel h2" proof fix x assume "x \ parent_child_rel h'" then show "x \ parent_child_rel h2" - using object_ptr_kinds_h2_eq3 object_ptr_kinds_h3_eq3 children_eq2_h2 children_eq2_h3 - mem_Collect_eq object_ptr_kinds_M_eq_h3 select_result_eq split_cong + using object_ptr_kinds_h2_eq3 object_ptr_kinds_h3_eq3 children_eq2_h2 children_eq2_h3 + mem_Collect_eq object_ptr_kinds_M_eq_h3 select_result_eq split_cong unfolding parent_child_rel_def by(simp) qed then have "a_acyclic_heap h'" using \a_acyclic_heap h2\ acyclic_heap_def acyclic_subset by blast moreover have "a_all_ptrs_in_heap h2" using wellformed_h2 by (simp add: heap_is_wellformed_def) then have "a_all_ptrs_in_heap h3" apply(auto simp add: a_all_ptrs_in_heap_def node_ptr_kinds_eq3_h2 children_eq_h2)[1] apply (simp add: children_eq2_h2 object_ptr_kinds_h2_eq3 subset_code(1)) - by (metis (no_types, lifting) \child \ set disc_nodes_old_document_h2\ \type_wf h2\ disc_nodes_old_document_h2 disc_nodes_old_document_h3 disconnected_nodes_eq2_h2 document_ptr_kinds_eq3_h2 in_set_remove1 local.get_disconnected_nodes_ok local.heap_is_wellformed_disc_nodes_in_heap node_ptr_kinds_eq3_h2 returns_result_select_result select_result_I2 wellformed_h2) - then have "a_all_ptrs_in_heap h'" + by (metis (no_types, lifting) \child \ set disc_nodes_old_document_h2\ \type_wf h2\ + disc_nodes_old_document_h2 disc_nodes_old_document_h3 disconnected_nodes_eq2_h2 + document_ptr_kinds_eq3_h2 in_set_remove1 local.get_disconnected_nodes_ok + local.heap_is_wellformed_disc_nodes_in_heap node_ptr_kinds_eq3_h2 returns_result_select_result + select_result_I2 wellformed_h2) + then have "a_all_ptrs_in_heap h'" apply(auto simp add: a_all_ptrs_in_heap_def node_ptr_kinds_eq3_h3 children_eq_h3)[1] - apply (simp add: children_eq2_h3 object_ptr_kinds_h3_eq3 subset_code(1)) - by (metis (no_types, lifting) \child \ set disc_nodes_old_document_h2\ disc_nodes_document_ptr_h' disc_nodes_document_ptr_h2 disc_nodes_old_document_h2 disconnected_nodes_eq2_h3 document_ptr_kinds_eq3_h3 finite_set_in local.heap_is_wellformed_disc_nodes_in_heap node_ptr_kinds_eq3_h2 node_ptr_kinds_eq3_h3 select_result_I2 set_ConsD subset_code(1) wellformed_h2) + apply (simp add: children_eq2_h3 object_ptr_kinds_h3_eq3 subset_code(1)) + by (metis (no_types, lifting) \child \ set disc_nodes_old_document_h2\ + disc_nodes_document_ptr_h' disc_nodes_document_ptr_h2 disc_nodes_old_document_h2 + disconnected_nodes_eq2_h3 document_ptr_kinds_eq3_h3 finite_set_in + local.heap_is_wellformed_disc_nodes_in_heap node_ptr_kinds_eq3_h2 node_ptr_kinds_eq3_h3 + select_result_I2 set_ConsD subset_code(1) wellformed_h2) moreover have "a_owner_document_valid h2" using wellformed_h2 by (simp add: heap_is_wellformed_def) then have "a_owner_document_valid h'" - apply(simp add: a_owner_document_valid_def node_ptr_kinds_eq_h2 node_ptr_kinds_eq3_h3 - object_ptr_kinds_eq_h2 object_ptr_kinds_eq_h3 document_ptr_kinds_eq2_h2 - document_ptr_kinds_eq2_h3 children_eq2_h2 children_eq2_h3 ) - by (smt disc_nodes_document_ptr_h' disc_nodes_document_ptr_h2 - disc_nodes_old_document_h2 disc_nodes_old_document_h3 - disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 document_ptr_in_heap - document_ptr_kinds_eq3_h2 document_ptr_kinds_eq3_h3 in_set_remove1 - list.set_intros(1) list.set_intros(2) node_ptr_kinds_eq3_h2 - node_ptr_kinds_eq3_h3 object_ptr_kinds_h2_eq3 object_ptr_kinds_h3_eq3 - select_result_I2) + apply(simp add: a_owner_document_valid_def node_ptr_kinds_eq_h2 node_ptr_kinds_eq3_h3 + object_ptr_kinds_eq_h2 object_ptr_kinds_eq_h3 document_ptr_kinds_eq2_h2 + document_ptr_kinds_eq2_h3 children_eq2_h2 children_eq2_h3 ) + by (smt disc_nodes_document_ptr_h' disc_nodes_document_ptr_h2 + disc_nodes_old_document_h2 disc_nodes_old_document_h3 + disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 document_ptr_in_heap + document_ptr_kinds_eq3_h2 document_ptr_kinds_eq3_h3 in_set_remove1 + list.set_intros(1) list.set_intros(2) node_ptr_kinds_eq3_h2 + node_ptr_kinds_eq3_h3 object_ptr_kinds_h2_eq3 object_ptr_kinds_h3_eq3 + select_result_I2) have a_distinct_lists_h2: "a_distinct_lists h2" using wellformed_h2 by (simp add: heap_is_wellformed_def) then have "a_distinct_lists h'" - apply(auto simp add: a_distinct_lists_def object_ptr_kinds_eq_h3 object_ptr_kinds_eq_h2 - children_eq2_h2 children_eq2_h3)[1] + apply(auto simp add: a_distinct_lists_def object_ptr_kinds_eq_h3 object_ptr_kinds_eq_h2 + children_eq2_h2 children_eq2_h3)[1] proof - assume 1: "distinct (concat (map (\ptr. |h' \ get_child_nodes ptr|\<^sub>r) (sorted_list_of_set (fset (object_ptr_kinds h')))))" - and 2: "distinct (concat (map (\document_ptr. |h2 \ get_disconnected_nodes document_ptr|\<^sub>r) + and 2: "distinct (concat (map (\document_ptr. |h2 \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h2)))))" - and 3: "(\x\fset (object_ptr_kinds h'). set |h' \ get_child_nodes x|\<^sub>r) + and 3: "(\x\fset (object_ptr_kinds h'). set |h' \ get_child_nodes x|\<^sub>r) \ (\x\fset (document_ptr_kinds h2). set |h2 \ get_disconnected_nodes x|\<^sub>r) = {}" - show "distinct (concat (map (\document_ptr. |h' \ get_disconnected_nodes document_ptr|\<^sub>r) + show "distinct (concat (map (\document_ptr. |h' \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h')))))" proof(rule distinct_concat_map_I) show "distinct (sorted_list_of_set (fset (document_ptr_kinds h')))" by(auto simp add: document_ptr_kinds_M_def ) next fix x assume a1: "x \ set (sorted_list_of_set (fset (document_ptr_kinds h')))" have 4: "distinct |h2 \ get_disconnected_nodes x|\<^sub>r" - using a_distinct_lists_h2 "2" a1 concat_map_all_distinct document_ptr_kinds_eq2_h2 - document_ptr_kinds_eq2_h3 + using a_distinct_lists_h2 "2" a1 concat_map_all_distinct document_ptr_kinds_eq2_h2 + document_ptr_kinds_eq2_h3 by fastforce then show "distinct |h' \ get_disconnected_nodes x|\<^sub>r" proof (cases "old_document \ x") case True - then show ?thesis + then show ?thesis proof (cases "document_ptr \ x") case True - then show ?thesis - using disconnected_nodes_eq2_h2[OF \old_document \ x\] - disconnected_nodes_eq2_h3[OF \document_ptr \ x\] 4 + then show ?thesis + using disconnected_nodes_eq2_h2[OF \old_document \ x\] + disconnected_nodes_eq2_h3[OF \document_ptr \ x\] 4 by(auto) next case False - then show ?thesis + then show ?thesis using disc_nodes_document_ptr_h3 disc_nodes_document_ptr_h' 4 - \child \ set disc_nodes_document_ptr_h3\ + \child \ set disc_nodes_document_ptr_h3\ by(auto simp add: disconnected_nodes_eq2_h2[OF \old_document \ x\] ) qed next case False then show ?thesis - by (metis (no_types, hide_lams) \distinct disc_nodes_old_document_h2\ - disc_nodes_old_document_h3 disconnected_nodes_eq2_h3 - distinct_remove1 docs_neq select_result_I2) + by (metis (no_types, hide_lams) \distinct disc_nodes_old_document_h2\ + disc_nodes_old_document_h3 disconnected_nodes_eq2_h3 + distinct_remove1 docs_neq select_result_I2) qed next fix x y assume a0: "x \ set (sorted_list_of_set (fset (document_ptr_kinds h')))" and a1: "y \ set (sorted_list_of_set (fset (document_ptr_kinds h')))" and a2: "x \ y" moreover have 5: "set |h2 \ get_disconnected_nodes x|\<^sub>r \ set |h2 \ get_disconnected_nodes y|\<^sub>r = {}" - using 2 calculation + using 2 calculation by (auto simp add: document_ptr_kinds_eq3_h2 document_ptr_kinds_eq3_h3 dest: distinct_concat_map_E(1)) ultimately show "set |h' \ get_disconnected_nodes x|\<^sub>r \ set |h' \ get_disconnected_nodes y|\<^sub>r = {}" proof(cases "old_document = x") case True have "old_document \ y" using \x \ y\ \old_document = x\ by simp have "document_ptr \ x" using docs_neq \old_document = x\ by auto show ?thesis proof(cases "document_ptr = y") case True then show ?thesis - using 5 True select_result_I2[OF disc_nodes_document_ptr_h'] + using 5 True select_result_I2[OF disc_nodes_document_ptr_h'] select_result_I2[OF disc_nodes_document_ptr_h2] select_result_I2[OF disc_nodes_old_document_h2] select_result_I2[OF disc_nodes_old_document_h3] \old_document = x\ by (metis (no_types, lifting) \child \ set (remove1 child disc_nodes_old_document_h2)\ - \document_ptr \ x\ disconnected_nodes_eq2_h3 disjoint_iff_not_equal - notin_set_remove1 set_ConsD) + \document_ptr \ x\ disconnected_nodes_eq2_h3 disjoint_iff_not_equal + notin_set_remove1 set_ConsD) next case False - then show ?thesis - using 5 select_result_I2[OF disc_nodes_document_ptr_h'] + then show ?thesis + using 5 select_result_I2[OF disc_nodes_document_ptr_h'] select_result_I2[OF disc_nodes_document_ptr_h2] - select_result_I2[OF disc_nodes_old_document_h2] + select_result_I2[OF disc_nodes_old_document_h2] select_result_I2[OF disc_nodes_old_document_h3] - disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 \old_document = x\ + disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 \old_document = x\ docs_neq \old_document \ y\ by (metis (no_types, lifting) disjoint_iff_not_equal notin_set_remove1) qed next case False then show ?thesis proof(cases "old_document = y") case True then show ?thesis proof(cases "document_ptr = x") case True show ?thesis - using 5 select_result_I2[OF disc_nodes_document_ptr_h'] - select_result_I2[OF disc_nodes_document_ptr_h2] - select_result_I2[OF disc_nodes_old_document_h2] - select_result_I2[OF disc_nodes_old_document_h3] - \old_document \ x\ \old_document = y\ \document_ptr = x\ - apply(simp) - by (metis (no_types, lifting) \child \ set (remove1 child disc_nodes_old_document_h2)\ - disconnected_nodes_eq2_h3 disjoint_iff_not_equal notin_set_remove1) + using 5 select_result_I2[OF disc_nodes_document_ptr_h'] + select_result_I2[OF disc_nodes_document_ptr_h2] + select_result_I2[OF disc_nodes_old_document_h2] + select_result_I2[OF disc_nodes_old_document_h3] + \old_document \ x\ \old_document = y\ \document_ptr = x\ + apply(simp) + by (metis (no_types, lifting) \child \ set (remove1 child disc_nodes_old_document_h2)\ + disconnected_nodes_eq2_h3 disjoint_iff_not_equal notin_set_remove1) next case False then show ?thesis - using 5 select_result_I2[OF disc_nodes_document_ptr_h'] - select_result_I2[OF disc_nodes_document_ptr_h2] - select_result_I2[OF disc_nodes_old_document_h2] - select_result_I2[OF disc_nodes_old_document_h3] - \old_document \ x\ \old_document = y\ \document_ptr \ x\ - by (metis (no_types, lifting) disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 - disjoint_iff_not_equal docs_neq notin_set_remove1) + using 5 select_result_I2[OF disc_nodes_document_ptr_h'] + select_result_I2[OF disc_nodes_document_ptr_h2] + select_result_I2[OF disc_nodes_old_document_h2] + select_result_I2[OF disc_nodes_old_document_h3] + \old_document \ x\ \old_document = y\ \document_ptr \ x\ + by (metis (no_types, lifting) disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 + disjoint_iff_not_equal docs_neq notin_set_remove1) qed next case False have "set |h2 \ get_disconnected_nodes y|\<^sub>r \ set disc_nodes_old_document_h2 = {}" by (metis DocumentMonad.ptr_kinds_M_ok DocumentMonad.ptr_kinds_M_ptr_kinds False - \type_wf h2\ a1 disc_nodes_old_document_h2 document_ptr_kinds_M_def - document_ptr_kinds_eq2_h2 document_ptr_kinds_eq2_h3 - l_ptr_kinds_M.ptr_kinds_ptr_kinds_M local.get_disconnected_nodes_ok - local.heap_is_wellformed_one_disc_parent returns_result_select_result - wellformed_h2) + \type_wf h2\ a1 disc_nodes_old_document_h2 document_ptr_kinds_M_def + document_ptr_kinds_eq2_h2 document_ptr_kinds_eq2_h3 + l_ptr_kinds_M.ptr_kinds_ptr_kinds_M local.get_disconnected_nodes_ok + local.heap_is_wellformed_one_disc_parent returns_result_select_result + wellformed_h2) then show ?thesis proof(cases "document_ptr = x") case True then have "document_ptr \ y" using \x \ y\ by auto have "set |h2 \ get_disconnected_nodes y|\<^sub>r \ set disc_nodes_old_document_h2 = {}" - using \set |h2 \ get_disconnected_nodes y|\<^sub>r \ set disc_nodes_old_document_h2 = {}\ + using \set |h2 \ get_disconnected_nodes y|\<^sub>r \ set disc_nodes_old_document_h2 = {}\ by blast - then show ?thesis - using 5 select_result_I2[OF disc_nodes_document_ptr_h'] + then show ?thesis + using 5 select_result_I2[OF disc_nodes_document_ptr_h'] select_result_I2[OF disc_nodes_document_ptr_h2] - select_result_I2[OF disc_nodes_old_document_h2] - select_result_I2[OF disc_nodes_old_document_h3] + select_result_I2[OF disc_nodes_old_document_h2] + select_result_I2[OF disc_nodes_old_document_h3] \old_document \ x\ \old_document \ y\ \document_ptr = x\ \document_ptr \ y\ - \child \ set disc_nodes_old_document_h2\ disconnected_nodes_eq2_h2 + \child \ set disc_nodes_old_document_h2\ disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 \set |h2 \ get_disconnected_nodes y|\<^sub>r \ set disc_nodes_old_document_h2 = {}\ by(auto) next case False then show ?thesis proof(cases "document_ptr = y") case True have f1: "set |h2 \ get_disconnected_nodes x|\<^sub>r \ set disc_nodes_document_ptr_h3 = {}" - using 2 a1 document_ptr_in_heap document_ptr_kinds_eq2_h2 document_ptr_kinds_eq2_h3 - \document_ptr \ x\ select_result_I2[OF disc_nodes_document_ptr_h3, symmetric] - disconnected_nodes_eq2_h2[OF docs_neq[symmetric], symmetric] + using 2 a1 document_ptr_in_heap document_ptr_kinds_eq2_h2 document_ptr_kinds_eq2_h3 + \document_ptr \ x\ select_result_I2[OF disc_nodes_document_ptr_h3, symmetric] + disconnected_nodes_eq2_h2[OF docs_neq[symmetric], symmetric] by (simp add: "5" True) - moreover have f1: - "set |h2 \ get_disconnected_nodes x|\<^sub>r \ set |h2 \ get_disconnected_nodes old_document|\<^sub>r = {}" - using 2 a1 old_document_in_heap document_ptr_kinds_eq2_h2 document_ptr_kinds_eq2_h3 - \old_document \ x\ - by (metis (no_types, lifting) a0 distinct_concat_map_E(1) document_ptr_kinds_eq3_h2 - document_ptr_kinds_eq3_h3 finite_fset fmember.rep_eq set_sorted_list_of_set) + moreover have f1: + "set |h2 \ get_disconnected_nodes x|\<^sub>r \ set |h2 \ get_disconnected_nodes old_document|\<^sub>r = {}" + using 2 a1 old_document_in_heap document_ptr_kinds_eq2_h2 document_ptr_kinds_eq2_h3 + \old_document \ x\ + by (metis (no_types, lifting) a0 distinct_concat_map_E(1) document_ptr_kinds_eq3_h2 + document_ptr_kinds_eq3_h3 finite_fset fmember.rep_eq set_sorted_list_of_set) ultimately show ?thesis using 5 select_result_I2[OF disc_nodes_document_ptr_h'] - select_result_I2[OF disc_nodes_old_document_h2] \old_document \ x\ + select_result_I2[OF disc_nodes_old_document_h2] \old_document \ x\ \document_ptr \ x\ \document_ptr = y\ - \child \ set disc_nodes_old_document_h2\ disconnected_nodes_eq2_h2 - disconnected_nodes_eq2_h3 + \child \ set disc_nodes_old_document_h2\ disconnected_nodes_eq2_h2 + disconnected_nodes_eq2_h3 by auto next case False then show ?thesis - using 5 - select_result_I2[OF disc_nodes_old_document_h2] \old_document \ x\ + using 5 + select_result_I2[OF disc_nodes_old_document_h2] \old_document \ x\ \document_ptr \ x\ \document_ptr \ y\ - \child \ set disc_nodes_old_document_h2\ + \child \ set disc_nodes_old_document_h2\ disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 - by (metis \set |h2 \ get_disconnected_nodes y|\<^sub>r \ set disc_nodes_old_document_h2 = {}\ - empty_iff inf.idem) + by (metis \set |h2 \ get_disconnected_nodes y|\<^sub>r \ set disc_nodes_old_document_h2 = {}\ + empty_iff inf.idem) qed qed qed qed qed next fix x xa xb - assume 0: "distinct (concat (map (\ptr. |h' \ get_child_nodes ptr|\<^sub>r) + assume 0: "distinct (concat (map (\ptr. |h' \ get_child_nodes ptr|\<^sub>r) (sorted_list_of_set (fset (object_ptr_kinds h')))))" - and 1: "distinct (concat (map (\document_ptr. |h2 \ get_disconnected_nodes document_ptr|\<^sub>r) + and 1: "distinct (concat (map (\document_ptr. |h2 \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h2)))))" - and 2: "(\x\fset (object_ptr_kinds h'). set |h' \ get_child_nodes x|\<^sub>r) + and 2: "(\x\fset (object_ptr_kinds h'). set |h' \ get_child_nodes x|\<^sub>r) \ (\x\fset (document_ptr_kinds h2). set |h2 \ get_disconnected_nodes x|\<^sub>r) = {}" - and 3: "xa |\| object_ptr_kinds h'" - and 4: "x \ set |h' \ get_child_nodes xa|\<^sub>r" - and 5: "xb |\| document_ptr_kinds h'" - and 6: "x \ set |h' \ get_disconnected_nodes xb|\<^sub>r" + and 3: "xa |\| object_ptr_kinds h'" + and 4: "x \ set |h' \ get_child_nodes xa|\<^sub>r" + and 5: "xb |\| document_ptr_kinds h'" + and 6: "x \ set |h' \ get_disconnected_nodes xb|\<^sub>r" then show False using \child \ set disc_nodes_old_document_h2\ disc_nodes_document_ptr_h' - disc_nodes_document_ptr_h2 disc_nodes_old_document_h2 disc_nodes_old_document_h3 - disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 document_ptr_kinds_eq2_h2 - document_ptr_kinds_eq2_h3 old_document_in_heap + disc_nodes_document_ptr_h2 disc_nodes_old_document_h2 disc_nodes_old_document_h3 + disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 document_ptr_kinds_eq2_h2 + document_ptr_kinds_eq2_h3 old_document_in_heap apply(auto)[1] apply(cases "xb = old_document") proof - assume a1: "xb = old_document" assume a2: "h2 \ get_disconnected_nodes old_document \\<^sub>r disc_nodes_old_document_h2" assume a3: "h3 \ get_disconnected_nodes old_document \\<^sub>r remove1 child disc_nodes_old_document_h2" assume a4: "x \ set |h' \ get_child_nodes xa|\<^sub>r" assume "document_ptr_kinds h2 = document_ptr_kinds h'" - assume a5: "(\x\fset (object_ptr_kinds h'). set |h' \ get_child_nodes x|\<^sub>r) + assume a5: "(\x\fset (object_ptr_kinds h'). set |h' \ get_child_nodes x|\<^sub>r) \ (\x\fset (document_ptr_kinds h'). set |h2 \ get_disconnected_nodes x|\<^sub>r) = {}" have f6: "old_document |\| document_ptr_kinds h'" using a1 \xb |\| document_ptr_kinds h'\ by blast have f7: "|h2 \ get_disconnected_nodes old_document|\<^sub>r = disc_nodes_old_document_h2" using a2 by simp have "x \ set disc_nodes_old_document_h2" - using f6 a3 a1 by (metis (no_types) \type_wf h'\ \x \ set |h' \ get_disconnected_nodes xb|\<^sub>r\ - disconnected_nodes_eq_h3 docs_neq get_disconnected_nodes_ok returns_result_eq - returns_result_select_result set_remove1_subset subsetCE) + using f6 a3 a1 by (metis (no_types) \type_wf h'\ \x \ set |h' \ get_disconnected_nodes xb|\<^sub>r\ + disconnected_nodes_eq_h3 docs_neq get_disconnected_nodes_ok returns_result_eq + returns_result_select_result set_remove1_subset subsetCE) then have "set |h' \ get_child_nodes xa|\<^sub>r \ set |h2 \ get_disconnected_nodes xb|\<^sub>r = {}" using f7 f6 a5 a4 \xa |\| object_ptr_kinds h'\ - by fastforce + by fastforce then show ?thesis using \x \ set disc_nodes_old_document_h2\ a1 a4 f7 by blast next assume a1: "xb \ old_document" assume a2: "h2 \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_document_ptr_h3" assume a3: "h2 \ get_disconnected_nodes old_document \\<^sub>r disc_nodes_old_document_h2" assume a4: "xa |\| object_ptr_kinds h'" assume a5: "h' \ get_disconnected_nodes document_ptr \\<^sub>r child # disc_nodes_document_ptr_h3" assume a6: "old_document |\| document_ptr_kinds h'" assume a7: "x \ set |h' \ get_disconnected_nodes xb|\<^sub>r" assume a8: "x \ set |h' \ get_child_nodes xa|\<^sub>r" assume a9: "document_ptr_kinds h2 = document_ptr_kinds h'" - assume a10: "\doc_ptr. old_document \ doc_ptr + assume a10: "\doc_ptr. old_document \ doc_ptr \ |h2 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r" - assume a11: "\doc_ptr. document_ptr \ doc_ptr + assume a11: "\doc_ptr. document_ptr \ doc_ptr \ |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h' \ get_disconnected_nodes doc_ptr|\<^sub>r" - assume a12: "(\x\fset (object_ptr_kinds h'). set |h' \ get_child_nodes x|\<^sub>r) + assume a12: "(\x\fset (object_ptr_kinds h'). set |h' \ get_child_nodes x|\<^sub>r) \ (\x\fset (document_ptr_kinds h'). set |h2 \ get_disconnected_nodes x|\<^sub>r) = {}" have f13: "\d. d \ set |h' \ document_ptr_kinds_M|\<^sub>r \ h2 \ ok get_disconnected_nodes d" using a9 \type_wf h2\ get_disconnected_nodes_ok by simp then have f14: "|h2 \ get_disconnected_nodes old_document|\<^sub>r = disc_nodes_old_document_h2" using a6 a3 by simp have "x \ set |h2 \ get_disconnected_nodes xb|\<^sub>r" using a12 a8 a4 \xb |\| document_ptr_kinds h'\ by (meson UN_I disjoint_iff_not_equal fmember.rep_eq) then have "x = child" using f13 a11 a10 a7 a5 a2 a1 - by (metis (no_types, lifting) select_result_I2 set_ConsD) + by (metis (no_types, lifting) select_result_I2 set_ConsD) then have "child \ set disc_nodes_old_document_h2" using f14 a12 a8 a6 a4 - by (metis \type_wf h'\ adopt_node_removes_child assms(1) assms(2) type_wf - get_child_nodes_ok known_ptrs local.known_ptrs_known_ptr object_ptr_kinds_h2_eq3 - object_ptr_kinds_h3_eq3 object_ptr_kinds_h_eq3 returns_result_select_result) + by (metis \type_wf h'\ adopt_node_removes_child assms(1) assms(2) type_wf + get_child_nodes_ok known_ptrs local.known_ptrs_known_ptr object_ptr_kinds_h2_eq3 + object_ptr_kinds_h3_eq3 object_ptr_kinds_h_eq3 returns_result_select_result) then show ?thesis using \child \ set disc_nodes_old_document_h2\ by fastforce qed qed ultimately show ?thesis using \type_wf h'\ \known_ptrs h'\ \a_owner_document_valid h'\ heap_is_wellformed_def by blast qed then show "heap_is_wellformed h'" and "known_ptrs h'" and "type_wf h'" by auto qed lemma adopt_node_node_in_disconnected_nodes: assumes wellformed: "heap_is_wellformed h" and adopt_node: "h \ adopt_node owner_document node_ptr \\<^sub>h h'" and "h' \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" shows "node_ptr \ set disc_nodes" proof - obtain old_document parent_opt h2 where old_document: "h \ get_owner_document (cast node_ptr) \\<^sub>r old_document" and parent_opt: "h \ get_parent node_ptr \\<^sub>r parent_opt" and - h2: "h \ (case parent_opt of Some parent \ remove_child parent node_ptr | None \ return ()) \\<^sub>h h2" + h2: "h \ (case parent_opt of Some parent \ remove_child parent node_ptr | None \ return ()) \\<^sub>h h2" and h': "h2 \ (if owner_document \ old_document then do { old_disc_nodes \ get_disconnected_nodes old_document; set_disconnected_nodes old_document (remove1 node_ptr old_disc_nodes); disc_nodes \ get_disconnected_nodes owner_document; set_disconnected_nodes owner_document (node_ptr # disc_nodes) } else do { return () }) \\<^sub>h h'" using assms(2) - by(auto simp add: adopt_node_def elim!: bind_returns_heap_E - dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] - pure_returns_heap_eq[rotated, OF get_parent_pure]) + by(auto simp add: adopt_node_def elim!: bind_returns_heap_E + dest!: pure_returns_heap_eq[rotated, OF get_owner_document_pure] + pure_returns_heap_eq[rotated, OF get_parent_pure]) show ?thesis proof (cases "owner_document = old_document") case True then show ?thesis proof (insert parent_opt h2, induct parent_opt) case None then have "h = h'" using h2 h' by(auto) then show ?case using in_disconnected_nodes_no_parent assms None old_document by blast next case (Some parent) then show ?case using remove_child_in_disconnected_nodes known_ptrs True h' assms(3) old_document by auto qed next case False then show ?thesis using assms(3) h' list.set_intros(1) select_result_I2 set_disconnected_nodes_get_disconnected_nodes apply(auto elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated])[1] proof - - fix x and h'a and xb + fix x and h'a and xb assume a1: "h' \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes" - assume a2: "\h document_ptr disc_nodes h'. h \ set_disconnected_nodes document_ptr disc_nodes \\<^sub>h h' + assume a2: "\h document_ptr disc_nodes h'. h \ set_disconnected_nodes document_ptr disc_nodes \\<^sub>h h' \ h' \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes" assume "h'a \ set_disconnected_nodes owner_document (node_ptr # xb) \\<^sub>h h'" then have "node_ptr # xb = disc_nodes" using a2 a1 by (meson returns_result_eq) then show ?thesis by (meson list.set_intros(1)) qed qed qed end -interpretation i_adopt_node_wf?: l_adopt_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_owner_document get_parent get_parent_locs - remove_child remove_child_locs get_disconnected_nodes get_disconnected_nodes_locs - set_disconnected_nodes set_disconnected_nodes_locs adopt_node adopt_node_locs known_ptr - type_wf get_child_nodes get_child_nodes_locs known_ptrs set_child_nodes set_child_nodes_locs - remove heap_is_wellformed parent_child_rel +interpretation i_adopt_node_wf?: l_adopt_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_owner_document get_parent get_parent_locs + remove_child remove_child_locs get_disconnected_nodes get_disconnected_nodes_locs + set_disconnected_nodes set_disconnected_nodes_locs adopt_node adopt_node_locs known_ptr + type_wf get_child_nodes get_child_nodes_locs known_ptrs set_child_nodes set_child_nodes_locs + remove heap_is_wellformed parent_child_rel by(simp add: l_adopt_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def instances) declare l_adopt_node_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] -interpretation i_adopt_node_wf2?: l_adopt_node_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_owner_document get_parent get_parent_locs - remove_child remove_child_locs get_disconnected_nodes get_disconnected_nodes_locs - set_disconnected_nodes set_disconnected_nodes_locs adopt_node adopt_node_locs known_ptr - type_wf get_child_nodes get_child_nodes_locs known_ptrs set_child_nodes set_child_nodes_locs - remove heap_is_wellformed parent_child_rel get_root_node get_root_node_locs +interpretation i_adopt_node_wf2?: l_adopt_node_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_owner_document get_parent get_parent_locs + remove_child remove_child_locs get_disconnected_nodes get_disconnected_nodes_locs + set_disconnected_nodes set_disconnected_nodes_locs adopt_node adopt_node_locs known_ptr + type_wf get_child_nodes get_child_nodes_locs known_ptrs set_child_nodes set_child_nodes_locs + remove heap_is_wellformed parent_child_rel get_root_node get_root_node_locs by(simp add: l_adopt_node_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def instances) declare l_adopt_node_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms[instances] -locale l_adopt_node_wf = l_heap_is_wellformed + l_known_ptrs + l_type_wf + l_adopt_node_defs - + l_get_child_nodes_defs + l_get_disconnected_nodes_defs + +locale l_adopt_node_wf = l_heap_is_wellformed + l_known_ptrs + l_type_wf + l_adopt_node_defs + + l_get_child_nodes_defs + l_get_disconnected_nodes_defs + assumes adopt_node_preserves_wellformedness: - "heap_is_wellformed h \ h \ adopt_node document_ptr child \\<^sub>h h' \ known_ptrs h + "heap_is_wellformed h \ h \ adopt_node document_ptr child \\<^sub>h h' \ known_ptrs h \ type_wf h \ heap_is_wellformed h'" assumes adopt_node_removes_child: - "heap_is_wellformed h \ h \ adopt_node owner_document node_ptr \\<^sub>h h2 - \ h2 \ get_child_nodes ptr \\<^sub>r children \ known_ptrs h + "heap_is_wellformed h \ h \ adopt_node owner_document node_ptr \\<^sub>h h2 + \ h2 \ get_child_nodes ptr \\<^sub>r children \ known_ptrs h \ type_wf h \ node_ptr \ set children" assumes adopt_node_node_in_disconnected_nodes: - "heap_is_wellformed h \ h \ adopt_node owner_document node_ptr \\<^sub>h h' - \ h' \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes + "heap_is_wellformed h \ h \ adopt_node owner_document node_ptr \\<^sub>h h' + \ h' \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes \ known_ptrs h \ type_wf h \ node_ptr \ set disc_nodes" - assumes adopt_node_removes_first_child: "heap_is_wellformed h \ type_wf h \ known_ptrs h - \ h \ adopt_node owner_document node \\<^sub>h h' - \ h \ get_child_nodes ptr' \\<^sub>r node # children + assumes adopt_node_removes_first_child: "heap_is_wellformed h \ type_wf h \ known_ptrs h + \ h \ adopt_node owner_document node \\<^sub>h h' + \ h \ get_child_nodes ptr' \\<^sub>r node # children \ h' \ get_child_nodes ptr' \\<^sub>r children" assumes adopt_node_document_in_heap: "heap_is_wellformed h \ known_ptrs h \ type_wf h \ h \ ok (adopt_node owner_document node) \ owner_document |\| document_ptr_kinds h" assumes adopt_node_preserves_type_wf: - "heap_is_wellformed h \ h \ adopt_node document_ptr child \\<^sub>h h' \ known_ptrs h + "heap_is_wellformed h \ h \ adopt_node document_ptr child \\<^sub>h h' \ known_ptrs h \ type_wf h \ type_wf h'" assumes adopt_node_preserves_known_ptrs: - "heap_is_wellformed h \ h \ adopt_node document_ptr child \\<^sub>h h' \ known_ptrs h + "heap_is_wellformed h \ h \ adopt_node document_ptr child \\<^sub>h h' \ known_ptrs h \ type_wf h \ known_ptrs h'" -lemma adopt_node_wf_is_l_adopt_node_wf [instances]: +lemma adopt_node_wf_is_l_adopt_node_wf [instances]: "l_adopt_node_wf type_wf known_ptr heap_is_wellformed parent_child_rel get_child_nodes get_disconnected_nodes known_ptrs adopt_node" using heap_is_wellformed_is_l_heap_is_wellformed known_ptrs_is_l_known_ptrs apply(auto simp add: l_adopt_node_wf_def l_adopt_node_wf_axioms_def)[1] using adopt_node_preserves_wellformedness apply blast using adopt_node_removes_child apply blast using adopt_node_node_in_disconnected_nodes apply blast using adopt_node_removes_first_child apply blast using adopt_node_document_in_heap apply blast using adopt_node_preserves_wellformedness apply blast using adopt_node_preserves_wellformedness apply blast done subsection \insert\_before\ locale l_insert_before_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_adopt_node_wf + l_set_disconnected_nodes_get_child_nodes + l_heap_is_wellformed begin lemma insert_before_removes_child: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "ptr \ ptr'" assumes "h \ insert_before ptr node child \\<^sub>h h'" assumes "h \ get_child_nodes ptr' \\<^sub>r node # children" shows "h' \ get_child_nodes ptr' \\<^sub>r children" proof - obtain owner_document h2 h3 disc_nodes reference_child where "h \ (if Some node = child then a_next_sibling node else return child) \\<^sub>r reference_child" and "h \ get_owner_document ptr \\<^sub>r owner_document" and h2: "h \ adopt_node owner_document node \\<^sub>h h2" and "h2 \ get_disconnected_nodes owner_document \\<^sub>r disc_nodes" and h3: "h2 \ set_disconnected_nodes owner_document (remove1 node disc_nodes) \\<^sub>h h3" and h': "h3 \ a_insert_node ptr node reference_child \\<^sub>h h'" using assms(5) - by(auto simp add: insert_before_def a_ensure_pre_insertion_validity_def - elim!: bind_returns_heap_E bind_returns_result_E - bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] - bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] - bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] - bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] - bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] - split: if_splits option.splits) + by(auto simp add: insert_before_def a_ensure_pre_insertion_validity_def + elim!: bind_returns_heap_E bind_returns_result_E + bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] + bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] + bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] + bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] + bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] + split: if_splits option.splits) have "h2 \ get_child_nodes ptr' \\<^sub>r children" using h2 adopt_node_removes_first_child assms(1) assms(2) assms(3) assms(6) by simp then have "h3 \ get_child_nodes ptr' \\<^sub>r children" using h3 - by(auto simp add: set_disconnected_nodes_get_child_nodes - dest!: reads_writes_separate_forwards[OF get_child_nodes_reads set_disconnected_nodes_writes]) + by(auto simp add: set_disconnected_nodes_get_child_nodes + dest!: reads_writes_separate_forwards[OF get_child_nodes_reads set_disconnected_nodes_writes]) then show ?thesis using h' assms(4) - apply(auto simp add: a_insert_node_def - elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated])[1] - by(auto simp add: set_child_nodes_get_child_nodes_different_pointers - elim!: reads_writes_separate_forwards[OF get_child_nodes_reads set_child_nodes_writes]) + apply(auto simp add: a_insert_node_def + elim!: bind_returns_heap_E bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated])[1] + by(auto simp add: set_child_nodes_get_child_nodes_different_pointers + elim!: reads_writes_separate_forwards[OF get_child_nodes_reads set_child_nodes_writes]) qed end -locale l_insert_before_wf = l_heap_is_wellformed_defs + l_type_wf + l_known_ptrs - + l_insert_before_defs + l_get_child_nodes_defs + -assumes insert_before_removes_child: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ ptr \ ptr' - \ h \ insert_before ptr node child \\<^sub>h h' - \ h \ get_child_nodes ptr' \\<^sub>r node # children +locale l_insert_before_wf = l_heap_is_wellformed_defs + l_type_wf + l_known_ptrs + + l_insert_before_defs + l_get_child_nodes_defs + + assumes insert_before_removes_child: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ ptr \ ptr' + \ h \ insert_before ptr node child \\<^sub>h h' + \ h \ get_child_nodes ptr' \\<^sub>r node # children \ h' \ get_child_nodes ptr' \\<^sub>r children" -interpretation i_insert_before_wf?: l_insert_before_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_parent get_parent_locs - get_child_nodes get_child_nodes_locs set_child_nodes - set_child_nodes_locs get_ancestors get_ancestors_locs - adopt_node adopt_node_locs set_disconnected_nodes - set_disconnected_nodes_locs get_disconnected_nodes - get_disconnected_nodes_locs get_owner_document insert_before - insert_before_locs append_child type_wf known_ptr known_ptrs - heap_is_wellformed parent_child_rel +interpretation i_insert_before_wf?: l_insert_before_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_parent get_parent_locs + get_child_nodes get_child_nodes_locs set_child_nodes + set_child_nodes_locs get_ancestors get_ancestors_locs + adopt_node adopt_node_locs set_disconnected_nodes + set_disconnected_nodes_locs get_disconnected_nodes + get_disconnected_nodes_locs get_owner_document insert_before + insert_before_locs append_child type_wf known_ptr known_ptrs + heap_is_wellformed parent_child_rel by(simp add: l_insert_before_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def instances) declare l_insert_before_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms [instances] -lemma insert_before_wf_is_l_insert_before_wf [instances]: +lemma insert_before_wf_is_l_insert_before_wf [instances]: "l_insert_before_wf heap_is_wellformed type_wf known_ptr known_ptrs insert_before get_child_nodes" apply(auto simp add: l_insert_before_wf_def l_insert_before_wf_axioms_def instances)[1] using insert_before_removes_child apply fast done locale l_insert_before_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_insert_before_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_set_child_nodes_get_disconnected_nodes + l_remove_child + l_get_root_node_wf + l_set_disconnected_nodes_get_disconnected_nodes_wf + l_set_disconnected_nodes_get_ancestors + l_get_ancestors_wf + l_get_owner_document + l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_get_owner_document_wf begin -lemma insert_before_preserves_acyclitity_thesis: +lemma insert_before_preserves_acyclitity: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "h \ insert_before ptr node child \\<^sub>h h'" -shows "acyclic (parent_child_rel h')" + shows "acyclic (parent_child_rel h')" proof - obtain ancestors reference_child owner_document h2 h3 disconnected_nodes_h2 - where - ancestors: "h \ get_ancestors ptr \\<^sub>r ancestors" and - node_not_in_ancestors: "cast node \ set ancestors" and - reference_child: - "h \ (if Some node = child then a_next_sibling node + where + ancestors: "h \ get_ancestors ptr \\<^sub>r ancestors" and + node_not_in_ancestors: "cast node \ set ancestors" and + reference_child: + "h \ (if Some node = child then a_next_sibling node else return child) \\<^sub>r reference_child" and - owner_document: "h \ get_owner_document ptr \\<^sub>r owner_document" and - h2: "h \ adopt_node owner_document node \\<^sub>h h2" and - disconnected_nodes_h2: "h2 \ get_disconnected_nodes owner_document + owner_document: "h \ get_owner_document ptr \\<^sub>r owner_document" and + h2: "h \ adopt_node owner_document node \\<^sub>h h2" and + disconnected_nodes_h2: "h2 \ get_disconnected_nodes owner_document \\<^sub>r disconnected_nodes_h2" and - h3: "h2 \ set_disconnected_nodes owner_document + h3: "h2 \ set_disconnected_nodes owner_document (remove1 node disconnected_nodes_h2) \\<^sub>h h3" and - h': "h3 \ a_insert_node ptr node reference_child \\<^sub>h h'" - using assms(4) - by(auto simp add: insert_before_def a_ensure_pre_insertion_validity_def - elim!: bind_returns_heap_E bind_returns_result_E - bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] - bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] - bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] - bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] - bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] - split: if_splits option.splits) + h': "h3 \ a_insert_node ptr node reference_child \\<^sub>h h'" + using assms(4) + by(auto simp add: insert_before_def a_ensure_pre_insertion_validity_def + elim!: bind_returns_heap_E bind_returns_result_E + bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] + bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] + bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] + bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] + bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] + split: if_splits option.splits) have "known_ptr ptr" - by (meson get_owner_document_ptr_in_heap is_OK_returns_result_I assms - l_known_ptrs.known_ptrs_known_ptr l_known_ptrs_axioms owner_document) + by (meson get_owner_document_ptr_in_heap is_OK_returns_result_I assms + l_known_ptrs.known_ptrs_known_ptr l_known_ptrs_axioms owner_document) have "type_wf h2" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF adopt_node_writes h2] using assms adopt_node_types_preserved by(auto simp add: a_remove_child_locs_def reflp_def transp_def) then have "type_wf h3" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h3] - using set_disconnected_nodes_types_preserved + using set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) then have "type_wf h'" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF insert_node_writes h'] - using set_child_nodes_types_preserved + using set_child_nodes_types_preserved by(auto simp add: reflp_def transp_def) have object_ptr_kinds_M_eq3_h: "object_ptr_kinds h = object_ptr_kinds h2" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF adopt_node_writes h2]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF adopt_node_writes h2]) using adopt_node_pointers_preserved - apply blast + apply blast by (auto simp add: reflp_def transp_def) then have object_ptr_kinds_M_eq_h: "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h2 \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs ) then have object_ptr_kinds_M_eq2_h: "|h \ object_ptr_kinds_M|\<^sub>r = |h2 \ object_ptr_kinds_M|\<^sub>r" by simp then have node_ptr_kinds_eq2_h: "|h \ node_ptr_kinds_M|\<^sub>r = |h2 \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast have "known_ptrs h2" using assms object_ptr_kinds_M_eq3_h known_ptrs_preserved by blast have wellformed_h2: "heap_is_wellformed h2" using adopt_node_preserves_wellformedness[OF assms(1) h2] assms by simp have object_ptr_kinds_M_eq3_h2: "object_ptr_kinds h2 = object_ptr_kinds h3" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF set_disconnected_nodes_writes h3]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF set_disconnected_nodes_writes h3]) unfolding a_remove_child_locs_def - using set_disconnected_nodes_pointers_preserved + using set_disconnected_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) then have object_ptr_kinds_M_eq_h2: "\ptrs. h2 \ object_ptr_kinds_M \\<^sub>r ptrs = h3 \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs) then have object_ptr_kinds_M_eq2_h2: "|h2 \ object_ptr_kinds_M|\<^sub>r = |h3 \ object_ptr_kinds_M|\<^sub>r" by simp then have node_ptr_kinds_eq2_h2: "|h2 \ node_ptr_kinds_M|\<^sub>r = |h3 \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast have document_ptr_kinds_eq2_h2: "|h2 \ document_ptr_kinds_M|\<^sub>r = |h3 \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_M_eq2_h2 document_ptr_kinds_M_eq by auto have "known_ptrs h3" using object_ptr_kinds_M_eq3_h2 known_ptrs_preserved \known_ptrs h2\ by blast - + have object_ptr_kinds_M_eq3_h': "object_ptr_kinds h3 = object_ptr_kinds h'" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF insert_node_writes h']) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF insert_node_writes h']) unfolding a_remove_child_locs_def - using set_child_nodes_pointers_preserved + using set_child_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) - then have object_ptr_kinds_M_eq_h3: + then have object_ptr_kinds_M_eq_h3: "\ptrs. h3 \ object_ptr_kinds_M \\<^sub>r ptrs = h' \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs) - then have object_ptr_kinds_M_eq2_h3: + then have object_ptr_kinds_M_eq2_h3: "|h3 \ object_ptr_kinds_M|\<^sub>r = |h' \ object_ptr_kinds_M|\<^sub>r" by simp then have node_ptr_kinds_eq2_h3: "|h3 \ node_ptr_kinds_M|\<^sub>r = |h' \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast have document_ptr_kinds_eq2_h3: "|h3 \ document_ptr_kinds_M|\<^sub>r = |h' \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_M_eq2_h3 document_ptr_kinds_M_eq by auto have "known_ptrs h'" using object_ptr_kinds_M_eq3_h' known_ptrs_preserved \known_ptrs h3\ by blast - have disconnected_nodes_eq_h2: - "\doc_ptr disc_nodes. owner_document \ doc_ptr + have disconnected_nodes_eq_h2: + "\doc_ptr disc_nodes. owner_document \ doc_ptr \ h2 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_preserved) by (auto simp add: set_disconnected_nodes_get_disconnected_nodes_different_pointers) - then have disconnected_nodes_eq2_h2: - "\doc_ptr. doc_ptr \ owner_document + then have disconnected_nodes_eq2_h2: + "\doc_ptr. doc_ptr \ owner_document \ |h2 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - have disconnected_nodes_h3: - "h3 \ get_disconnected_nodes owner_document \\<^sub>r remove1 node disconnected_nodes_h2" + have disconnected_nodes_h3: + "h3 \ get_disconnected_nodes owner_document \\<^sub>r remove1 node disconnected_nodes_h2" using h3 set_disconnected_nodes_get_disconnected_nodes by blast - have disconnected_nodes_eq_h3: - "\doc_ptr disc_nodes. h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes + have disconnected_nodes_eq_h3: + "\doc_ptr disc_nodes. h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h' \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads insert_node_writes h' apply(rule reads_writes_preserved) using set_child_nodes_get_disconnected_nodes by fast - then have disconnected_nodes_eq2_h3: + then have disconnected_nodes_eq2_h3: "\doc_ptr. |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h' \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - have children_eq_h2: - "\ptr' children. h2 \ get_child_nodes ptr' \\<^sub>r children = h3 \ get_child_nodes ptr' \\<^sub>r children" + have children_eq_h2: + "\ptr' children. h2 \ get_child_nodes ptr' \\<^sub>r children = h3 \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_preserved) by (auto simp add: set_disconnected_nodes_get_child_nodes) - then have children_eq2_h2: - "\ptr'. |h2 \ get_child_nodes ptr'|\<^sub>r = |h3 \ get_child_nodes ptr'|\<^sub>r" + then have children_eq2_h2: + "\ptr'. |h2 \ get_child_nodes ptr'|\<^sub>r = |h3 \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force - have children_eq_h3: - "\ptr' children. ptr \ ptr' + have children_eq_h3: + "\ptr' children. ptr \ ptr' \ h3 \ get_child_nodes ptr' \\<^sub>r children = h' \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads insert_node_writes h' apply(rule reads_writes_preserved) by (auto simp add: set_child_nodes_get_child_nodes_different_pointers) - then have children_eq2_h3: - "\ptr'. ptr \ ptr' \ |h3 \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" + then have children_eq2_h3: + "\ptr'. ptr \ ptr' \ |h3 \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force obtain children_h3 where children_h3: "h3 \ get_child_nodes ptr \\<^sub>r children_h3" using h' a_insert_node_def by auto have children_h': "h' \ get_child_nodes ptr \\<^sub>r insert_before_list node reference_child children_h3" using h' \type_wf h3\ \known_ptr ptr\ - by(auto simp add: a_insert_node_def elim!: bind_returns_heap_E2 - dest!: set_child_nodes_get_child_nodes returns_result_eq[OF children_h3]) + by(auto simp add: a_insert_node_def elim!: bind_returns_heap_E2 + dest!: set_child_nodes_get_child_nodes returns_result_eq[OF children_h3]) have ptr_in_heap: "ptr |\| object_ptr_kinds h3" using children_h3 get_child_nodes_ptr_in_heap by blast have node_in_heap: "node |\| node_ptr_kinds h" using h2 adopt_node_child_in_heap by fast - have child_not_in_any_children: + have child_not_in_any_children: "\p children. h2 \ get_child_nodes p \\<^sub>r children \ node \ set children" using assms h2 adopt_node_removes_child by auto have "node \ set disconnected_nodes_h2" - using disconnected_nodes_h2 h2 adopt_node_node_in_disconnected_nodes assms(1) - \type_wf h\ \known_ptrs h\ by blast - have node_not_in_disconnected_nodes: - "\d. d |\| document_ptr_kinds h3 \ node \ set |h3 \ get_disconnected_nodes d|\<^sub>r" + using disconnected_nodes_h2 h2 adopt_node_node_in_disconnected_nodes assms(1) + \type_wf h\ \known_ptrs h\ by blast + have node_not_in_disconnected_nodes: + "\d. d |\| document_ptr_kinds h3 \ node \ set |h3 \ get_disconnected_nodes d|\<^sub>r" proof - fix d assume "d |\| document_ptr_kinds h3" show "node \ set |h3 \ get_disconnected_nodes d|\<^sub>r" proof (cases "d = owner_document") case True then show ?thesis - using disconnected_nodes_h2 wellformed_h2 h3 remove_from_disconnected_nodes_removes - wellformed_h2 \d |\| document_ptr_kinds h3\ disconnected_nodes_h3 + using disconnected_nodes_h2 wellformed_h2 h3 remove_from_disconnected_nodes_removes + wellformed_h2 \d |\| document_ptr_kinds h3\ disconnected_nodes_h3 by fastforce next case False - then have + then have "set |h2 \ get_disconnected_nodes d|\<^sub>r \ set |h2 \ get_disconnected_nodes owner_document|\<^sub>r = {}" using distinct_concat_map_E(1) wellformed_h2 - by (metis (no_types, lifting) \d |\| document_ptr_kinds h3\ \type_wf h2\ - disconnected_nodes_h2 document_ptr_kinds_M_def document_ptr_kinds_eq2_h2 - l_ptr_kinds_M.ptr_kinds_ptr_kinds_M local.get_disconnected_nodes_ok - local.heap_is_wellformed_one_disc_parent returns_result_select_result - select_result_I2) + by (metis (no_types, lifting) \d |\| document_ptr_kinds h3\ \type_wf h2\ + disconnected_nodes_h2 document_ptr_kinds_M_def document_ptr_kinds_eq2_h2 + l_ptr_kinds_M.ptr_kinds_ptr_kinds_M local.get_disconnected_nodes_ok + local.heap_is_wellformed_one_disc_parent returns_result_select_result + select_result_I2) then show ?thesis - using disconnected_nodes_eq2_h2[OF False] \node \ set disconnected_nodes_h2\ - disconnected_nodes_h2 by fastforce + using disconnected_nodes_eq2_h2[OF False] \node \ set disconnected_nodes_h2\ + disconnected_nodes_h2 by fastforce qed qed - have "cast node \ ptr" + have "cast node \ ptr" using ancestors node_not_in_ancestors get_ancestors_ptr by fast obtain ancestors_h2 where ancestors_h2: "h2 \ get_ancestors ptr \\<^sub>r ancestors_h2" using get_ancestors_ok object_ptr_kinds_M_eq2_h2 \known_ptrs h2\ \type_wf h2\ by (metis is_OK_returns_result_E object_ptr_kinds_M_eq3_h2 ptr_in_heap wellformed_h2) have ancestors_h3: "h3 \ get_ancestors ptr \\<^sub>r ancestors_h2" using get_ancestors_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_separate_forwards) - using \heap_is_wellformed h2\ ancestors_h2 + using \heap_is_wellformed h2\ ancestors_h2 by (auto simp add: set_disconnected_nodes_get_ancestors) have node_not_in_ancestors_h2: "cast node \ set ancestors_h2" apply(rule get_ancestors_remains_not_in_ancestors[OF assms(1) wellformed_h2 ancestors ancestors_h2]) using adopt_node_children_subset using h2 \known_ptrs h\ \ type_wf h\ apply(blast) using node_not_in_ancestors apply(blast) using object_ptr_kinds_M_eq3_h apply(blast) using \known_ptrs h\ apply(blast) using \type_wf h\ apply(blast) using \type_wf h2\ by blast - have "acyclic (parent_child_rel h2)" - using wellformed_h2 by (simp add: heap_is_wellformed_def acyclic_heap_def) - then have "acyclic (parent_child_rel h3)" - by(auto simp add: parent_child_rel_def object_ptr_kinds_M_eq3_h2 children_eq2_h2) - moreover + have "acyclic (parent_child_rel h2)" + using wellformed_h2 by (simp add: heap_is_wellformed_def acyclic_heap_def) + then have "acyclic (parent_child_rel h3)" + by(auto simp add: parent_child_rel_def object_ptr_kinds_M_eq3_h2 children_eq2_h2) + moreover have "cast node \ {x. (x, ptr) \ (parent_child_rel h2)\<^sup>*}" using adopt_node_removes_child using ancestors node_not_in_ancestors - using \known_ptrs h2\ \type_wf h2\ ancestors_h2 local.get_ancestors_parent_child_rel node_not_in_ancestors_h2 wellformed_h2 + using \known_ptrs h2\ \type_wf h2\ ancestors_h2 local.get_ancestors_parent_child_rel + node_not_in_ancestors_h2 wellformed_h2 by blast then have "cast node \ {x. (x, ptr) \ (parent_child_rel h3)\<^sup>*}" by(auto simp add: parent_child_rel_def object_ptr_kinds_M_eq3_h2 children_eq2_h2) moreover have "parent_child_rel h' = insert (ptr, cast node) ((parent_child_rel h3))" using children_h3 children_h' ptr_in_heap - apply(auto simp add: parent_child_rel_def object_ptr_kinds_M_eq3_h' children_eq2_h3 - insert_before_list_node_in_set)[1] + apply(auto simp add: parent_child_rel_def object_ptr_kinds_M_eq3_h' children_eq2_h3 + insert_before_list_node_in_set)[1] apply (metis (no_types, lifting) children_eq2_h3 insert_before_list_in_set select_result_I2) by (metis (no_types, lifting) children_eq2_h3 imageI insert_before_list_in_set select_result_I2) ultimately show "acyclic (parent_child_rel h')" by (auto simp add: heap_is_wellformed_def) qed lemma insert_before_heap_is_wellformed_preserved: assumes wellformed: "heap_is_wellformed h" and insert_before: "h \ insert_before ptr node child \\<^sub>h h'" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" shows "heap_is_wellformed h'" and "type_wf h'" and "known_ptrs h'" proof - obtain ancestors reference_child owner_document h2 h3 disconnected_nodes_h2 where ancestors: "h \ get_ancestors ptr \\<^sub>r ancestors" and node_not_in_ancestors: "cast node \ set ancestors" and reference_child: - "h \ (if Some node = child then a_next_sibling node else return child) \\<^sub>r reference_child" and + "h \ (if Some node = child then a_next_sibling node else return child) \\<^sub>r reference_child" and owner_document: "h \ get_owner_document ptr \\<^sub>r owner_document" and h2: "h \ adopt_node owner_document node \\<^sub>h h2" and disconnected_nodes_h2: "h2 \ get_disconnected_nodes owner_document \\<^sub>r disconnected_nodes_h2" and h3: "h2 \ set_disconnected_nodes owner_document (remove1 node disconnected_nodes_h2) \\<^sub>h h3" and h': "h3 \ a_insert_node ptr node reference_child \\<^sub>h h'" using assms(2) - by(auto simp add: insert_before_def a_ensure_pre_insertion_validity_def - elim!: bind_returns_heap_E bind_returns_result_E - bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] - bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] - bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] - bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] - bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] - split: if_splits option.splits) + by(auto simp add: insert_before_def a_ensure_pre_insertion_validity_def + elim!: bind_returns_heap_E bind_returns_result_E + bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] + bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] + bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] + bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] + bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] + split: if_splits option.splits) have "known_ptr ptr" - by (meson get_owner_document_ptr_in_heap is_OK_returns_result_I known_ptrs - l_known_ptrs.known_ptrs_known_ptr l_known_ptrs_axioms owner_document) + by (meson get_owner_document_ptr_in_heap is_OK_returns_result_I known_ptrs + l_known_ptrs.known_ptrs_known_ptr l_known_ptrs_axioms owner_document) have "type_wf h2" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF adopt_node_writes h2] using type_wf adopt_node_types_preserved by(auto simp add: a_remove_child_locs_def reflp_def transp_def) then have "type_wf h3" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h3] - using set_disconnected_nodes_types_preserved + using set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) then show "type_wf h'" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF insert_node_writes h'] - using set_child_nodes_types_preserved + using set_child_nodes_types_preserved by(auto simp add: reflp_def transp_def) have object_ptr_kinds_M_eq3_h: "object_ptr_kinds h = object_ptr_kinds h2" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF adopt_node_writes h2]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF adopt_node_writes h2]) using adopt_node_pointers_preserved - apply blast + apply blast by (auto simp add: reflp_def transp_def) then have object_ptr_kinds_M_eq_h: "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h2 \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs ) then have object_ptr_kinds_M_eq2_h: "|h \ object_ptr_kinds_M|\<^sub>r = |h2 \ object_ptr_kinds_M|\<^sub>r" by simp then have node_ptr_kinds_eq2_h: "|h \ node_ptr_kinds_M|\<^sub>r = |h2 \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast have "known_ptrs h2" using known_ptrs object_ptr_kinds_M_eq3_h known_ptrs_preserved by blast have wellformed_h2: "heap_is_wellformed h2" using adopt_node_preserves_wellformedness[OF wellformed h2] known_ptrs type_wf . have object_ptr_kinds_M_eq3_h2: "object_ptr_kinds h2 = object_ptr_kinds h3" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF set_disconnected_nodes_writes h3]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF set_disconnected_nodes_writes h3]) unfolding a_remove_child_locs_def - using set_disconnected_nodes_pointers_preserved + using set_disconnected_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) then have object_ptr_kinds_M_eq_h2: "\ptrs. h2 \ object_ptr_kinds_M \\<^sub>r ptrs = h3 \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs) then have object_ptr_kinds_M_eq2_h2: "|h2 \ object_ptr_kinds_M|\<^sub>r = |h3 \ object_ptr_kinds_M|\<^sub>r" by simp then have node_ptr_kinds_eq2_h2: "|h2 \ node_ptr_kinds_M|\<^sub>r = |h3 \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast have document_ptr_kinds_eq2_h2: "|h2 \ document_ptr_kinds_M|\<^sub>r = |h3 \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_M_eq2_h2 document_ptr_kinds_M_eq by auto have "known_ptrs h3" using object_ptr_kinds_M_eq3_h2 known_ptrs_preserved \known_ptrs h2\ by blast - + have object_ptr_kinds_M_eq3_h': "object_ptr_kinds h3 = object_ptr_kinds h'" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF insert_node_writes h']) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF insert_node_writes h']) unfolding a_remove_child_locs_def - using set_child_nodes_pointers_preserved + using set_child_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) - then have object_ptr_kinds_M_eq_h3: + then have object_ptr_kinds_M_eq_h3: "\ptrs. h3 \ object_ptr_kinds_M \\<^sub>r ptrs = h' \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs) - then have object_ptr_kinds_M_eq2_h3: + then have object_ptr_kinds_M_eq2_h3: "|h3 \ object_ptr_kinds_M|\<^sub>r = |h' \ object_ptr_kinds_M|\<^sub>r" by simp then have node_ptr_kinds_eq2_h3: "|h3 \ node_ptr_kinds_M|\<^sub>r = |h' \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast have document_ptr_kinds_eq2_h3: "|h3 \ document_ptr_kinds_M|\<^sub>r = |h' \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_M_eq2_h3 document_ptr_kinds_M_eq by auto show "known_ptrs h'" using object_ptr_kinds_M_eq3_h' known_ptrs_preserved \known_ptrs h3\ by blast - have disconnected_nodes_eq_h2: - "\doc_ptr disc_nodes. owner_document \ doc_ptr + have disconnected_nodes_eq_h2: + "\doc_ptr disc_nodes. owner_document \ doc_ptr \ h2 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_preserved) by (auto simp add: set_disconnected_nodes_get_disconnected_nodes_different_pointers) - then have disconnected_nodes_eq2_h2: - "\doc_ptr. doc_ptr \ owner_document + then have disconnected_nodes_eq2_h2: + "\doc_ptr. doc_ptr \ owner_document \ |h2 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - have disconnected_nodes_h3: - "h3 \ get_disconnected_nodes owner_document \\<^sub>r remove1 node disconnected_nodes_h2" + have disconnected_nodes_h3: + "h3 \ get_disconnected_nodes owner_document \\<^sub>r remove1 node disconnected_nodes_h2" using h3 set_disconnected_nodes_get_disconnected_nodes by blast - have disconnected_nodes_eq_h3: - "\doc_ptr disc_nodes. h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes + have disconnected_nodes_eq_h3: + "\doc_ptr disc_nodes. h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h' \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads insert_node_writes h' apply(rule reads_writes_preserved) using set_child_nodes_get_disconnected_nodes by fast - then have disconnected_nodes_eq2_h3: + then have disconnected_nodes_eq2_h3: "\doc_ptr. |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h' \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - have children_eq_h2: - "\ptr' children. h2 \ get_child_nodes ptr' \\<^sub>r children = h3 \ get_child_nodes ptr' \\<^sub>r children" + have children_eq_h2: + "\ptr' children. h2 \ get_child_nodes ptr' \\<^sub>r children = h3 \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_preserved) by (auto simp add: set_disconnected_nodes_get_child_nodes) - then have children_eq2_h2: - "\ptr'. |h2 \ get_child_nodes ptr'|\<^sub>r = |h3 \ get_child_nodes ptr'|\<^sub>r" + then have children_eq2_h2: + "\ptr'. |h2 \ get_child_nodes ptr'|\<^sub>r = |h3 \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force - have children_eq_h3: - "\ptr' children. ptr \ ptr' + have children_eq_h3: + "\ptr' children. ptr \ ptr' \ h3 \ get_child_nodes ptr' \\<^sub>r children = h' \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads insert_node_writes h' apply(rule reads_writes_preserved) by (auto simp add: set_child_nodes_get_child_nodes_different_pointers) - then have children_eq2_h3: - "\ptr'. ptr \ ptr' \ |h3 \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" + then have children_eq2_h3: + "\ptr'. ptr \ ptr' \ |h3 \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force obtain children_h3 where children_h3: "h3 \ get_child_nodes ptr \\<^sub>r children_h3" using h' a_insert_node_def by auto have children_h': "h' \ get_child_nodes ptr \\<^sub>r insert_before_list node reference_child children_h3" using h' \type_wf h3\ \known_ptr ptr\ - by(auto simp add: a_insert_node_def elim!: bind_returns_heap_E2 - dest!: set_child_nodes_get_child_nodes returns_result_eq[OF children_h3]) + by(auto simp add: a_insert_node_def elim!: bind_returns_heap_E2 + dest!: set_child_nodes_get_child_nodes returns_result_eq[OF children_h3]) have ptr_in_heap: "ptr |\| object_ptr_kinds h3" using children_h3 get_child_nodes_ptr_in_heap by blast have node_in_heap: "node |\| node_ptr_kinds h" using h2 adopt_node_child_in_heap by fast - have child_not_in_any_children: + have child_not_in_any_children: "\p children. h2 \ get_child_nodes p \\<^sub>r children \ node \ set children" using wellformed h2 adopt_node_removes_child \type_wf h\ \known_ptrs h\ by auto have "node \ set disconnected_nodes_h2" - using disconnected_nodes_h2 h2 adopt_node_node_in_disconnected_nodes assms(1) - \type_wf h\ \known_ptrs h\ by blast - have node_not_in_disconnected_nodes: - "\d. d |\| document_ptr_kinds h3 \ node \ set |h3 \ get_disconnected_nodes d|\<^sub>r" + using disconnected_nodes_h2 h2 adopt_node_node_in_disconnected_nodes assms(1) + \type_wf h\ \known_ptrs h\ by blast + have node_not_in_disconnected_nodes: + "\d. d |\| document_ptr_kinds h3 \ node \ set |h3 \ get_disconnected_nodes d|\<^sub>r" proof - fix d assume "d |\| document_ptr_kinds h3" show "node \ set |h3 \ get_disconnected_nodes d|\<^sub>r" proof (cases "d = owner_document") case True then show ?thesis - using disconnected_nodes_h2 wellformed_h2 h3 remove_from_disconnected_nodes_removes - wellformed_h2 \d |\| document_ptr_kinds h3\ disconnected_nodes_h3 + using disconnected_nodes_h2 wellformed_h2 h3 remove_from_disconnected_nodes_removes + wellformed_h2 \d |\| document_ptr_kinds h3\ disconnected_nodes_h3 by fastforce next case False - then have + then have "set |h2 \ get_disconnected_nodes d|\<^sub>r \ set |h2 \ get_disconnected_nodes owner_document|\<^sub>r = {}" using distinct_concat_map_E(1) wellformed_h2 - by (metis (no_types, lifting) \d |\| document_ptr_kinds h3\ \type_wf h2\ - disconnected_nodes_h2 document_ptr_kinds_M_def document_ptr_kinds_eq2_h2 - l_ptr_kinds_M.ptr_kinds_ptr_kinds_M local.get_disconnected_nodes_ok - local.heap_is_wellformed_one_disc_parent returns_result_select_result - select_result_I2) + by (metis (no_types, lifting) \d |\| document_ptr_kinds h3\ \type_wf h2\ + disconnected_nodes_h2 document_ptr_kinds_M_def document_ptr_kinds_eq2_h2 + l_ptr_kinds_M.ptr_kinds_ptr_kinds_M local.get_disconnected_nodes_ok + local.heap_is_wellformed_one_disc_parent returns_result_select_result + select_result_I2) then show ?thesis - using disconnected_nodes_eq2_h2[OF False] \node \ set disconnected_nodes_h2\ - disconnected_nodes_h2 by fastforce + using disconnected_nodes_eq2_h2[OF False] \node \ set disconnected_nodes_h2\ + disconnected_nodes_h2 by fastforce qed qed - have "cast node \ ptr" + have "cast node \ ptr" using ancestors node_not_in_ancestors get_ancestors_ptr by fast obtain ancestors_h2 where ancestors_h2: "h2 \ get_ancestors ptr \\<^sub>r ancestors_h2" using get_ancestors_ok object_ptr_kinds_M_eq2_h2 \known_ptrs h2\ \type_wf h2\ by (metis is_OK_returns_result_E object_ptr_kinds_M_eq3_h2 ptr_in_heap wellformed_h2) have ancestors_h3: "h3 \ get_ancestors ptr \\<^sub>r ancestors_h2" using get_ancestors_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_separate_forwards) - using \heap_is_wellformed h2\ ancestors_h2 + using \heap_is_wellformed h2\ ancestors_h2 by (auto simp add: set_disconnected_nodes_get_ancestors) have node_not_in_ancestors_h2: "cast node \ set ancestors_h2" apply(rule get_ancestors_remains_not_in_ancestors[OF assms(1) wellformed_h2 ancestors ancestors_h2]) using adopt_node_children_subset using h2 \known_ptrs h\ \ type_wf h\ apply(blast) using node_not_in_ancestors apply(blast) using object_ptr_kinds_M_eq3_h apply(blast) using \known_ptrs h\ apply(blast) using \type_wf h\ apply(blast) using \type_wf h2\ by blast moreover have "a_acyclic_heap h'" proof - have "acyclic (parent_child_rel h2)" using wellformed_h2 by (simp add: heap_is_wellformed_def acyclic_heap_def) then have "acyclic (parent_child_rel h3)" by(auto simp add: parent_child_rel_def object_ptr_kinds_M_eq3_h2 children_eq2_h2) moreover have "cast node \ {x. (x, ptr) \ (parent_child_rel h2)\<^sup>*}" using get_ancestors_parent_child_rel node_not_in_ancestors_h2 \known_ptrs h2\ \type_wf h2\ using ancestors_h2 wellformed_h2 by blast then have "cast node \ {x. (x, ptr) \ (parent_child_rel h3)\<^sup>*}" by(auto simp add: parent_child_rel_def object_ptr_kinds_M_eq3_h2 children_eq2_h2) moreover have "parent_child_rel h' = insert (ptr, cast node) ((parent_child_rel h3))" using children_h3 children_h' ptr_in_heap - apply(auto simp add: parent_child_rel_def object_ptr_kinds_M_eq3_h' children_eq2_h3 - insert_before_list_node_in_set)[1] - apply (metis (no_types, lifting) children_eq2_h3 insert_before_list_in_set select_result_I2) + apply(auto simp add: parent_child_rel_def object_ptr_kinds_M_eq3_h' children_eq2_h3 + insert_before_list_node_in_set)[1] + apply (metis (no_types, lifting) children_eq2_h3 insert_before_list_in_set select_result_I2) by (metis (no_types, lifting) children_eq2_h3 imageI insert_before_list_in_set select_result_I2) ultimately show ?thesis by(auto simp add: acyclic_heap_def) qed - + moreover have "a_all_ptrs_in_heap h2" using wellformed_h2 by (simp add: heap_is_wellformed_def) have "a_all_ptrs_in_heap h'" proof - have "a_all_ptrs_in_heap h3" using \a_all_ptrs_in_heap h2\ - apply(auto simp add: a_all_ptrs_in_heap_def object_ptr_kinds_M_eq2_h2 node_ptr_kinds_eq2_h2 - children_eq_h2)[1] + apply(auto simp add: a_all_ptrs_in_heap_def object_ptr_kinds_M_eq2_h2 node_ptr_kinds_eq2_h2 + children_eq_h2)[1] using disconnected_nodes_eq2_h2 disconnected_nodes_h2 disconnected_nodes_h3 using node_ptr_kinds_eq2_h2 apply auto[1] - apply (metis \known_ptrs h2\ \type_wf h3\ children_eq_h2 local.get_child_nodes_ok local.heap_is_wellformed_children_in_heap local.known_ptrs_known_ptr object_ptr_kinds_M_eq3_h2 returns_result_select_result wellformed_h2) - by (metis (no_types, lifting) disconnected_nodes_eq2_h2 disconnected_nodes_h2 disconnected_nodes_h3 document_ptr_kinds_commutes finite_set_in node_ptr_kinds_commutes object_ptr_kinds_M_eq3_h2 select_result_I2 set_remove1_subset subsetD) + apply (metis \known_ptrs h2\ \type_wf h3\ children_eq_h2 local.get_child_nodes_ok + local.heap_is_wellformed_children_in_heap local.known_ptrs_known_ptr object_ptr_kinds_M_eq3_h2 + returns_result_select_result wellformed_h2) + by (metis (no_types, lifting) disconnected_nodes_eq2_h2 disconnected_nodes_h2 + disconnected_nodes_h3 document_ptr_kinds_commutes finite_set_in node_ptr_kinds_commutes + object_ptr_kinds_M_eq3_h2 select_result_I2 set_remove1_subset subsetD) have "set children_h3 \ set |h' \ node_ptr_kinds_M|\<^sub>r" - using children_h3 \a_all_ptrs_in_heap h3\ + using children_h3 \a_all_ptrs_in_heap h3\ apply(auto simp add: a_all_ptrs_in_heap_def node_ptr_kinds_eq2_h3)[1] - by (metis children_eq_h2 l_heap_is_wellformed.heap_is_wellformed_children_in_heap local.l_heap_is_wellformed_axioms node_ptr_kinds_commutes object_ptr_kinds_M_eq3_h' object_ptr_kinds_M_eq3_h2 wellformed_h2) + by (metis children_eq_h2 l_heap_is_wellformed.heap_is_wellformed_children_in_heap + local.l_heap_is_wellformed_axioms node_ptr_kinds_commutes object_ptr_kinds_M_eq3_h' + object_ptr_kinds_M_eq3_h2 wellformed_h2) then have "set (insert_before_list node reference_child children_h3) \ set |h' \ node_ptr_kinds_M|\<^sub>r" using node_in_heap apply(auto simp add: node_ptr_kinds_eq2_h node_ptr_kinds_eq2_h2 node_ptr_kinds_eq2_h3)[1] - by (metis (no_types, hide_lams) contra_subsetD finite_set_in insert_before_list_in_set - node_ptr_kinds_commutes object_ptr_kinds_M_eq3_h object_ptr_kinds_M_eq3_h' - object_ptr_kinds_M_eq3_h2) + by (metis (no_types, hide_lams) contra_subsetD finite_set_in insert_before_list_in_set + node_ptr_kinds_commutes object_ptr_kinds_M_eq3_h object_ptr_kinds_M_eq3_h' + object_ptr_kinds_M_eq3_h2) then show ?thesis using \a_all_ptrs_in_heap h3\ - apply(auto simp add: object_ptr_kinds_M_eq3_h' a_all_ptrs_in_heap_def node_ptr_kinds_def - node_ptr_kinds_eq2_h3 disconnected_nodes_eq_h3)[1] + apply(auto simp add: object_ptr_kinds_M_eq3_h' a_all_ptrs_in_heap_def node_ptr_kinds_def + node_ptr_kinds_eq2_h3 disconnected_nodes_eq_h3)[1] using children_eq_h3 children_h' apply (metis (no_types, lifting) children_eq2_h3 finite_set_in select_result_I2 subsetD) - by (metis (no_types) \type_wf h'\ disconnected_nodes_eq2_h3 disconnected_nodes_eq_h3 finite_set_in is_OK_returns_result_I local.get_disconnected_nodes_ok local.get_disconnected_nodes_ptr_in_heap returns_result_select_result subsetD) + by (metis (no_types) \type_wf h'\ disconnected_nodes_eq2_h3 disconnected_nodes_eq_h3 + finite_set_in is_OK_returns_result_I local.get_disconnected_nodes_ok + local.get_disconnected_nodes_ptr_in_heap returns_result_select_result subsetD) qed moreover have "a_distinct_lists h2" using wellformed_h2 by (simp add: heap_is_wellformed_def) then have "a_distinct_lists h3" - proof(auto simp add: a_distinct_lists_def object_ptr_kinds_M_eq2_h2 document_ptr_kinds_eq2_h2 - children_eq2_h2 intro!: distinct_concat_map_I)[1] + proof(auto simp add: a_distinct_lists_def object_ptr_kinds_M_eq2_h2 document_ptr_kinds_eq2_h2 + children_eq2_h2 intro!: distinct_concat_map_I)[1] fix x assume 1: "x |\| document_ptr_kinds h3" - and 2: "distinct (concat (map (\document_ptr. |h2 \ get_disconnected_nodes document_ptr|\<^sub>r) + and 2: "distinct (concat (map (\document_ptr. |h2 \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h3)))))" show "distinct |h3 \ get_disconnected_nodes x|\<^sub>r" - using distinct_concat_map_E(2)[OF 2] select_result_I2[OF disconnected_nodes_h3] - disconnected_nodes_eq2_h2 select_result_I2[OF disconnected_nodes_h2] 1 + using distinct_concat_map_E(2)[OF 2] select_result_I2[OF disconnected_nodes_h3] + disconnected_nodes_eq2_h2 select_result_I2[OF disconnected_nodes_h2] 1 by (metis (full_types) distinct_remove1 finite_fset fmember.rep_eq set_sorted_list_of_set) - next + next fix x y xa - assume 1: "distinct (concat (map (\document_ptr. |h2 \ get_disconnected_nodes document_ptr|\<^sub>r) + assume 1: "distinct (concat (map (\document_ptr. |h2 \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h3)))))" and 2: "x |\| document_ptr_kinds h3" and 3: "y |\| document_ptr_kinds h3" and 4: "x \ y" and 5: "xa \ set |h3 \ get_disconnected_nodes x|\<^sub>r" and 6: "xa \ set |h3 \ get_disconnected_nodes y|\<^sub>r" show False proof (cases "x = owner_document") case True then have "y \ owner_document" using 4 by simp - show ?thesis - using distinct_concat_map_E(1)[OF 1] + show ?thesis + using distinct_concat_map_E(1)[OF 1] using 2 3 4 5 6 select_result_I2[OF disconnected_nodes_h3] select_result_I2[OF disconnected_nodes_h2] apply(auto simp add: True disconnected_nodes_eq2_h2[OF \y \ owner_document\])[1] by (metis (no_types, hide_lams) disconnected_nodes_eq2_h2 disjoint_iff_not_equal notin_set_remove1) next case False then show ?thesis proof (cases "y = owner_document") case True - then show ?thesis - using distinct_concat_map_E(1)[OF 1] - using 2 3 4 5 6 select_result_I2[OF disconnected_nodes_h3] select_result_I2[OF disconnected_nodes_h2] - apply(auto simp add: True disconnected_nodes_eq2_h2[OF \x \ owner_document\])[1] - by (metis (no_types, hide_lams) disconnected_nodes_eq2_h2 disjoint_iff_not_equal notin_set_remove1) + then show ?thesis + using distinct_concat_map_E(1)[OF 1] + using 2 3 4 5 6 select_result_I2[OF disconnected_nodes_h3] select_result_I2[OF disconnected_nodes_h2] + apply(auto simp add: True disconnected_nodes_eq2_h2[OF \x \ owner_document\])[1] + by (metis (no_types, hide_lams) disconnected_nodes_eq2_h2 disjoint_iff_not_equal notin_set_remove1) next case False - then show ?thesis + then show ?thesis using distinct_concat_map_E(1)[OF 1, simplified, OF 2 3 4] 5 6 - using disconnected_nodes_eq2_h2 disconnected_nodes_h2 disconnected_nodes_h3 - disjoint_iff_not_equal finite_fset fmember.rep_eq notin_set_remove1 select_result_I2 - set_sorted_list_of_set + using disconnected_nodes_eq2_h2 disconnected_nodes_h2 disconnected_nodes_h3 + disjoint_iff_not_equal finite_fset fmember.rep_eq notin_set_remove1 select_result_I2 + set_sorted_list_of_set by (metis (no_types, lifting)) qed qed next fix x xa xb assume 1: "(\x\fset (object_ptr_kinds h3). set |h3 \ get_child_nodes x|\<^sub>r) \ (\x\fset (document_ptr_kinds h3). set |h2 \ get_disconnected_nodes x|\<^sub>r) = {}" and 2: "xa |\| object_ptr_kinds h3" and 3: "x \ set |h3 \ get_child_nodes xa|\<^sub>r" and 4: "xb |\| document_ptr_kinds h3" and 5: "x \ set |h3 \ get_disconnected_nodes xb|\<^sub>r" have 6: "set |h3 \ get_child_nodes xa|\<^sub>r \ set |h2 \ get_disconnected_nodes xb|\<^sub>r = {}" using 1 2 4 - by (metis \type_wf h2\ children_eq2_h2 document_ptr_kinds_commutes known_ptrs - local.get_child_nodes_ok local.get_disconnected_nodes_ok - local.heap_is_wellformed_children_disc_nodes_different local.known_ptrs_known_ptr - object_ptr_kinds_M_eq3_h object_ptr_kinds_M_eq3_h2 returns_result_select_result - wellformed_h2) + by (metis \type_wf h2\ children_eq2_h2 document_ptr_kinds_commutes known_ptrs + local.get_child_nodes_ok local.get_disconnected_nodes_ok + local.heap_is_wellformed_children_disc_nodes_different local.known_ptrs_known_ptr + object_ptr_kinds_M_eq3_h object_ptr_kinds_M_eq3_h2 returns_result_select_result + wellformed_h2) show False proof (cases "xb = owner_document") case True - then show ?thesis + then show ?thesis using select_result_I2[OF disconnected_nodes_h3,folded select_result_I2[OF disconnected_nodes_h2]] by (metis (no_types, lifting) "3" "5" "6" disjoint_iff_not_equal notin_set_remove1) next case False show ?thesis using 2 3 4 5 6 unfolding disconnected_nodes_eq2_h2[OF False] by auto qed qed then have "a_distinct_lists h'" - proof(auto simp add: a_distinct_lists_def document_ptr_kinds_eq2_h3 object_ptr_kinds_M_eq2_h3 - disconnected_nodes_eq2_h3 intro!: distinct_concat_map_I)[1] + proof(auto simp add: a_distinct_lists_def document_ptr_kinds_eq2_h3 object_ptr_kinds_M_eq2_h3 + disconnected_nodes_eq2_h3 intro!: distinct_concat_map_I)[1] fix x assume 1: "distinct (concat (map (\ptr. |h3 \ get_child_nodes ptr|\<^sub>r) (sorted_list_of_set (fset (object_ptr_kinds h')))))" and - 2: "x |\| object_ptr_kinds h'" + 2: "x |\| object_ptr_kinds h'" have 3: "\p. p |\| object_ptr_kinds h' \ distinct |h3 \ get_child_nodes p|\<^sub>r" using 1 by (auto elim: distinct_concat_map_E) show "distinct |h' \ get_child_nodes x|\<^sub>r" proof(cases "ptr = x") case True show ?thesis - using 3[OF 2] children_h3 children_h' - by(auto simp add: True insert_before_list_distinct - dest: child_not_in_any_children[unfolded children_eq_h2]) + using 3[OF 2] children_h3 children_h' + by(auto simp add: True insert_before_list_distinct + dest: child_not_in_any_children[unfolded children_eq_h2]) next case False - show ?thesis + show ?thesis using children_eq2_h3[OF False] 3[OF 2] by auto qed next fix x y xa - assume 1: "distinct (concat (map (\ptr. |h3 \ get_child_nodes ptr|\<^sub>r) + assume 1: "distinct (concat (map (\ptr. |h3 \ get_child_nodes ptr|\<^sub>r) (sorted_list_of_set (fset (object_ptr_kinds h')))))" and 2: "x |\| object_ptr_kinds h'" and 3: "y |\| object_ptr_kinds h'" and 4: "x \ y" and 5: "xa \ set |h' \ get_child_nodes x|\<^sub>r" and 6: "xa \ set |h' \ get_child_nodes y|\<^sub>r" have 7:"set |h3 \ get_child_nodes x|\<^sub>r \ set |h3 \ get_child_nodes y|\<^sub>r = {}" using distinct_concat_map_E(1)[OF 1] 2 3 4 by auto show False proof (cases "ptr = x") case True then have "ptr \ y" using 4 by simp then show ?thesis using children_h3 children_h' child_not_in_any_children[unfolded children_eq_h2] 5 6 apply(auto simp add: True children_eq2_h3[OF \ptr \ y\])[1] - by (metis (no_types, hide_lams) "3" "7" \type_wf h3\ children_eq2_h3 disjoint_iff_not_equal - get_child_nodes_ok insert_before_list_in_set known_ptrs local.known_ptrs_known_ptr - object_ptr_kinds_M_eq3_h object_ptr_kinds_M_eq3_h' - object_ptr_kinds_M_eq3_h2 returns_result_select_result select_result_I2) + by (metis (no_types, hide_lams) "3" "7" \type_wf h3\ children_eq2_h3 disjoint_iff_not_equal + get_child_nodes_ok insert_before_list_in_set known_ptrs local.known_ptrs_known_ptr + object_ptr_kinds_M_eq3_h object_ptr_kinds_M_eq3_h' + object_ptr_kinds_M_eq3_h2 returns_result_select_result select_result_I2) next case False then show ?thesis proof (cases "ptr = y") case True - then show ?thesis + then show ?thesis using children_h3 children_h' child_not_in_any_children[unfolded children_eq_h2] 5 6 apply(auto simp add: True children_eq2_h3[OF \ptr \ x\])[1] by (metis (no_types, hide_lams) "2" "4" "7" IntI \known_ptrs h3\ \type_wf h'\ - children_eq_h3 empty_iff insert_before_list_in_set local.get_child_nodes_ok - local.known_ptrs_known_ptr object_ptr_kinds_M_eq3_h' - returns_result_select_result select_result_I2) - next + children_eq_h3 empty_iff insert_before_list_in_set local.get_child_nodes_ok + local.known_ptrs_known_ptr object_ptr_kinds_M_eq3_h' + returns_result_select_result select_result_I2) + next case False then show ?thesis using children_eq2_h3[OF \ptr \ x\] children_eq2_h3[OF \ptr \ y\] 5 6 7 by auto qed qed next fix x xa xb - assume 1: " (\x\fset (object_ptr_kinds h'). set |h3 \ get_child_nodes x|\<^sub>r) + assume 1: " (\x\fset (object_ptr_kinds h'). set |h3 \ get_child_nodes x|\<^sub>r) \ (\x\fset (document_ptr_kinds h'). set |h' \ get_disconnected_nodes x|\<^sub>r) = {} " and 2: "xa |\| object_ptr_kinds h'" and 3: "x \ set |h' \ get_child_nodes xa|\<^sub>r" and 4: "xb |\| document_ptr_kinds h'" and 5: "x \ set |h' \ get_disconnected_nodes xb|\<^sub>r" have 6: "set |h3 \ get_child_nodes xa|\<^sub>r \ set |h' \ get_disconnected_nodes xb|\<^sub>r = {}" using 1 2 3 4 5 proof - have "\h d. \ type_wf h \ d |\| document_ptr_kinds h \ h \ ok get_disconnected_nodes d" using local.get_disconnected_nodes_ok by satx then have "h' \ ok get_disconnected_nodes xb" using "4" \type_wf h'\ by fastforce then have f1: "h3 \ get_disconnected_nodes xb \\<^sub>r |h' \ get_disconnected_nodes xb|\<^sub>r" by (simp add: disconnected_nodes_eq_h3) have "xa |\| object_ptr_kinds h3" - using "2" object_ptr_kinds_M_eq3_h' by blast + using "2" object_ptr_kinds_M_eq3_h' by blast then show ?thesis using f1 \local.a_distinct_lists h3\ local.distinct_lists_no_parent by fastforce qed show False proof (cases "ptr = xa") case True show ?thesis - using 6 node_not_in_disconnected_nodes 3 4 5 select_result_I2[OF children_h'] - select_result_I2[OF children_h3] True disconnected_nodes_eq2_h3 - by (metis (no_types, lifting) "2" DocumentMonad.ptr_kinds_ptr_kinds_M - \a_distinct_lists h3\ \type_wf h'\ disconnected_nodes_eq_h3 - distinct_lists_no_parent document_ptr_kinds_eq2_h3 get_disconnected_nodes_ok - insert_before_list_in_set object_ptr_kinds_M_eq3_h' returns_result_select_result) - - next + using 6 node_not_in_disconnected_nodes 3 4 5 select_result_I2[OF children_h'] + select_result_I2[OF children_h3] True disconnected_nodes_eq2_h3 + by (metis (no_types, lifting) "2" DocumentMonad.ptr_kinds_ptr_kinds_M + \a_distinct_lists h3\ \type_wf h'\ disconnected_nodes_eq_h3 + distinct_lists_no_parent document_ptr_kinds_eq2_h3 get_disconnected_nodes_ok + insert_before_list_in_set object_ptr_kinds_M_eq3_h' returns_result_select_result) + + next case False then show ?thesis - using 1 2 3 4 5 children_eq2_h3[OF False] by fastforce + using 1 2 3 4 5 children_eq2_h3[OF False] by fastforce qed qed moreover have "a_owner_document_valid h2" using wellformed_h2 by (simp add: heap_is_wellformed_def) then have "a_owner_document_valid h'" apply(auto simp add: a_owner_document_valid_def object_ptr_kinds_M_eq2_h2 - object_ptr_kinds_M_eq2_h3 node_ptr_kinds_eq2_h2 node_ptr_kinds_eq2_h3 - document_ptr_kinds_eq2_h2 document_ptr_kinds_eq2_h3 children_eq2_h2)[1] - apply(auto simp add: document_ptr_kinds_eq2_h2[simplified] document_ptr_kinds_eq2_h3[simplified] - object_ptr_kinds_M_eq2_h2[simplified] object_ptr_kinds_M_eq2_h3[simplified] - node_ptr_kinds_eq2_h2[simplified] node_ptr_kinds_eq2_h3[simplified])[1] + object_ptr_kinds_M_eq2_h3 node_ptr_kinds_eq2_h2 node_ptr_kinds_eq2_h3 + document_ptr_kinds_eq2_h2 document_ptr_kinds_eq2_h3 children_eq2_h2)[1] + apply(auto simp add: document_ptr_kinds_eq2_h2[simplified] document_ptr_kinds_eq2_h3[simplified] + object_ptr_kinds_M_eq2_h2[simplified] object_ptr_kinds_M_eq2_h3[simplified] + node_ptr_kinds_eq2_h2[simplified] node_ptr_kinds_eq2_h3[simplified])[1] apply(auto simp add: disconnected_nodes_eq2_h3[symmetric])[1] - by (smt children_eq2_h3 children_h' children_h3 disconnected_nodes_eq2_h2 disconnected_nodes_h2 disconnected_nodes_h3 finite_set_in in_set_remove1 insert_before_list_in_set object_ptr_kinds_M_eq3_h' ptr_in_heap select_result_I2) + by (smt children_eq2_h3 children_h' children_h3 disconnected_nodes_eq2_h2 disconnected_nodes_h2 + disconnected_nodes_h3 finite_set_in in_set_remove1 insert_before_list_in_set object_ptr_kinds_M_eq3_h' + ptr_in_heap select_result_I2) ultimately show "heap_is_wellformed h'" by (simp add: heap_is_wellformed_def) qed -lemma adopt_node_children_remain_distinct_thesis: +lemma adopt_node_children_remain_distinct: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "h \ adopt_node owner_document node_ptr \\<^sub>h h'" -shows "\ptr' children'. + shows "\ptr' children'. h' \ get_child_nodes ptr' \\<^sub>r children' \ distinct children'" - using assms(1) assms(2) assms(3) assms(4) local.adopt_node_preserves_wellformedness local.heap_is_wellformed_children_distinct + using assms(1) assms(2) assms(3) assms(4) local.adopt_node_preserves_wellformedness + local.heap_is_wellformed_children_distinct by blast -lemma insert_node_children_remain_distinct_thesis: +lemma insert_node_children_remain_distinct: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "h \ a_insert_node ptr new_child reference_child_opt \\<^sub>h h'" assumes "h \ get_child_nodes ptr \\<^sub>r children" assumes "new_child \ set children" -shows "\children'. + shows "\children'. h' \ get_child_nodes ptr \\<^sub>r children' \ distinct children'" proof - fix children' assume a1: "h' \ get_child_nodes ptr \\<^sub>r children'" have "h' \ get_child_nodes ptr \\<^sub>r (insert_before_list new_child reference_child_opt children)" using assms(4) assms(5) apply(auto simp add: a_insert_node_def elim!: bind_returns_heap_E)[1] using returns_result_eq set_child_nodes_get_child_nodes assms(2) assms(3) - by (metis is_OK_returns_result_I local.get_child_nodes_ptr_in_heap local.get_child_nodes_pure local.known_ptrs_known_ptr pure_returns_heap_eq) + by (metis is_OK_returns_result_I local.get_child_nodes_ptr_in_heap local.get_child_nodes_pure + local.known_ptrs_known_ptr pure_returns_heap_eq) moreover have "a_distinct_lists h" using assms local.heap_is_wellformed_def by blast then have "\children. h \ get_child_nodes ptr \\<^sub>r children \ distinct children" using assms local.heap_is_wellformed_children_distinct by blast ultimately show "h' \ get_child_nodes ptr \\<^sub>r children' \ distinct children'" using assms(5) assms(6) insert_before_list_distinct returns_result_eq by fastforce qed -lemma insert_before_children_remain_distinct_thesis: +lemma insert_before_children_remain_distinct: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "h \ insert_before ptr new_child child_opt \\<^sub>h h'" -shows "\ptr' children'. + shows "\ptr' children'. h' \ get_child_nodes ptr' \\<^sub>r children' \ distinct children'" proof - obtain reference_child owner_document h2 h3 disconnected_nodes_h2 where reference_child: - "h \ (if Some new_child = child_opt then a_next_sibling new_child else return child_opt) \\<^sub>r reference_child" and + "h \ (if Some new_child = child_opt then a_next_sibling new_child else return child_opt) \\<^sub>r reference_child" and owner_document: "h \ get_owner_document ptr \\<^sub>r owner_document" and h2: "h \ adopt_node owner_document new_child \\<^sub>h h2" and disconnected_nodes_h2: "h2 \ get_disconnected_nodes owner_document \\<^sub>r disconnected_nodes_h2" and h3: "h2 \ set_disconnected_nodes owner_document (remove1 new_child disconnected_nodes_h2) \\<^sub>h h3" and h': "h3 \ a_insert_node ptr new_child reference_child \\<^sub>h h'" using assms(4) - by(auto simp add: insert_before_def a_ensure_pre_insertion_validity_def - elim!: bind_returns_heap_E bind_returns_result_E - bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] - bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] - bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] - bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] - bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] - split: if_splits option.splits) + by(auto simp add: insert_before_def a_ensure_pre_insertion_validity_def + elim!: bind_returns_heap_E bind_returns_result_E + bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] + bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] + bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] + bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] + bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] + split: if_splits option.splits) have "\ptr children. h2 \ get_child_nodes ptr \\<^sub>r children \ distinct children" - using adopt_node_children_remain_distinct_thesis + using adopt_node_children_remain_distinct using assms(1) assms(2) assms(3) h2 by blast moreover have "\ptr children. h2 \ get_child_nodes ptr \\<^sub>r children \ new_child \ set children" using adopt_node_removes_child using assms(1) assms(2) assms(3) h2 by blast moreover have "\ptr children. h2 \ get_child_nodes ptr \\<^sub>r children = h3 \ get_child_nodes ptr \\<^sub>r children" using get_child_nodes_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_preserved) by (auto simp add: set_disconnected_nodes_get_child_nodes) ultimately show "\ptr children. h' \ get_child_nodes ptr \\<^sub>r children \ distinct children" using insert_node_children_remain_distinct - by (meson assms(1) assms(2) assms(3) assms(4) insert_before_heap_is_wellformed_preserved(1) local.heap_is_wellformed_children_distinct) + by (meson assms(1) assms(2) assms(3) assms(4) insert_before_heap_is_wellformed_preserved(1) + local.heap_is_wellformed_children_distinct) qed -lemma insert_before_removes_child_thesis: +lemma insert_before_removes_child: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "h \ insert_before ptr node child \\<^sub>h h'" assumes "ptr \ ptr'" shows "\children'. h' \ get_child_nodes ptr' \\<^sub>r children' \ node \ set children'" proof - fix children' assume a1: "h' \ get_child_nodes ptr' \\<^sub>r children'" obtain ancestors reference_child owner_document h2 h3 disconnected_nodes_h2 where ancestors: "h \ get_ancestors ptr \\<^sub>r ancestors" and node_not_in_ancestors: "cast node \ set ancestors" and reference_child: - "h \ (if Some node = child then a_next_sibling node else return child) \\<^sub>r reference_child" and + "h \ (if Some node = child then a_next_sibling node else return child) \\<^sub>r reference_child" and owner_document: "h \ get_owner_document ptr \\<^sub>r owner_document" and h2: "h \ adopt_node owner_document node \\<^sub>h h2" and disconnected_nodes_h2: "h2 \ get_disconnected_nodes owner_document \\<^sub>r disconnected_nodes_h2" and h3: "h2 \ set_disconnected_nodes owner_document (remove1 node disconnected_nodes_h2) \\<^sub>h h3" and h': "h3 \ a_insert_node ptr node reference_child \\<^sub>h h'" using assms(4) - by(auto simp add: insert_before_def a_ensure_pre_insertion_validity_def - elim!: bind_returns_heap_E bind_returns_result_E - bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] - bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] - bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] - bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] - bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] - split: if_splits option.splits) + by(auto simp add: insert_before_def a_ensure_pre_insertion_validity_def + elim!: bind_returns_heap_E bind_returns_result_E + bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] + bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] + bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] + bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] + bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] + split: if_splits option.splits) have "known_ptr ptr" - by (meson get_owner_document_ptr_in_heap is_OK_returns_result_I assms(2) - l_known_ptrs.known_ptrs_known_ptr l_known_ptrs_axioms owner_document) + by (meson get_owner_document_ptr_in_heap is_OK_returns_result_I assms(2) + l_known_ptrs.known_ptrs_known_ptr l_known_ptrs_axioms owner_document) have "type_wf h2" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF adopt_node_writes h2] using assms(3) adopt_node_types_preserved by(auto simp add: a_remove_child_locs_def reflp_def transp_def) then have "type_wf h3" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h3] - using set_disconnected_nodes_types_preserved + using set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) then have "type_wf h'" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF insert_node_writes h'] - using set_child_nodes_types_preserved + using set_child_nodes_types_preserved by(auto simp add: reflp_def transp_def) have object_ptr_kinds_M_eq3_h: "object_ptr_kinds h = object_ptr_kinds h2" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF adopt_node_writes h2]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF adopt_node_writes h2]) using adopt_node_pointers_preserved - apply blast + apply blast by (auto simp add: reflp_def transp_def) then have object_ptr_kinds_M_eq_h: "\ptrs. h \ object_ptr_kinds_M \\<^sub>r ptrs = h2 \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs ) then have object_ptr_kinds_M_eq2_h: "|h \ object_ptr_kinds_M|\<^sub>r = |h2 \ object_ptr_kinds_M|\<^sub>r" by simp then have node_ptr_kinds_eq2_h: "|h \ node_ptr_kinds_M|\<^sub>r = |h2 \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast have "known_ptrs h2" using assms object_ptr_kinds_M_eq3_h known_ptrs_preserved by blast have wellformed_h2: "heap_is_wellformed h2" using adopt_node_preserves_wellformedness[OF assms(1) h2] assms by simp have object_ptr_kinds_M_eq3_h2: "object_ptr_kinds h2 = object_ptr_kinds h3" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF set_disconnected_nodes_writes h3]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF set_disconnected_nodes_writes h3]) unfolding a_remove_child_locs_def - using set_disconnected_nodes_pointers_preserved + using set_disconnected_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) - then have object_ptr_kinds_M_eq_h2: "\ptrs. h2 \ object_ptr_kinds_M \\<^sub>r ptrs = h3 \ object_ptr_kinds_M \\<^sub>r ptrs" + then have object_ptr_kinds_M_eq_h2: + "\ptrs. h2 \ object_ptr_kinds_M \\<^sub>r ptrs = h3 \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs) then have object_ptr_kinds_M_eq2_h2: "|h2 \ object_ptr_kinds_M|\<^sub>r = |h3 \ object_ptr_kinds_M|\<^sub>r" by simp then have node_ptr_kinds_eq2_h2: "|h2 \ node_ptr_kinds_M|\<^sub>r = |h3 \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast have document_ptr_kinds_eq2_h2: "|h2 \ document_ptr_kinds_M|\<^sub>r = |h3 \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_M_eq2_h2 document_ptr_kinds_M_eq by auto have "known_ptrs h3" using object_ptr_kinds_M_eq3_h2 known_ptrs_preserved \known_ptrs h2\ by blast - + have object_ptr_kinds_M_eq3_h': "object_ptr_kinds h3 = object_ptr_kinds h'" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF insert_node_writes h']) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF insert_node_writes h']) unfolding a_remove_child_locs_def - using set_child_nodes_pointers_preserved + using set_child_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) - then have object_ptr_kinds_M_eq_h3: + then have object_ptr_kinds_M_eq_h3: "\ptrs. h3 \ object_ptr_kinds_M \\<^sub>r ptrs = h' \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs) - then have object_ptr_kinds_M_eq2_h3: + then have object_ptr_kinds_M_eq2_h3: "|h3 \ object_ptr_kinds_M|\<^sub>r = |h' \ object_ptr_kinds_M|\<^sub>r" by simp then have node_ptr_kinds_eq2_h3: "|h3 \ node_ptr_kinds_M|\<^sub>r = |h' \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast have document_ptr_kinds_eq2_h3: "|h3 \ document_ptr_kinds_M|\<^sub>r = |h' \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_M_eq2_h3 document_ptr_kinds_M_eq by auto have "known_ptrs h'" using object_ptr_kinds_M_eq3_h' known_ptrs_preserved \known_ptrs h3\ by blast - have disconnected_nodes_eq_h2: - "\doc_ptr disc_nodes. owner_document \ doc_ptr - \ h2 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" + have disconnected_nodes_eq_h2: + "\doc_ptr disc_nodes. owner_document \ doc_ptr + \ h2 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = +h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_preserved) by (auto simp add: set_disconnected_nodes_get_disconnected_nodes_different_pointers) - then have disconnected_nodes_eq2_h2: - "\doc_ptr. doc_ptr \ owner_document + then have disconnected_nodes_eq2_h2: + "\doc_ptr. doc_ptr \ owner_document \ |h2 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - have disconnected_nodes_h3: - "h3 \ get_disconnected_nodes owner_document \\<^sub>r remove1 node disconnected_nodes_h2" + have disconnected_nodes_h3: + "h3 \ get_disconnected_nodes owner_document \\<^sub>r remove1 node disconnected_nodes_h2" using h3 set_disconnected_nodes_get_disconnected_nodes by blast - have disconnected_nodes_eq_h3: - "\doc_ptr disc_nodes. h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes + have disconnected_nodes_eq_h3: + "\doc_ptr disc_nodes. h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h' \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads insert_node_writes h' apply(rule reads_writes_preserved) using set_child_nodes_get_disconnected_nodes by fast - then have disconnected_nodes_eq2_h3: + then have disconnected_nodes_eq2_h3: "\doc_ptr. |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h' \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - have children_eq_h2: - "\ptr' children. h2 \ get_child_nodes ptr' \\<^sub>r children = h3 \ get_child_nodes ptr' \\<^sub>r children" + have children_eq_h2: + "\ptr' children. h2 \ get_child_nodes ptr' \\<^sub>r children = h3 \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_preserved) by (auto simp add: set_disconnected_nodes_get_child_nodes) - then have children_eq2_h2: - "\ptr'. |h2 \ get_child_nodes ptr'|\<^sub>r = |h3 \ get_child_nodes ptr'|\<^sub>r" + then have children_eq2_h2: + "\ptr'. |h2 \ get_child_nodes ptr'|\<^sub>r = |h3 \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force - have children_eq_h3: - "\ptr' children. ptr \ ptr' + have children_eq_h3: + "\ptr' children. ptr \ ptr' \ h3 \ get_child_nodes ptr' \\<^sub>r children = h' \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads insert_node_writes h' apply(rule reads_writes_preserved) by (auto simp add: set_child_nodes_get_child_nodes_different_pointers) - then have children_eq2_h3: - "\ptr'. ptr \ ptr' \ |h3 \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" + then have children_eq2_h3: + "\ptr'. ptr \ ptr' \ |h3 \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force obtain children_h3 where children_h3: "h3 \ get_child_nodes ptr \\<^sub>r children_h3" using h' a_insert_node_def by auto have children_h': "h' \ get_child_nodes ptr \\<^sub>r insert_before_list node reference_child children_h3" using h' \type_wf h3\ \known_ptr ptr\ - by(auto simp add: a_insert_node_def elim!: bind_returns_heap_E2 - dest!: set_child_nodes_get_child_nodes returns_result_eq[OF children_h3]) + by(auto simp add: a_insert_node_def elim!: bind_returns_heap_E2 + dest!: set_child_nodes_get_child_nodes returns_result_eq[OF children_h3]) have ptr_in_heap: "ptr |\| object_ptr_kinds h3" using children_h3 get_child_nodes_ptr_in_heap by blast have node_in_heap: "node |\| node_ptr_kinds h" using h2 adopt_node_child_in_heap by fast - have child_not_in_any_children: + have child_not_in_any_children: "\p children. h2 \ get_child_nodes p \\<^sub>r children \ node \ set children" using assms(1) assms(2) assms(3) h2 local.adopt_node_removes_child by blast show "node \ set children'" using a1 assms(5) child_not_in_any_children children_eq_h2 children_eq_h3 by blast qed lemma ensure_pre_insertion_validity_ok: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "ptr |\| object_ptr_kinds h" assumes "\is_character_data_ptr_kind parent" assumes "cast node \ set |h \ get_ancestors parent|\<^sub>r" assumes "h \ get_parent ref \\<^sub>r Some parent" assumes "is_document_ptr parent \ h \ get_child_nodes parent \\<^sub>r []" assumes "is_document_ptr parent \ \is_character_data_ptr_kind node" shows "h \ ok (a_ensure_pre_insertion_validity node parent (Some ref))" proof - have "h \ (if is_character_data_ptr_kind parent then error HierarchyRequestError else return ()) \\<^sub>r ()" using assms by (simp add: assms(4)) moreover have "h \ do { ancestors \ get_ancestors parent; (if cast node \ set ancestors then error HierarchyRequestError else return ()) } \\<^sub>r ()" using assms(6) apply(auto intro!: bind_pure_returns_result_I)[1] - using assms(1) assms(2) assms(3) assms(7) local.get_ancestors_ok local.get_parent_parent_in_heap by auto - + using assms(1) assms(2) assms(3) assms(7) local.get_ancestors_ok local.get_parent_parent_in_heap + by auto + moreover have "h \ do { (case Some ref of Some child \ do { child_parent \ get_parent child; (if child_parent \ Some parent then error NotFoundError else return ())} | None \ return ()) } \\<^sub>r ()" using assms(7) by(auto split: option.splits) moreover have "h \ do { children \ get_child_nodes parent; (if children \ [] \ is_document_ptr parent then error HierarchyRequestError else return ()) } \\<^sub>r ()" using assms(8) - by (smt assms(5) assms(7) bind_pure_returns_result_I2 calculation(1) is_OK_returns_result_I local.get_child_nodes_pure local.get_parent_child_dual returns_result_eq) + by (smt assms(5) assms(7) bind_pure_returns_result_I2 calculation(1) is_OK_returns_result_I + local.get_child_nodes_pure local.get_parent_child_dual returns_result_eq) moreover have "h \ do { (if is_character_data_ptr node \ is_document_ptr parent then error HierarchyRequestError else return ()) } \\<^sub>r ()" using assms using is_character_data_ptr_kind_none by force ultimately show ?thesis unfolding a_ensure_pre_insertion_validity_def apply(intro bind_is_OK_pure_I) apply auto[1] apply auto[1] apply auto[1] - using assms(1) assms(2) assms(3) assms(7) local.get_ancestors_ok local.get_parent_parent_in_heap + using assms(1) assms(2) assms(3) assms(7) local.get_ancestors_ok local.get_parent_parent_in_heap apply blast apply auto[1] apply auto[1] using assms(6) - apply auto[1] - using assms(1) assms(2) assms(3) assms(7) local.get_ancestors_ok local.get_parent_parent_in_heap - apply auto[1] - apply (smt bind_returns_heap_E is_OK_returns_heap_E local.get_parent_pure pure_def - pure_returns_heap_eq return_returns_heap returns_result_eq) + apply auto[1] + using assms(1) assms(2) assms(3) assms(7) local.get_ancestors_ok local.get_parent_parent_in_heap + apply auto[1] + apply (smt bind_returns_heap_E is_OK_returns_heap_E local.get_parent_pure pure_def + pure_returns_heap_eq return_returns_heap returns_result_eq) apply(blast) - using local.get_child_nodes_pure - apply blast - apply (meson assms(7) is_OK_returns_result_I local.get_parent_child_dual) + using local.get_child_nodes_pure + apply blast + apply (meson assms(7) is_OK_returns_result_I local.get_parent_child_dual) apply (simp) - apply (smt assms(5) assms(8) is_OK_returns_result_I returns_result_eq) - by(auto) + apply (smt assms(5) assms(8) is_OK_returns_result_I returns_result_eq) + by(auto) qed end -locale l_insert_before_wf2 = l_type_wf + l_known_ptrs + l_insert_before_defs - + l_heap_is_wellformed_defs + l_get_child_nodes_defs + l_remove_defs + - assumes insert_before_preserves_type_wf: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ insert_before ptr child ref \\<^sub>h h' +locale l_insert_before_wf2 = l_type_wf + l_known_ptrs + l_insert_before_defs + + l_heap_is_wellformed_defs + l_get_child_nodes_defs + l_remove_defs + + assumes insert_before_preserves_type_wf: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ insert_before ptr child ref \\<^sub>h h' \ type_wf h'" - assumes insert_before_preserves_known_ptrs: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ insert_before ptr child ref \\<^sub>h h' + assumes insert_before_preserves_known_ptrs: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ insert_before ptr child ref \\<^sub>h h' \ known_ptrs h'" assumes insert_before_heap_is_wellformed_preserved: "type_wf h \ known_ptrs h \ heap_is_wellformed h \ h \ insert_before ptr child ref \\<^sub>h h' \ heap_is_wellformed h'" -interpretation i_insert_before_wf2?: l_insert_before_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_parent get_parent_locs - get_child_nodes get_child_nodes_locs set_child_nodes - set_child_nodes_locs get_ancestors get_ancestors_locs - adopt_node adopt_node_locs set_disconnected_nodes - set_disconnected_nodes_locs get_disconnected_nodes - get_disconnected_nodes_locs get_owner_document insert_before - insert_before_locs append_child type_wf known_ptr known_ptrs - heap_is_wellformed parent_child_rel remove_child - remove_child_locs get_root_node get_root_node_locs +interpretation i_insert_before_wf2?: l_insert_before_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_parent get_parent_locs + get_child_nodes get_child_nodes_locs set_child_nodes + set_child_nodes_locs get_ancestors get_ancestors_locs + adopt_node adopt_node_locs set_disconnected_nodes + set_disconnected_nodes_locs get_disconnected_nodes + get_disconnected_nodes_locs get_owner_document insert_before + insert_before_locs append_child type_wf known_ptr known_ptrs + heap_is_wellformed parent_child_rel remove_child + remove_child_locs get_root_node get_root_node_locs by(simp add: l_insert_before_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def instances) declare l_insert_before_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms [instances] -lemma insert_before_wf2_is_l_insert_before_wf2 [instances]: +lemma insert_before_wf2_is_l_insert_before_wf2 [instances]: "l_insert_before_wf2 type_wf known_ptr known_ptrs insert_before heap_is_wellformed" apply(auto simp add: l_insert_before_wf2_def l_insert_before_wf2_axioms_def instances)[1] using insert_before_heap_is_wellformed_preserved apply(fast, fast, fast) done locale l_insert_before_wf3\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_insert_before_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_set_child_nodes_get_child_nodes\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_remove_child_wf2 begin lemma next_sibling_ok: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "node_ptr |\| node_ptr_kinds h" shows "h \ ok (a_next_sibling node_ptr)" proof - have "known_ptr (cast node_ptr)" using assms(2) assms(4) local.known_ptrs_known_ptr node_ptr_kinds_commutes by blast then show ?thesis - using assms - apply(auto simp add: a_next_sibling_def intro!: bind_is_OK_pure_I split: option.splits list.splits) - using get_child_nodes_ok local.get_parent_parent_in_heap local.known_ptrs_known_ptr by blast + using assms + apply(auto simp add: a_next_sibling_def intro!: bind_is_OK_pure_I split: option.splits list.splits)[1] + using get_child_nodes_ok local.get_parent_parent_in_heap local.known_ptrs_known_ptr by blast qed lemma remove_child_ok: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "h \ get_child_nodes ptr \\<^sub>r children" assumes "child \ set children" shows "h \ ok (remove_child ptr child)" proof - have "ptr |\| object_ptr_kinds h" using assms(4) local.get_child_nodes_ptr_in_heap by blast have "child |\| node_ptr_kinds h" using assms(1) assms(4) assms(5) local.heap_is_wellformed_children_in_heap by blast have "\is_character_data_ptr ptr" proof (rule ccontr, simp) assume "is_character_data_ptr ptr" then have "h \ get_child_nodes ptr \\<^sub>r []" using \ptr |\| object_ptr_kinds h\ apply(simp add: get_child_nodes_def a_get_child_nodes_tups_def) apply(split invoke_splits)+ by(auto simp add: get_child_nodes\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def intro!: bind_pure_returns_result_I split: option.splits) then show False using assms returns_result_eq by fastforce - qed + qed have "is_character_data_ptr child \ \is_document_ptr_kind ptr" proof (rule ccontr, simp) assume "is_character_data_ptr\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r child" - and "is_document_ptr_kind ptr" + and "is_document_ptr_kind ptr" then show False using assms using \ptr |\| object_ptr_kinds h\ apply(simp add: get_child_nodes_def a_get_child_nodes_tups_def) apply(split invoke_splits)+ - apply(auto split: option.splits) - apply (meson invoke_empty is_OK_returns_result_I) - apply (meson invoke_empty is_OK_returns_result_I) + apply(auto split: option.splits)[1] + apply (meson invoke_empty is_OK_returns_result_I) + apply (meson invoke_empty is_OK_returns_result_I) by(auto simp add: get_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 split: option.splits) qed obtain owner_document where owner_document: "h \ get_owner_document (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r child) \\<^sub>r owner_document" - by (meson \child |\| node_ptr_kinds h\ assms(1) assms(2) assms(3) is_OK_returns_result_E local.get_owner_document_ok node_ptr_kinds_commutes) + by (meson \child |\| node_ptr_kinds h\ assms(1) assms(2) assms(3) is_OK_returns_result_E + local.get_owner_document_ok node_ptr_kinds_commutes) obtain disconnected_nodes_h where - disconnected_nodes_h: "h \ get_disconnected_nodes owner_document \\<^sub>r disconnected_nodes_h" - by (meson assms(1) assms(2) assms(3) is_OK_returns_result_E local.get_disconnected_nodes_ok local.get_owner_document_owner_document_in_heap owner_document) + disconnected_nodes_h: "h \ get_disconnected_nodes owner_document \\<^sub>r disconnected_nodes_h" + by (meson assms(1) assms(2) assms(3) is_OK_returns_result_E local.get_disconnected_nodes_ok + local.get_owner_document_owner_document_in_heap owner_document) obtain h2 where h2: "h \ set_disconnected_nodes owner_document (child # disconnected_nodes_h) \\<^sub>h h2" - by (meson assms(1) assms(2) assms(3) is_OK_returns_heap_E l_set_disconnected_nodes.set_disconnected_nodes_ok local.get_owner_document_owner_document_in_heap local.l_set_disconnected_nodes_axioms owner_document) + by (meson assms(1) assms(2) assms(3) is_OK_returns_heap_E + l_set_disconnected_nodes.set_disconnected_nodes_ok local.get_owner_document_owner_document_in_heap + local.l_set_disconnected_nodes_axioms owner_document) have "known_ptr ptr" using assms(2) assms(4) local.known_ptrs_known_ptr - using \ptr |\| object_ptr_kinds h\ by blast - - have "type_wf h2" + using \ptr |\| object_ptr_kinds h\ by blast + + have "type_wf h2" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h2] using set_disconnected_nodes_types_preserved assms(3) by(auto simp add: reflp_def transp_def) have "object_ptr_kinds h = object_ptr_kinds h2" using h2 - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF set_disconnected_nodes_writes]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF set_disconnected_nodes_writes]) using set_disconnected_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) have "h2 \ ok (set_child_nodes ptr (remove1 child children))" proof (cases "is_element_ptr_kind ptr") case True then show ?thesis - using set_child_nodes_element_ok \known_ptr ptr\ \object_ptr_kinds h = object_ptr_kinds h2\ \type_wf h2\ assms(4) + using set_child_nodes_element_ok \known_ptr ptr\ \object_ptr_kinds h = object_ptr_kinds h2\ + \type_wf h2\ assms(4) using \ptr |\| object_ptr_kinds h\ by blast next case False then have "is_document_ptr_kind ptr" using \known_ptr ptr\ \ptr |\| object_ptr_kinds h\ \\is_character_data_ptr ptr\ - by(auto simp add:known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add:known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) moreover have "is_document_ptr ptr" using \known_ptr ptr\ \ptr |\| object_ptr_kinds h\ False \\is_character_data_ptr ptr\ - by(auto simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add: known_ptr_impl known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) ultimately show ?thesis using assms(4) - apply(auto simp add: get_child_nodes_def a_get_child_nodes_tups_def) + apply(auto simp add: get_child_nodes_def a_get_child_nodes_tups_def)[1] apply(split invoke_splits)+ - apply(auto elim!: bind_returns_result_E2 split: option.splits) - apply(auto simp add: get_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 split: option.splits) - using \ptr |\| object_ptr_kinds h\ \is_document_ptr_kind ptr\ \known_ptr ptr\ \object_ptr_kinds h = object_ptr_kinds h2\ \type_wf h2\ assms(4) local.set_child_nodes_document1_ok apply blast - using \ptr |\| object_ptr_kinds h\ \is_document_ptr_kind ptr\ \known_ptr ptr\ \object_ptr_kinds h = object_ptr_kinds h2\ \type_wf h2\ assms(4) local.set_child_nodes_document1_ok apply blast - using \ptr |\| object_ptr_kinds h\ \is_document_ptr_kind ptr\ \known_ptr ptr\ \object_ptr_kinds h = object_ptr_kinds h2\ \type_wf h2\ assms(4) is_element_ptr_kind_cast local.set_child_nodes_document2_ok by blast + apply(auto elim!: bind_returns_result_E2 split: option.splits)[1] + apply(auto simp add: get_child_nodes\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_def elim!: bind_returns_result_E2 split: option.splits)[1] + using assms(5) apply auto[1] + using \is_document_ptr_kind ptr\ \known_ptr ptr\ \object_ptr_kinds h = object_ptr_kinds h2\ + \ptr |\| object_ptr_kinds h\ \type_wf h2\ local.set_child_nodes_document1_ok apply blast + using \is_document_ptr_kind ptr\ \known_ptr ptr\ \object_ptr_kinds h = object_ptr_kinds h2\ + \ptr |\| object_ptr_kinds h\ \type_wf h2\ is_element_ptr_kind_cast local.set_child_nodes_document2_ok + apply blast + using \\ is_character_data_ptr\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr\ apply blast + by (metis False is_element_ptr_implies_kind option.case_eq_if) qed then obtain h' where h': "h2 \ set_child_nodes ptr (remove1 child children) \\<^sub>h h'" by auto show ?thesis using assms apply(auto simp add: remove_child_def - simp add: is_OK_returns_heap_I[OF h2] is_OK_returns_heap_I[OF h'] is_OK_returns_result_I[OF assms(4)] is_OK_returns_result_I[OF owner_document] is_OK_returns_result_I[OF disconnected_nodes_h] + simp add: is_OK_returns_heap_I[OF h2] is_OK_returns_heap_I[OF h'] + is_OK_returns_result_I[OF assms(4)] is_OK_returns_result_I[OF owner_document] + is_OK_returns_result_I[OF disconnected_nodes_h] intro!: bind_is_OK_pure_I[OF get_owner_document_pure] bind_is_OK_pure_I[OF get_child_nodes_pure] bind_is_OK_pure_I[OF get_disconnected_nodes_pure] bind_is_OK_I[rotated, OF h2] - dest!: returns_result_eq[OF assms(4)] returns_result_eq[OF owner_document] returns_result_eq[OF disconnected_nodes_h] -) + dest!: returns_result_eq[OF assms(4)] returns_result_eq[OF owner_document] + returns_result_eq[OF disconnected_nodes_h] + )[1] using h2 returns_result_select_result by force qed lemma adopt_node_ok: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "document_ptr |\| document_ptr_kinds h" assumes "child |\| node_ptr_kinds h" shows "h \ ok (adopt_node document_ptr child)" proof - obtain old_document where - old_document: "h \ get_owner_document (cast child) \\<^sub>r old_document" - by (meson assms(1) assms(2) assms(3) assms(5) is_OK_returns_result_E local.get_owner_document_ok node_ptr_kinds_commutes) + old_document: "h \ get_owner_document (cast child) \\<^sub>r old_document" + by (meson assms(1) assms(2) assms(3) assms(5) is_OK_returns_result_E local.get_owner_document_ok + node_ptr_kinds_commutes) then have "h \ ok (get_owner_document (cast child))" by auto obtain parent_opt where parent_opt: "h \ get_parent child \\<^sub>r parent_opt" - by (meson assms(2) assms(3) is_OK_returns_result_I l_get_owner_document.get_owner_document_ptr_in_heap - local.get_parent_ok local.l_get_owner_document_axioms node_ptr_kinds_commutes old_document - returns_result_select_result) + by (meson assms(2) assms(3) is_OK_returns_result_I l_get_owner_document.get_owner_document_ptr_in_heap + local.get_parent_ok local.l_get_owner_document_axioms node_ptr_kinds_commutes old_document + returns_result_select_result) then have "h \ ok (get_parent child)" by auto have "h \ ok (case parent_opt of Some parent \ remove_child parent child | None \ return ())" apply(auto split: option.splits)[1] using remove_child_ok by (metis assms(1) assms(2) assms(3) local.get_parent_child_dual parent_opt) then obtain h2 where - h2: "h \ (case parent_opt of Some parent \ remove_child parent child | None \ return ()) \\<^sub>h h2" + h2: "h \ (case parent_opt of Some parent \ remove_child parent child | None \ return ()) \\<^sub>h h2" by auto have "object_ptr_kinds h = object_ptr_kinds h2" using h2 apply(simp split: option.splits) - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF remove_child_writes]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF remove_child_writes]) using remove_child_pointers_preserved by (auto simp add: reflp_def transp_def) then have "old_document |\| document_ptr_kinds h2" - using assms(1) assms(2) assms(3) document_ptr_kinds_commutes local.get_owner_document_owner_document_in_heap old_document by blast - - + using assms(1) assms(2) assms(3) document_ptr_kinds_commutes + local.get_owner_document_owner_document_in_heap old_document + by blast + + have wellformed_h2: "heap_is_wellformed h2" using h2 remove_child_heap_is_wellformed_preserved assms - by(auto split: option.splits) + by(auto split: option.splits) have "type_wf h2" using h2 remove_child_preserves_type_wf assms - by(auto split: option.splits) + by(auto split: option.splits) have "known_ptrs h2" using h2 remove_child_preserves_known_ptrs assms - by(auto split: option.splits) - - + by(auto split: option.splits) + + have "object_ptr_kinds h = object_ptr_kinds h2" using h2 apply(simp split: option.splits) - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF remove_child_writes]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF remove_child_writes]) using remove_child_pointers_preserved by (auto simp add: reflp_def transp_def) then have "document_ptr_kinds h = document_ptr_kinds h2" by(auto simp add: document_ptr_kinds_def) have "h2 \ ok (if document_ptr \ old_document then do { old_disc_nodes \ get_disconnected_nodes old_document; set_disconnected_nodes old_document (remove1 child old_disc_nodes); disc_nodes \ get_disconnected_nodes document_ptr; set_disconnected_nodes document_ptr (child # disc_nodes) } else do { return () })" proof(cases "document_ptr = old_document") case True then show ?thesis by simp next case False then have "h2 \ ok (get_disconnected_nodes old_document)" by (simp add: \old_document |\| document_ptr_kinds h2\ \type_wf h2\ local.get_disconnected_nodes_ok) then obtain old_disc_nodes where old_disc_nodes: "h2 \ get_disconnected_nodes old_document \\<^sub>r old_disc_nodes" by auto have "h2 \ ok (set_disconnected_nodes old_document (remove1 child old_disc_nodes))" by (simp add: \old_document |\| document_ptr_kinds h2\ \type_wf h2\ local.set_disconnected_nodes_ok) then obtain h3 where h3: "h2 \ set_disconnected_nodes old_document (remove1 child old_disc_nodes) \\<^sub>h h3" by auto have object_ptr_kinds_h2_eq3: "object_ptr_kinds h2 = object_ptr_kinds h3" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF set_disconnected_nodes_writes h3]) - using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF set_disconnected_nodes_writes h3]) + using set_disconnected_nodes_pointers_preserved set_child_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) - then have object_ptr_kinds_M_eq_h2: - "\ptrs. h2 \ object_ptr_kinds_M \\<^sub>r ptrs = h3 \ object_ptr_kinds_M \\<^sub>r ptrs" + then have object_ptr_kinds_M_eq_h2: + "\ptrs. h2 \ object_ptr_kinds_M \\<^sub>r ptrs = h3 \ object_ptr_kinds_M \\<^sub>r ptrs" by(simp add: object_ptr_kinds_M_defs) then have object_ptr_kinds_eq_h2: "|h2 \ object_ptr_kinds_M|\<^sub>r = |h3 \ object_ptr_kinds_M|\<^sub>r" by(simp) then have node_ptr_kinds_eq_h2: "|h2 \ node_ptr_kinds_M|\<^sub>r = |h3 \ node_ptr_kinds_M|\<^sub>r" using node_ptr_kinds_M_eq by blast then have node_ptr_kinds_eq3_h2: "node_ptr_kinds h2 = node_ptr_kinds h3" by auto have document_ptr_kinds_eq2_h2: "|h2 \ document_ptr_kinds_M|\<^sub>r = |h3 \ document_ptr_kinds_M|\<^sub>r" using object_ptr_kinds_eq_h2 document_ptr_kinds_M_eq by auto then have document_ptr_kinds_eq3_h2: "document_ptr_kinds h2 = document_ptr_kinds h3" using object_ptr_kinds_eq_h2 document_ptr_kinds_M_eq by auto - have children_eq_h2: + have children_eq_h2: "\ptr children. h2 \ get_child_nodes ptr \\<^sub>r children = h3 \ get_child_nodes ptr \\<^sub>r children" using get_child_nodes_reads set_disconnected_nodes_writes h3 apply(rule reads_writes_preserved) by (simp add: set_disconnected_nodes_get_child_nodes) then have children_eq2_h2: "\ptr. |h2 \ get_child_nodes ptr|\<^sub>r = |h3 \ get_child_nodes ptr|\<^sub>r" using select_result_eq by force have "type_wf h3" using \type_wf h2\ using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h3] - using set_disconnected_nodes_types_preserved + using set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) moreover have "document_ptr |\| document_ptr_kinds h3" using \document_ptr_kinds h = document_ptr_kinds h2\ assms(4) document_ptr_kinds_eq3_h2 by auto ultimately have "h3 \ ok (get_disconnected_nodes document_ptr)" by (simp add: local.get_disconnected_nodes_ok) then obtain disc_nodes where disc_nodes: "h3 \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes" by auto have "h3 \ ok (set_disconnected_nodes document_ptr (child # disc_nodes))" using \document_ptr |\| document_ptr_kinds h3\ \type_wf h3\ local.set_disconnected_nodes_ok by auto then obtain h' where h': "h3 \ set_disconnected_nodes document_ptr (child # disc_nodes) \\<^sub>h h'" by auto then show ?thesis using False using \h2 \ ok get_disconnected_nodes old_document\ using \h3 \ ok get_disconnected_nodes document_ptr\ apply(auto dest!: returns_result_eq[OF old_disc_nodes] returns_result_eq[OF disc_nodes] - intro!: bind_is_OK_I[rotated, OF h3] bind_is_OK_pure_I[OF get_disconnected_nodes_pure] ) + intro!: bind_is_OK_I[rotated, OF h3] bind_is_OK_pure_I[OF get_disconnected_nodes_pure] )[1] using \h2 \ ok set_disconnected_nodes old_document (remove1 child old_disc_nodes)\ by auto qed then obtain h' where h': "h2 \ (if document_ptr \ old_document then do { old_disc_nodes \ get_disconnected_nodes old_document; set_disconnected_nodes old_document (remove1 child old_disc_nodes); disc_nodes \ get_disconnected_nodes document_ptr; set_disconnected_nodes document_ptr (child # disc_nodes) } else do { return () }) \\<^sub>h h'" by auto show ?thesis using \h \ ok (get_owner_document (cast child))\ using \h \ ok (get_parent child)\ using h2 h' apply(auto simp add: adopt_node_def simp add: is_OK_returns_heap_I[OF h2] intro!: bind_is_OK_pure_I[OF get_owner_document_pure] bind_is_OK_pure_I[OF get_parent_pure] bind_is_OK_I[rotated, OF h2] - dest!: returns_result_eq[OF parent_opt] returns_result_eq[OF old_document]) + dest!: returns_result_eq[OF parent_opt] returns_result_eq[OF old_document])[1] using \h \ ok (case parent_opt of None \ return () | Some parent \ remove_child parent child)\ by auto qed lemma insert_node_ok: assumes "known_ptr parent" and "type_wf h" assumes "parent |\| object_ptr_kinds h" assumes "\is_character_data_ptr_kind parent" assumes "is_document_ptr parent \ h \ get_child_nodes parent \\<^sub>r []" assumes "is_document_ptr parent \ \is_character_data_ptr_kind node" assumes "known_ptr (cast node)" shows "h \ ok (a_insert_node parent node ref)" -proof(auto simp add: a_insert_node_def get_child_nodes_ok[OF assms(1) assms(2) assms(3)] intro!: bind_is_OK_pure_I) +proof(auto simp add: a_insert_node_def get_child_nodes_ok[OF assms(1) assms(2) assms(3)] + intro!: bind_is_OK_pure_I) fix children' assume "h \ get_child_nodes parent \\<^sub>r children'" show "h \ ok set_child_nodes parent (insert_before_list node ref children')" proof (cases "is_element_ptr_kind parent") case True - then show ?thesis + then show ?thesis using set_child_nodes_element_ok using assms(1) assms(2) assms(3) by blast next case False then have "is_document_ptr_kind parent" using assms(4) assms(1) - by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) then have "is_document_ptr parent" using assms(1) - by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) + by(auto simp add: known_ptr_impl DocumentClass.known_ptr_defs CharacterDataClass.known_ptr_defs + ElementClass.known_ptr_defs NodeClass.known_ptr_defs split: option.splits) then obtain children where children: "h \ get_child_nodes parent \\<^sub>r children" and "children = []" using assms(5) by blast have "insert_before_list node ref children' = [node]" - by (metis \children = []\ \h \ get_child_nodes parent \\<^sub>r children'\ append.left_neutral children insert_Nil l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.insert_before_list.elims l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.insert_before_list.simps(3) neq_Nil_conv returns_result_eq) + by (metis \children = []\ \h \ get_child_nodes parent \\<^sub>r children'\ append.left_neutral + children insert_Nil l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.insert_before_list.elims + l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_defs.insert_before_list.simps(3) neq_Nil_conv returns_result_eq) moreover have "\is_character_data_ptr_kind node" using \is_document_ptr\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r parent\ assms(6) by blast - then have "is_element_ptr_kind node" - by (metis (no_types, lifting) CharacterDataClass.a_known_ptr_def DocumentClass.a_known_ptr_def ElementClass.a_known_ptr_def NodeClass.a_known_ptr_def assms(7) cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_inject document_ptr_no_node_ptr_cast is_character_data_ptr_kind_none is_document_ptr_kind_none is_element_ptr_implies_kind is_node_ptr_kind_cast local.known_ptr_impl node_ptr_casts_commute3 option.case_eq_if) + then have "is_element_ptr_kind node" + by (metis (no_types, lifting) CharacterDataClass.a_known_ptr_def DocumentClass.a_known_ptr_def + ElementClass.a_known_ptr_def NodeClass.a_known_ptr_def assms(7) cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r_inject + document_ptr_no_node_ptr_cast is_character_data_ptr_kind_none is_document_ptr_kind_none + is_element_ptr_implies_kind is_node_ptr_kind_cast local.known_ptr_impl node_ptr_casts_commute3 + option.case_eq_if) ultimately show ?thesis using set_child_nodes_document2_ok - by (metis \is_document_ptr\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r parent\ assms(1) assms(2) assms(3) assms(5) is_document_ptr_kind_none option.case_eq_if) + by (metis \is_document_ptr\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r parent\ assms(1) assms(2) assms(3) assms(5) + is_document_ptr_kind_none option.case_eq_if) qed qed lemma insert_before_ok: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "parent |\| object_ptr_kinds h" assumes "node |\| node_ptr_kinds h" assumes "\is_character_data_ptr_kind parent" assumes "cast node \ set |h \ get_ancestors parent|\<^sub>r" assumes "h \ get_parent ref \\<^sub>r Some parent" assumes "is_document_ptr parent \ h \ get_child_nodes parent \\<^sub>r []" assumes "is_document_ptr parent \ \is_character_data_ptr_kind node" shows "h \ ok (insert_before parent node (Some ref))" proof - have "h \ ok (a_ensure_pre_insertion_validity node parent (Some ref))" using assms ensure_pre_insertion_validity_ok by blast have "h \ ok (if Some node = Some ref - then a_next_sibling node + then a_next_sibling node else return (Some ref))" (is "h \ ok ?P") apply(auto split: if_splits)[1] using assms(1) assms(2) assms(3) assms(5) next_sibling_ok by blast then obtain reference_child where reference_child: "h \ ?P \\<^sub>r reference_child" by auto obtain owner_document where owner_document: "h \ get_owner_document parent \\<^sub>r owner_document" using assms get_owner_document_ok by (meson returns_result_select_result) then have "h \ ok (get_owner_document parent)" by auto have "owner_document |\| document_ptr_kinds h" - using assms(1) assms(2) assms(3) local.get_owner_document_owner_document_in_heap owner_document by blast - - obtain h2 where + using assms(1) assms(2) assms(3) local.get_owner_document_owner_document_in_heap owner_document + by blast + + obtain h2 where h2: "h \ adopt_node owner_document node \\<^sub>h h2" - by (meson assms(1) assms(2) assms(3) assms(5) is_OK_returns_heap_E adopt_node_ok l_insert_before_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms - local.get_owner_document_owner_document_in_heap owner_document) + by (meson assms(1) assms(2) assms(3) assms(5) is_OK_returns_heap_E adopt_node_ok + l_insert_before_wf2\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms + local.get_owner_document_owner_document_in_heap owner_document) then have "h \ ok (adopt_node owner_document node)" by auto have "object_ptr_kinds h = object_ptr_kinds h2" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF adopt_node_writes h2]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF adopt_node_writes h2]) using adopt_node_pointers_preserved - apply blast + apply blast by (auto simp add: reflp_def transp_def) then have "document_ptr_kinds h = document_ptr_kinds h2" by(auto simp add: document_ptr_kinds_def) have "heap_is_wellformed h2" using h2 adopt_node_preserves_wellformedness assms by blast have "known_ptrs h2" using h2 adopt_node_preserves_known_ptrs assms by blast have "type_wf h2" using h2 adopt_node_preserves_type_wf assms by blast obtain disconnected_nodes_h2 where disconnected_nodes_h2: "h2 \ get_disconnected_nodes owner_document \\<^sub>r disconnected_nodes_h2" - by (metis \document_ptr_kinds h = document_ptr_kinds h2\ \type_wf h2\ assms(1) assms(2) assms(3) is_OK_returns_result_E local.get_disconnected_nodes_ok local.get_owner_document_owner_document_in_heap owner_document) - + by (metis \document_ptr_kinds h = document_ptr_kinds h2\ \type_wf h2\ assms(1) assms(2) assms(3) + is_OK_returns_result_E local.get_disconnected_nodes_ok local.get_owner_document_owner_document_in_heap + owner_document) + obtain h3 where h3: "h2 \ set_disconnected_nodes owner_document (remove1 node disconnected_nodes_h2) \\<^sub>h h3" - by (metis \document_ptr_kinds h = document_ptr_kinds h2\ \owner_document |\| document_ptr_kinds h\ \type_wf h2\ document_ptr_kinds_def is_OK_returns_heap_E l_set_disconnected_nodes.set_disconnected_nodes_ok local.l_set_disconnected_nodes_axioms) + by (metis \document_ptr_kinds h = document_ptr_kinds h2\ \owner_document |\| document_ptr_kinds h\ + \type_wf h2\ document_ptr_kinds_def is_OK_returns_heap_E + l_set_disconnected_nodes.set_disconnected_nodes_ok local.l_set_disconnected_nodes_axioms) have "type_wf h3" using \type_wf h2\ using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h3] - using set_disconnected_nodes_types_preserved + using set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) have object_ptr_kinds_M_eq3_h2: "object_ptr_kinds h2 = object_ptr_kinds h3" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", - OF set_disconnected_nodes_writes h3]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h = object_ptr_kinds h'", + OF set_disconnected_nodes_writes h3]) unfolding a_remove_child_locs_def - using set_disconnected_nodes_pointers_preserved + using set_disconnected_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) have "parent |\| object_ptr_kinds h3" using \object_ptr_kinds h = object_ptr_kinds h2\ assms(4) object_ptr_kinds_M_eq3_h2 by blast moreover have "known_ptr parent" using assms(2) assms(4) local.known_ptrs_known_ptr by blast moreover have "known_ptr (cast node)" using assms(2) assms(5) local.known_ptrs_known_ptr node_ptr_kinds_commutes by blast moreover have "is_document_ptr parent \ h3 \ get_child_nodes parent \\<^sub>r []" - by (metis assms(8) assms(9) distinct.simps(2) distinct_singleton local.get_parent_child_dual returns_result_eq) + by (metis assms(8) assms(9) distinct.simps(2) distinct_singleton local.get_parent_child_dual + returns_result_eq) ultimately obtain h' where h': "h3 \ a_insert_node parent node reference_child \\<^sub>h h'" using insert_node_ok \type_wf h3\ assms by blast show ?thesis using \h \ ok (a_ensure_pre_insertion_validity node parent (Some ref))\ - using reference_child \h \ ok (get_owner_document parent)\ \h \ ok (adopt_node owner_document node)\ h3 h' + using reference_child \h \ ok (get_owner_document parent)\ \h \ ok (adopt_node owner_document node)\ + h3 h' apply(auto simp add: insert_before_def - simp add: is_OK_returns_result_I[OF disconnected_nodes_h2] + simp add: is_OK_returns_result_I[OF disconnected_nodes_h2] simp add: is_OK_returns_heap_I[OF h3] is_OK_returns_heap_I[OF h'] intro!: bind_is_OK_I2 bind_is_OK_pure_I[OF ensure_pre_insertion_validity_pure] bind_is_OK_pure_I[OF next_sibling_pure] bind_is_OK_pure_I[OF get_owner_document_pure] bind_is_OK_pure_I[OF get_disconnected_nodes_pure] - dest!: returns_result_eq[OF owner_document] returns_result_eq[OF disconnected_nodes_h2] returns_heap_eq[OF h2] returns_heap_eq[OF h3] + dest!: returns_result_eq[OF owner_document] returns_result_eq[OF disconnected_nodes_h2] + returns_heap_eq[OF h2] returns_heap_eq[OF h3] dest!: sym[of node ref] - ) + )[1] using returns_result_eq by fastforce qed end interpretation i_insert_before_wf3?: l_insert_before_wf3\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - get_parent get_parent_locs get_child_nodes get_child_nodes_locs set_child_nodes set_child_nodes_locs get_ancestors get_ancestors_locs adopt_node adopt_node_locs set_disconnected_nodes set_disconnected_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs get_owner_document insert_before insert_before_locs append_child type_wf known_ptr known_ptrs heap_is_wellformed parent_child_rel remove_child remove_child_locs get_root_node get_root_node_locs remove + get_parent get_parent_locs get_child_nodes get_child_nodes_locs set_child_nodes set_child_nodes_locs + get_ancestors get_ancestors_locs adopt_node adopt_node_locs set_disconnected_nodes + set_disconnected_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs get_owner_document + insert_before insert_before_locs append_child type_wf known_ptr known_ptrs heap_is_wellformed + parent_child_rel remove_child remove_child_locs get_root_node get_root_node_locs remove by(auto simp add: l_insert_before_wf3\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def instances) declare l_insert_before_wf3\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms [instances] locale l_append_child_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_adopt_node\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_insert_before\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_append_child\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M + l_insert_before_wf + l_insert_before_wf2 + l_get_child_nodes begin lemma append_child_heap_is_wellformed_preserved: assumes wellformed: "heap_is_wellformed h" and append_child: "h \ append_child ptr node \\<^sub>h h'" and known_ptrs: "known_ptrs h" and type_wf: "type_wf h" shows "heap_is_wellformed h'" and "type_wf h'" and "known_ptrs h'" using assms - by(auto simp add: append_child_def intro: insert_before_preserves_type_wf insert_before_preserves_known_ptrs insert_before_heap_is_wellformed_preserved) + by(auto simp add: append_child_def intro: insert_before_preserves_type_wf + insert_before_preserves_known_ptrs insert_before_heap_is_wellformed_preserved) lemma append_child_children: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_child_nodes ptr \\<^sub>r xs" assumes "h \ append_child ptr node \\<^sub>h h'" assumes "node \ set xs" shows "h' \ get_child_nodes ptr \\<^sub>r xs @ [node]" proof - obtain ancestors owner_document h2 h3 disconnected_nodes_h2 where ancestors: "h \ get_ancestors ptr \\<^sub>r ancestors" and node_not_in_ancestors: "cast node \ set ancestors" and owner_document: "h \ get_owner_document ptr \\<^sub>r owner_document" and h2: "h \ adopt_node owner_document node \\<^sub>h h2" and disconnected_nodes_h2: "h2 \ get_disconnected_nodes owner_document \\<^sub>r disconnected_nodes_h2" and h3: "h2 \ set_disconnected_nodes owner_document (remove1 node disconnected_nodes_h2) \\<^sub>h h3" and h': "h3 \ a_insert_node ptr node None \\<^sub>h h'" using assms(5) - by(auto simp add: append_child_def insert_before_def a_ensure_pre_insertion_validity_def - elim!: bind_returns_heap_E bind_returns_result_E - bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] - bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] - bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] - bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] - bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] - split: if_splits option.splits) + by(auto simp add: append_child_def insert_before_def a_ensure_pre_insertion_validity_def + elim!: bind_returns_heap_E bind_returns_result_E + bind_returns_heap_E2[rotated, OF get_parent_pure, rotated] + bind_returns_heap_E2[rotated, OF get_child_nodes_pure, rotated] + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] + bind_returns_heap_E2[rotated, OF get_ancestors_pure, rotated] + bind_returns_heap_E2[rotated, OF next_sibling_pure, rotated] + bind_returns_heap_E2[rotated, OF get_owner_document_pure, rotated] + split: if_splits option.splits) have "\parent. |h \ get_parent node|\<^sub>r = Some parent \ parent \ ptr" using assms(1) assms(4) assms(6) - by (metis (no_types, lifting) assms(2) assms(3) h2 is_OK_returns_heap_I is_OK_returns_result_E - local.adopt_node_child_in_heap local.get_parent_child_dual local.get_parent_ok - select_result_I2) + by (metis (no_types, lifting) assms(2) assms(3) h2 is_OK_returns_heap_I is_OK_returns_result_E + local.adopt_node_child_in_heap local.get_parent_child_dual local.get_parent_ok + select_result_I2) have "h2 \ get_child_nodes ptr \\<^sub>r xs" using get_child_nodes_reads adopt_node_writes h2 assms(4) apply(rule reads_writes_separate_forwards) using \\parent. |h \ get_parent node|\<^sub>r = Some parent \ parent \ ptr\ apply(auto simp add: adopt_node_locs_def remove_child_locs_def)[1] by (meson local.set_child_nodes_get_child_nodes_different_pointers) have "h3 \ get_child_nodes ptr \\<^sub>r xs" using get_child_nodes_reads set_disconnected_nodes_writes h3 \h2 \ get_child_nodes ptr \\<^sub>r xs\ apply(rule reads_writes_separate_forwards) by(auto) have "ptr |\| object_ptr_kinds h" by (meson ancestors is_OK_returns_result_I local.get_ancestors_ptr_in_heap) then have "known_ptr ptr" using assms(3) using local.known_ptrs_known_ptr by blast have "type_wf h2" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF adopt_node_writes h2] using adopt_node_types_preserved \type_wf h\ by(auto simp add: adopt_node_locs_def remove_child_locs_def reflp_def transp_def split: if_splits) then have "type_wf h3" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h3] - using set_disconnected_nodes_types_preserved + using set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) show "h' \ get_child_nodes ptr \\<^sub>r xs@[node]" - using h' - apply(auto simp add: a_insert_node_def - dest!: bind_returns_heap_E3[rotated, OF \h3 \ get_child_nodes ptr \\<^sub>r xs\ - get_child_nodes_pure, rotated])[1] + using h' + apply(auto simp add: a_insert_node_def + dest!: bind_returns_heap_E3[rotated, OF \h3 \ get_child_nodes ptr \\<^sub>r xs\ + get_child_nodes_pure, rotated])[1] using \type_wf h3\ set_child_nodes_get_child_nodes \known_ptr ptr\ by metis qed lemma append_child_for_all_on_children: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_child_nodes ptr \\<^sub>r xs" assumes "h \ forall_M (append_child ptr) nodes \\<^sub>h h'" assumes "set nodes \ set xs = {}" assumes "distinct nodes" shows "h' \ get_child_nodes ptr \\<^sub>r xs@nodes" using assms apply(induct nodes arbitrary: h xs) - apply(simp) + apply(simp) proof(auto elim!: bind_returns_heap_E)[1]fix a nodes h xs h'a - assume 0: "(\h xs. heap_is_wellformed h \ type_wf h \ known_ptrs h - \ h \ get_child_nodes ptr \\<^sub>r xs \ h \ forall_M (append_child ptr) nodes \\<^sub>h h' + assume 0: "(\h xs. heap_is_wellformed h \ type_wf h \ known_ptrs h + \ h \ get_child_nodes ptr \\<^sub>r xs \ h \ forall_M (append_child ptr) nodes \\<^sub>h h' \ set nodes \ set xs = {} \ h' \ get_child_nodes ptr \\<^sub>r xs @ nodes)" and 1: "heap_is_wellformed h" and 2: "type_wf h" and 3: "known_ptrs h" and 4: "h \ get_child_nodes ptr \\<^sub>r xs" and 5: "h \ append_child ptr a \\<^sub>r ()" and 6: "h \ append_child ptr a \\<^sub>h h'a" and 7: "h'a \ forall_M (append_child ptr) nodes \\<^sub>h h'" and 8: "a \ set xs" and 9: "set nodes \ set xs = {}" and 10: "a \ set nodes" and 11: "distinct nodes" then have "h'a \ get_child_nodes ptr \\<^sub>r xs @ [a]" using append_child_children 6 using "1" "2" "3" "4" "8" by blast moreover have "heap_is_wellformed h'a" and "type_wf h'a" and "known_ptrs h'a" - using insert_before_heap_is_wellformed_preserved insert_before_preserves_known_ptrs - insert_before_preserves_type_wf 1 2 3 6 append_child_def + using insert_before_heap_is_wellformed_preserved insert_before_preserves_known_ptrs + insert_before_preserves_type_wf 1 2 3 6 append_child_def by metis+ moreover have "set nodes \ set (xs @ [a]) = {}" using 9 10 by auto ultimately show "h' \ get_child_nodes ptr \\<^sub>r xs @ a # nodes" using 0 7 by fastforce qed lemma append_child_for_all_on_no_children: assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h" assumes "h \ get_child_nodes ptr \\<^sub>r []" assumes "h \ forall_M (append_child ptr) nodes \\<^sub>h h'" assumes "distinct nodes" shows "h' \ get_child_nodes ptr \\<^sub>r nodes" using assms append_child_for_all_on_children by force end locale l_append_child_wf = l_type_wf + l_known_ptrs + l_append_child_defs + l_heap_is_wellformed_defs + - assumes append_child_preserves_type_wf: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ append_child ptr child \\<^sub>h h' + assumes append_child_preserves_type_wf: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ append_child ptr child \\<^sub>h h' \ type_wf h'" - assumes append_child_preserves_known_ptrs: - "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ append_child ptr child \\<^sub>h h' + assumes append_child_preserves_known_ptrs: + "heap_is_wellformed h \ type_wf h \ known_ptrs h \ h \ append_child ptr child \\<^sub>h h' \ known_ptrs h'" assumes append_child_heap_is_wellformed_preserved: "type_wf h \ known_ptrs h \ heap_is_wellformed h \ h \ append_child ptr child \\<^sub>h h' \ heap_is_wellformed h'" -interpretation i_append_child_wf?: l_append_child_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_owner_document get_parent - get_parent_locs remove_child remove_child_locs - get_disconnected_nodes get_disconnected_nodes_locs - set_disconnected_nodes set_disconnected_nodes_locs - adopt_node adopt_node_locs known_ptr type_wf get_child_nodes - get_child_nodes_locs known_ptrs set_child_nodes - set_child_nodes_locs remove get_ancestors get_ancestors_locs - insert_before insert_before_locs append_child heap_is_wellformed - parent_child_rel +interpretation i_append_child_wf?: l_append_child_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_owner_document get_parent + get_parent_locs remove_child remove_child_locs + get_disconnected_nodes get_disconnected_nodes_locs + set_disconnected_nodes set_disconnected_nodes_locs + adopt_node adopt_node_locs known_ptr type_wf get_child_nodes + get_child_nodes_locs known_ptrs set_child_nodes + set_child_nodes_locs remove get_ancestors get_ancestors_locs + insert_before insert_before_locs append_child heap_is_wellformed + parent_child_rel by(auto simp add: l_append_child_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def instances) -lemma append_child_wf_is_l_append_child_wf [instances]: "l_append_child_wf type_wf known_ptr known_ptrs append_child heap_is_wellformed" +lemma append_child_wf_is_l_append_child_wf [instances]: "l_append_child_wf type_wf known_ptr +known_ptrs append_child heap_is_wellformed" apply(auto simp add: l_append_child_wf_def l_append_child_wf_axioms_def instances)[1] using append_child_heap_is_wellformed_preserved by fast+ subsection \create\_element\ locale l_create_element_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = - l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes get_child_nodes_locs - get_disconnected_nodes get_disconnected_nodes_locs - heap_is_wellformed parent_child_rel + + l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes get_child_nodes_locs + get_disconnected_nodes get_disconnected_nodes_locs + heap_is_wellformed parent_child_rel + l_new_element_get_disconnected_nodes get_disconnected_nodes get_disconnected_nodes_locs + - l_set_tag_type_get_disconnected_nodes type_wf set_tag_type set_tag_type_locs - get_disconnected_nodes get_disconnected_nodes_locs + - l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes - set_disconnected_nodes_locs set_tag_type set_tag_type_locs type_wf create_element known_ptr + + l_set_tag_name_get_disconnected_nodes type_wf set_tag_name set_tag_name_locs + get_disconnected_nodes get_disconnected_nodes_locs + + l_create_element\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes + set_disconnected_nodes_locs set_tag_name set_tag_name_locs type_wf create_element known_ptr + l_new_element_get_child_nodes type_wf known_ptr get_child_nodes get_child_nodes_locs + - l_set_tag_type_get_child_nodes type_wf set_tag_type set_tag_type_locs known_ptr - get_child_nodes get_child_nodes_locs + - l_set_disconnected_nodes_get_child_nodes set_disconnected_nodes set_disconnected_nodes_locs - get_child_nodes get_child_nodes_locs + + l_set_tag_name_get_child_nodes type_wf set_tag_name set_tag_name_locs known_ptr + get_child_nodes get_child_nodes_locs + + l_set_disconnected_nodes_get_child_nodes set_disconnected_nodes set_disconnected_nodes_locs + get_child_nodes get_child_nodes_locs + l_set_disconnected_nodes type_wf set_disconnected_nodes set_disconnected_nodes_locs + - l_set_disconnected_nodes_get_disconnected_nodes type_wf get_disconnected_nodes - get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs + + l_set_disconnected_nodes_get_disconnected_nodes type_wf get_disconnected_nodes + get_disconnected_nodes_locs set_disconnected_nodes set_disconnected_nodes_locs + l_new_element type_wf + l_known_ptrs known_ptr known_ptrs for known_ptr :: "(_::linorder) object_ptr \ bool" - and known_ptrs :: "(_) heap \ bool" - and type_wf :: "(_) heap \ bool" - and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" - and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" - and heap_is_wellformed :: "(_) heap \ bool" - and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" - and set_tag_type :: "(_) element_ptr \ char list \ ((_) heap, exception, unit) prog" - and set_tag_type_locs :: "(_) element_ptr \ ((_) heap, exception, unit) prog set" - and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" - and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" - and create_element :: "(_) document_ptr \ char list \ ((_) heap, exception, (_) element_ptr) prog" + and known_ptrs :: "(_) heap \ bool" + and type_wf :: "(_) heap \ bool" + and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" + and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" + and heap_is_wellformed :: "(_) heap \ bool" + and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" + and set_tag_name :: "(_) element_ptr \ char list \ ((_) heap, exception, unit) prog" + and set_tag_name_locs :: "(_) element_ptr \ ((_) heap, exception, unit) prog set" + and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" + and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" + and create_element :: "(_) document_ptr \ char list \ ((_) heap, exception, (_) element_ptr) prog" begin lemma create_element_preserves_wellformedness: assumes "heap_is_wellformed h" and "h \ create_element document_ptr tag \\<^sub>h h'" and "type_wf h" and "known_ptrs h" shows "heap_is_wellformed h'" and "type_wf h'" and "known_ptrs h'" proof - obtain new_element_ptr h2 h3 disc_nodes_h3 where new_element_ptr: "h \ new_element \\<^sub>r new_element_ptr" and h2: "h \ new_element \\<^sub>h h2" and - h3: "h2 \ set_tag_type new_element_ptr tag \\<^sub>h h3" and + h3: "h2 \ set_tag_name new_element_ptr tag \\<^sub>h h3" and disc_nodes_h3: "h3 \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_h3" and h': "h3 \ set_disconnected_nodes document_ptr (cast new_element_ptr # disc_nodes_h3) \\<^sub>h h'" - using assms(2) + using assms(2) by(auto simp add: create_element_def - elim!: bind_returns_heap_E - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] ) + elim!: bind_returns_heap_E + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] ) then have "h \ create_element document_ptr tag \\<^sub>r new_element_ptr" apply(auto simp add: create_element_def intro!: bind_returns_result_I)[1] - apply (metis is_OK_returns_heap_I is_OK_returns_result_E old.unit.exhaust) - apply (metis is_OK_returns_heap_E is_OK_returns_result_I local.get_disconnected_nodes_pure pure_returns_heap_eq) + apply (metis is_OK_returns_heap_I is_OK_returns_result_E old.unit.exhaust) + apply (metis is_OK_returns_heap_E is_OK_returns_result_I local.get_disconnected_nodes_pure + pure_returns_heap_eq) by (metis is_OK_returns_heap_I is_OK_returns_result_E old.unit.exhaust) have "new_element_ptr \ set |h \ element_ptr_kinds_M|\<^sub>r" using new_element_ptr ElementMonad.ptr_kinds_ptr_kinds_M h2 - using new_element_ptr_not_in_heap by blast + using new_element_ptr_not_in_heap by blast then have "cast new_element_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r" by simp then have "cast new_element_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r" by simp have object_ptr_kinds_eq_h: "object_ptr_kinds h2 = object_ptr_kinds h |\| {|cast new_element_ptr|}" using new_element_new_ptr h2 new_element_ptr by blast then have node_ptr_kinds_eq_h: "node_ptr_kinds h2 = node_ptr_kinds h |\| {|cast new_element_ptr|}" apply(simp add: node_ptr_kinds_def) by force then have element_ptr_kinds_eq_h: "element_ptr_kinds h2 = element_ptr_kinds h |\| {|new_element_ptr|}" apply(simp add: element_ptr_kinds_def) by force have character_data_ptr_kinds_eq_h: "character_data_ptr_kinds h2 = character_data_ptr_kinds h" using object_ptr_kinds_eq_h by(auto simp add: node_ptr_kinds_def character_data_ptr_kinds_def) have document_ptr_kinds_eq_h: "document_ptr_kinds h2 = document_ptr_kinds h" using object_ptr_kinds_eq_h by(auto simp add: document_ptr_kinds_def) have object_ptr_kinds_eq_h2: "object_ptr_kinds h3 = object_ptr_kinds h2" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", OF set_tag_type_writes h3]) - using set_tag_type_pointers_preserved + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", + OF set_tag_name_writes h3]) + using set_tag_name_pointers_preserved by (auto simp add: reflp_def transp_def) then have document_ptr_kinds_eq_h2: "document_ptr_kinds h3 = document_ptr_kinds h2" by (auto simp add: document_ptr_kinds_def) have node_ptr_kinds_eq_h2: "node_ptr_kinds h3 = node_ptr_kinds h2" - using object_ptr_kinds_eq_h2 + using object_ptr_kinds_eq_h2 by(auto simp add: node_ptr_kinds_def) have object_ptr_kinds_eq_h3: "object_ptr_kinds h' = object_ptr_kinds h3" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", - OF set_disconnected_nodes_writes h']) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", + OF set_disconnected_nodes_writes h']) using set_disconnected_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) then have document_ptr_kinds_eq_h3: "document_ptr_kinds h' = document_ptr_kinds h3" by (auto simp add: document_ptr_kinds_def) have node_ptr_kinds_eq_h3: "node_ptr_kinds h' = node_ptr_kinds h3" using object_ptr_kinds_eq_h3 by(auto simp add: node_ptr_kinds_def) have "known_ptr (cast new_element_ptr)" - using \h \ create_element document_ptr tag \\<^sub>r new_element_ptr\ local.create_element_known_ptr by blast + using \h \ create_element document_ptr tag \\<^sub>r new_element_ptr\ local.create_element_known_ptr + by blast then have "known_ptrs h2" using known_ptrs_new_ptr object_ptr_kinds_eq_h \known_ptrs h\ h2 by blast then have "known_ptrs h3" using known_ptrs_preserved object_ptr_kinds_eq_h2 by blast then show "known_ptrs h'" using known_ptrs_preserved object_ptr_kinds_eq_h3 by blast have "document_ptr |\| document_ptr_kinds h" - using disc_nodes_h3 document_ptr_kinds_eq_h object_ptr_kinds_eq_h2 - get_disconnected_nodes_ptr_in_heap \type_wf h\ document_ptr_kinds_def + using disc_nodes_h3 document_ptr_kinds_eq_h object_ptr_kinds_eq_h2 + get_disconnected_nodes_ptr_in_heap \type_wf h\ document_ptr_kinds_def by (metis is_OK_returns_result_I) - have children_eq_h: "\(ptr'::(_) object_ptr) children. ptr' \ cast new_element_ptr + have children_eq_h: "\(ptr'::(_) object_ptr) children. ptr' \ cast new_element_ptr \ h \ get_child_nodes ptr' \\<^sub>r children = h2 \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads h2 get_child_nodes_new_element[rotated, OF new_element_ptr h2] apply(auto simp add: reads_def reflp_def transp_def preserved_def)[1] by blast+ - then have children_eq2_h: "\ptr'. ptr' \ cast new_element_ptr + then have children_eq2_h: "\ptr'. ptr' \ cast new_element_ptr \ |h \ get_child_nodes ptr'|\<^sub>r = |h2 \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force have "h2 \ get_child_nodes (cast new_element_ptr) \\<^sub>r []" - using new_element_ptr h2 new_element_ptr_in_heap[OF h2 new_element_ptr] - new_element_is_element_ptr[OF new_element_ptr] new_element_no_child_nodes + using new_element_ptr h2 new_element_ptr_in_heap[OF h2 new_element_ptr] + new_element_is_element_ptr[OF new_element_ptr] new_element_no_child_nodes by blast - have disconnected_nodes_eq_h: - "\doc_ptr disc_nodes. h \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes + have disconnected_nodes_eq_h: + "\doc_ptr disc_nodes. h \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h2 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads h2 get_disconnected_nodes_new_element[OF new_element_ptr h2] apply(auto simp add: reads_def reflp_def transp_def preserved_def)[1] by blast+ - then have disconnected_nodes_eq2_h: + then have disconnected_nodes_eq2_h: "\doc_ptr. |h \ get_disconnected_nodes doc_ptr|\<^sub>r = |h2 \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - have children_eq_h2: + have children_eq_h2: "\ptr' children. h2 \ get_child_nodes ptr' \\<^sub>r children = h3 \ get_child_nodes ptr' \\<^sub>r children" - using get_child_nodes_reads set_tag_type_writes h3 + using get_child_nodes_reads set_tag_name_writes h3 apply(rule reads_writes_preserved) - by(auto simp add: set_tag_type_get_child_nodes) + by(auto simp add: set_tag_name_get_child_nodes) then have children_eq2_h2: "\ptr'. |h2 \ get_child_nodes ptr'|\<^sub>r = |h3 \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force - have disconnected_nodes_eq_h2: - "\doc_ptr disc_nodes. h2 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes + have disconnected_nodes_eq_h2: + "\doc_ptr disc_nodes. h2 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" - using get_disconnected_nodes_reads set_tag_type_writes h3 + using get_disconnected_nodes_reads set_tag_name_writes h3 apply(rule reads_writes_preserved) - by(auto simp add: set_tag_type_get_disconnected_nodes) - then have disconnected_nodes_eq2_h2: + by(auto simp add: set_tag_name_get_disconnected_nodes) + then have disconnected_nodes_eq2_h2: "\doc_ptr. |h2 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force have "type_wf h2" using \type_wf h\ new_element_types_preserved h2 by blast then have "type_wf h3" - using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_tag_type_writes h3] - using set_tag_type_types_preserved + using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_tag_name_writes h3] + using set_tag_name_types_preserved by(auto simp add: reflp_def transp_def) then show "type_wf h'" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h'] - using set_disconnected_nodes_types_preserved + using set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) - have children_eq_h3: + have children_eq_h3: "\ptr' children. h3 \ get_child_nodes ptr' \\<^sub>r children = h' \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads set_disconnected_nodes_writes h' apply(rule reads_writes_preserved) by(auto simp add: set_disconnected_nodes_get_child_nodes) then have children_eq2_h3: "\ptr'. |h3 \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force - have disconnected_nodes_eq_h3: - "\doc_ptr disc_nodes. document_ptr \ doc_ptr - \ h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes + have disconnected_nodes_eq_h3: + "\doc_ptr disc_nodes. document_ptr \ doc_ptr + \ h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h' \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads set_disconnected_nodes_writes h' apply(rule reads_writes_preserved) by(auto simp add: set_disconnected_nodes_get_disconnected_nodes_different_pointers) - then have disconnected_nodes_eq2_h3: - "\doc_ptr. document_ptr \ doc_ptr + then have disconnected_nodes_eq2_h3: + "\doc_ptr. document_ptr \ doc_ptr \ |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h' \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - + have disc_nodes_document_ptr_h2: "h2 \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_h3" using disconnected_nodes_eq_h2 disc_nodes_h3 by auto then have disc_nodes_document_ptr_h: "h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_h3" using disconnected_nodes_eq_h by auto then have "cast new_element_ptr \ set disc_nodes_h3" - using \heap_is_wellformed h\ - using \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ - a_all_ptrs_in_heap_def heap_is_wellformed_def + using \heap_is_wellformed h\ + using \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ + a_all_ptrs_in_heap_def heap_is_wellformed_def using NodeMonad.ptr_kinds_ptr_kinds_M local.heap_is_wellformed_disc_nodes_in_heap by blast have "acyclic (parent_child_rel h)" - using \heap_is_wellformed h\ + using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def acyclic_heap_def) also have "parent_child_rel h = parent_child_rel h2" proof(auto simp add: parent_child_rel_def)[1] fix a x assume 0: "a |\| object_ptr_kinds h" and 1: "x \ set |h \ get_child_nodes a|\<^sub>r" then show "a |\| object_ptr_kinds h2" by (simp add: object_ptr_kinds_eq_h) next fix a x assume 0: "a |\| object_ptr_kinds h" and 1: "x \ set |h \ get_child_nodes a|\<^sub>r" then show "x \ set |h2 \ get_child_nodes a|\<^sub>r" - by (metis ObjectMonad.ptr_kinds_ptr_kinds_M - \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\ children_eq2_h) + by (metis ObjectMonad.ptr_kinds_ptr_kinds_M + \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\ children_eq2_h) next fix a x assume 0: "a |\| object_ptr_kinds h2" - and 1: "x \ set |h2 \ get_child_nodes a|\<^sub>r" + and 1: "x \ set |h2 \ get_child_nodes a|\<^sub>r" then show "a |\| object_ptr_kinds h" using object_ptr_kinds_eq_h \h2 \ get_child_nodes (cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr) \\<^sub>r []\ by(auto) next fix a x assume 0: "a |\| object_ptr_kinds h2" and 1: "x \ set |h2 \ get_child_nodes a|\<^sub>r" then show "x \ set |h \ get_child_nodes a|\<^sub>r" - by (metis (no_types, lifting) - \h2 \ get_child_nodes (cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr) \\<^sub>r []\ - children_eq2_h empty_iff empty_set image_eqI select_result_I2) + by (metis (no_types, lifting) + \h2 \ get_child_nodes (cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr) \\<^sub>r []\ + children_eq2_h empty_iff empty_set image_eqI select_result_I2) qed also have "\ = parent_child_rel h3" by(auto simp add: parent_child_rel_def object_ptr_kinds_eq_h2 children_eq2_h2) also have "\ = parent_child_rel h'" by(auto simp add: parent_child_rel_def object_ptr_kinds_eq_h3 children_eq2_h3) finally have "a_acyclic_heap h'" by (simp add: acyclic_heap_def) have "a_all_ptrs_in_heap h" using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def) then have "a_all_ptrs_in_heap h2" apply(auto simp add: a_all_ptrs_in_heap_def)[1] - apply (metis \known_ptrs h2\ \parent_child_rel h = parent_child_rel h2\ \type_wf h2\ assms(1) assms(3) funion_iff local.get_child_nodes_ok local.known_ptrs_known_ptr local.parent_child_rel_child_in_heap local.parent_child_rel_child_nodes2 node_ptr_kinds_commutes node_ptr_kinds_eq_h returns_result_select_result) - by (metis assms(1) assms(3) disconnected_nodes_eq2_h document_ptr_kinds_eq_h funion_iff local.get_disconnected_nodes_ok local.heap_is_wellformed_disc_nodes_in_heap node_ptr_kinds_eq_h returns_result_select_result) + apply (metis \known_ptrs h2\ \parent_child_rel h = parent_child_rel h2\ \type_wf h2\ assms(1) + assms(3) funion_iff local.get_child_nodes_ok local.known_ptrs_known_ptr + local.parent_child_rel_child_in_heap local.parent_child_rel_child_nodes2 node_ptr_kinds_commutes + node_ptr_kinds_eq_h returns_result_select_result) + by (metis assms(1) assms(3) disconnected_nodes_eq2_h document_ptr_kinds_eq_h funion_iff + local.get_disconnected_nodes_ok local.heap_is_wellformed_disc_nodes_in_heap node_ptr_kinds_eq_h + returns_result_select_result) then have "a_all_ptrs_in_heap h3" - by (simp add: children_eq2_h2 disconnected_nodes_eq2_h2 document_ptr_kinds_eq_h2 local.a_all_ptrs_in_heap_def node_ptr_kinds_eq_h2 object_ptr_kinds_eq_h2) + by (simp add: children_eq2_h2 disconnected_nodes_eq2_h2 document_ptr_kinds_eq_h2 + local.a_all_ptrs_in_heap_def node_ptr_kinds_eq_h2 object_ptr_kinds_eq_h2) then have "a_all_ptrs_in_heap h'" - by (smt \h2 \ get_child_nodes (cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr) \\<^sub>r []\ children_eq2_h3 disc_nodes_document_ptr_h2 disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 document_ptr_kinds_eq_h3 finite_set_in h' is_OK_returns_result_I l_set_disconnected_nodes_get_disconnected_nodes.set_disconnected_nodes_get_disconnected_nodes local.a_all_ptrs_in_heap_def local.get_child_nodes_ptr_in_heap local.l_set_disconnected_nodes_get_disconnected_nodes_axioms node_ptr_kinds_commutes object_ptr_kinds_eq_h2 object_ptr_kinds_eq_h3 select_result_I2 set_ConsD subset_code(1)) + by (smt \h2 \ get_child_nodes (cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr) \\<^sub>r []\ children_eq2_h3 + disc_nodes_document_ptr_h2 disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 document_ptr_kinds_eq_h3 + finite_set_in h' is_OK_returns_result_I set_disconnected_nodes_get_disconnected_nodes + local.a_all_ptrs_in_heap_def local.get_child_nodes_ptr_in_heap node_ptr_kinds_commutes + object_ptr_kinds_eq_h2 object_ptr_kinds_eq_h3 select_result_I2 set_ConsD subset_code(1)) have "\p. p |\| object_ptr_kinds h \ cast new_element_ptr \ set |h \ get_child_nodes p|\<^sub>r" - using \heap_is_wellformed h\ \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ - heap_is_wellformed_children_in_heap - by (meson NodeMonad.ptr_kinds_ptr_kinds_M a_all_ptrs_in_heap_def assms(3) assms(4) fset_mp - fset_of_list_elem get_child_nodes_ok known_ptrs_known_ptr returns_result_select_result) + using \heap_is_wellformed h\ \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ + heap_is_wellformed_children_in_heap + by (meson NodeMonad.ptr_kinds_ptr_kinds_M a_all_ptrs_in_heap_def assms(3) assms(4) fset_mp + fset_of_list_elem get_child_nodes_ok known_ptrs_known_ptr returns_result_select_result) then have "\p. p |\| object_ptr_kinds h2 \ cast new_element_ptr \ set |h2 \ get_child_nodes p|\<^sub>r" using children_eq2_h apply(auto simp add: object_ptr_kinds_eq_h)[1] using \h2 \ get_child_nodes (cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr) \\<^sub>r []\ apply auto[1] - by (metis ObjectMonad.ptr_kinds_ptr_kinds_M - \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\) + by (metis ObjectMonad.ptr_kinds_ptr_kinds_M + \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\) then have "\p. p |\| object_ptr_kinds h3 \ cast new_element_ptr \ set |h3 \ get_child_nodes p|\<^sub>r" using object_ptr_kinds_eq_h2 children_eq2_h2 by auto - then have new_element_ptr_not_in_any_children: + then have new_element_ptr_not_in_any_children: "\p. p |\| object_ptr_kinds h' \ cast new_element_ptr \ set |h' \ get_child_nodes p|\<^sub>r" using object_ptr_kinds_eq_h3 children_eq2_h3 by auto have "a_distinct_lists h" - using \heap_is_wellformed h\ + using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def) then have "a_distinct_lists h2" using \h2 \ get_child_nodes (cast new_element_ptr) \\<^sub>r []\ - apply(auto simp add: a_distinct_lists_def object_ptr_kinds_eq_h document_ptr_kinds_eq_h + apply(auto simp add: a_distinct_lists_def object_ptr_kinds_eq_h document_ptr_kinds_eq_h disconnected_nodes_eq2_h intro!: distinct_concat_map_I)[1] apply (metis distinct_sorted_list_of_set finite_fset sorted_list_of_set_insert) apply(case_tac "x=cast new_element_ptr") apply(auto simp add: children_eq2_h[symmetric] insort_split dest: distinct_concat_map_E(2))[1] apply(auto simp add: children_eq2_h[symmetric] insort_split dest: distinct_concat_map_E(2))[1] apply(auto simp add: children_eq2_h[symmetric] insort_split dest: distinct_concat_map_E(2))[1] - apply (metis IntI assms(1) assms(3) assms(4) empty_iff local.get_child_nodes_ok + apply (metis IntI assms(1) assms(3) assms(4) empty_iff local.get_child_nodes_ok local.heap_is_wellformed_one_parent local.known_ptrs_known_ptr returns_result_select_result) apply(auto simp add: children_eq2_h[symmetric] insort_split dest: distinct_concat_map_E(2))[1] - by (metis \local.a_distinct_lists h\ \type_wf h2\ disconnected_nodes_eq_h document_ptr_kinds_eq_h + by (metis \local.a_distinct_lists h\ \type_wf h2\ disconnected_nodes_eq_h document_ptr_kinds_eq_h local.distinct_lists_no_parent local.get_disconnected_nodes_ok returns_result_select_result) - + then have "a_distinct_lists h3" - by(auto simp add: a_distinct_lists_def disconnected_nodes_eq2_h2 document_ptr_kinds_eq_h2 - children_eq2_h2 object_ptr_kinds_eq_h2) + by(auto simp add: a_distinct_lists_def disconnected_nodes_eq2_h2 document_ptr_kinds_eq_h2 + children_eq2_h2 object_ptr_kinds_eq_h2) then have "a_distinct_lists h'" - proof(auto simp add: a_distinct_lists_def disconnected_nodes_eq2_h3 children_eq2_h3 - object_ptr_kinds_eq_h3 document_ptr_kinds_eq_h3 - intro!: distinct_concat_map_I)[1] + proof(auto simp add: a_distinct_lists_def disconnected_nodes_eq2_h3 children_eq2_h3 + object_ptr_kinds_eq_h3 document_ptr_kinds_eq_h3 + intro!: distinct_concat_map_I)[1] fix x - assume "distinct (concat (map (\document_ptr. |h3 \ get_disconnected_nodes document_ptr|\<^sub>r) + assume "distinct (concat (map (\document_ptr. |h3 \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h3)))))" and "x |\| document_ptr_kinds h3" then show "distinct |h' \ get_disconnected_nodes x|\<^sub>r" using document_ptr_kinds_eq_h3 disconnected_nodes_eq_h3 h' set_disconnected_nodes_get_disconnected_nodes - by (metis (no_types, lifting) \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set disc_nodes_h3\ - \a_distinct_lists h3\ \type_wf h'\ disc_nodes_h3 distinct.simps(2) - distinct_lists_disconnected_nodes get_disconnected_nodes_ok returns_result_eq - returns_result_select_result) + by (metis (no_types, lifting) \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set disc_nodes_h3\ + \a_distinct_lists h3\ \type_wf h'\ disc_nodes_h3 distinct.simps(2) + distinct_lists_disconnected_nodes get_disconnected_nodes_ok returns_result_eq + returns_result_select_result) next fix x y xa - assume "distinct (concat (map (\document_ptr. |h3 \ get_disconnected_nodes document_ptr|\<^sub>r) + assume "distinct (concat (map (\document_ptr. |h3 \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h3)))))" and "x |\| document_ptr_kinds h3" and "y |\| document_ptr_kinds h3" and "x \ y" and "xa \ set |h' \ get_disconnected_nodes x|\<^sub>r" and "xa \ set |h' \ get_disconnected_nodes y|\<^sub>r" moreover have "set |h3 \ get_disconnected_nodes x|\<^sub>r \ set |h3 \ get_disconnected_nodes y|\<^sub>r = {}" using calculation by(auto dest: distinct_concat_map_E(1)) ultimately show "False" apply(-) apply(cases "x = document_ptr") - apply (smt NodeMonad.ptr_kinds_ptr_kinds_M \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ \local.a_all_ptrs_in_heap h\ - disc_nodes_h3 disconnected_nodes_eq2_h disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 - disjoint_iff_not_equal document_ptr_kinds_eq_h document_ptr_kinds_eq_h2 finite_set_in h' - l_set_disconnected_nodes_get_disconnected_nodes.set_disconnected_nodes_get_disconnected_nodes - local.a_all_ptrs_in_heap_def local.l_set_disconnected_nodes_get_disconnected_nodes_axioms - select_result_I2 set_ConsD subsetD) - by (smt NodeMonad.ptr_kinds_ptr_kinds_M \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ \local.a_all_ptrs_in_heap h\ - disc_nodes_document_ptr_h2 disconnected_nodes_eq2_h disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 - disjoint_iff_not_equal document_ptr_kinds_eq_h document_ptr_kinds_eq_h2 finite_set_in h' - l_set_disconnected_nodes_get_disconnected_nodes.set_disconnected_nodes_get_disconnected_nodes - local.a_all_ptrs_in_heap_def local.l_set_disconnected_nodes_get_disconnected_nodes_axioms - select_result_I2 set_ConsD subsetD) + apply (smt NodeMonad.ptr_kinds_ptr_kinds_M \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ + \local.a_all_ptrs_in_heap h\ + disc_nodes_h3 disconnected_nodes_eq2_h disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 + disjoint_iff_not_equal document_ptr_kinds_eq_h document_ptr_kinds_eq_h2 finite_set_in h' + l_set_disconnected_nodes_get_disconnected_nodes.set_disconnected_nodes_get_disconnected_nodes + local.a_all_ptrs_in_heap_def local.l_set_disconnected_nodes_get_disconnected_nodes_axioms + select_result_I2 set_ConsD subsetD) + by (smt NodeMonad.ptr_kinds_ptr_kinds_M \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ + \local.a_all_ptrs_in_heap h\ + disc_nodes_document_ptr_h2 disconnected_nodes_eq2_h disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 + disjoint_iff_not_equal document_ptr_kinds_eq_h document_ptr_kinds_eq_h2 finite_set_in h' + l_set_disconnected_nodes_get_disconnected_nodes.set_disconnected_nodes_get_disconnected_nodes + local.a_all_ptrs_in_heap_def local.l_set_disconnected_nodes_get_disconnected_nodes_axioms + select_result_I2 set_ConsD subsetD) next fix x xa xb - assume 2: "(\x\fset (object_ptr_kinds h3). set |h' \ get_child_nodes x|\<^sub>r) + assume 2: "(\x\fset (object_ptr_kinds h3). set |h' \ get_child_nodes x|\<^sub>r) \ (\x\fset (document_ptr_kinds h3). set |h3 \ get_disconnected_nodes x|\<^sub>r) = {}" and 3: "xa |\| object_ptr_kinds h3" and 4: "x \ set |h' \ get_child_nodes xa|\<^sub>r" and 5: "xb |\| document_ptr_kinds h3" and 6: "x \ set |h' \ get_disconnected_nodes xb|\<^sub>r" - show "False" + show "False" using disc_nodes_document_ptr_h disconnected_nodes_eq2_h3 apply - apply(cases "xb = document_ptr") - apply (metis (no_types, hide_lams) "3" "4" "6" - \\p. p |\| object_ptr_kinds h3 - \ cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h3 \ get_child_nodes p|\<^sub>r\ - \a_distinct_lists h3\ children_eq2_h3 disc_nodes_h3 distinct_lists_no_parent h' - select_result_I2 set_ConsD set_disconnected_nodes_get_disconnected_nodes) - by (metis "3" "4" "5" "6" \a_distinct_lists h3\ \type_wf h3\ children_eq2_h3 - distinct_lists_no_parent get_disconnected_nodes_ok returns_result_select_result) + apply (metis (no_types, hide_lams) "3" "4" "6" + \\p. p |\| object_ptr_kinds h3 + \ cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h3 \ get_child_nodes p|\<^sub>r\ + \a_distinct_lists h3\ children_eq2_h3 disc_nodes_h3 distinct_lists_no_parent h' + select_result_I2 set_ConsD set_disconnected_nodes_get_disconnected_nodes) + by (metis "3" "4" "5" "6" \a_distinct_lists h3\ \type_wf h3\ children_eq2_h3 + distinct_lists_no_parent get_disconnected_nodes_ok returns_result_select_result) qed have "a_owner_document_valid h" using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def) then have "a_owner_document_valid h'" using disc_nodes_h3 \document_ptr |\| document_ptr_kinds h\ apply(auto simp add: a_owner_document_valid_def)[1] apply(auto simp add: object_ptr_kinds_eq_h object_ptr_kinds_eq_h3 )[1] apply(auto simp add: object_ptr_kinds_eq_h2)[1] apply(auto simp add: document_ptr_kinds_eq_h document_ptr_kinds_eq_h3 )[1] apply(auto simp add: document_ptr_kinds_eq_h2)[1] apply(auto simp add: node_ptr_kinds_eq_h node_ptr_kinds_eq_h3 )[1] apply(auto simp add: node_ptr_kinds_eq_h2 node_ptr_kinds_eq_h )[1] - apply(auto simp add: children_eq2_h2[symmetric] children_eq2_h3[symmetric] - disconnected_nodes_eq2_h disconnected_nodes_eq2_h2 + apply(auto simp add: children_eq2_h2[symmetric] children_eq2_h3[symmetric] + disconnected_nodes_eq2_h disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3)[1] - apply (metis (no_types, lifting) document_ptr_kinds_eq_h h' list.set_intros(1) - local.set_disconnected_nodes_get_disconnected_nodes select_result_I2) + apply (metis (no_types, lifting) document_ptr_kinds_eq_h h' list.set_intros(1) + local.set_disconnected_nodes_get_disconnected_nodes select_result_I2) apply(simp add: object_ptr_kinds_eq_h) - by(metis (no_types, lifting) NodeMonad.ptr_kinds_ptr_kinds_M \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ children_eq2_h children_eq2_h2 children_eq2_h3 disconnected_nodes_eq2_h disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 document_ptr_kinds_eq_h finite_set_in h' l_set_disconnected_nodes_get_disconnected_nodes.set_disconnected_nodes_get_disconnected_nodes list.set_intros(2) local.l_set_disconnected_nodes_get_disconnected_nodes_axioms node_ptr_kinds_commutes select_result_I2) + by (smt ObjectMonad.ptr_kinds_ptr_kinds_M + \cast\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_element_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\ children_eq2_h + children_eq2_h2 children_eq2_h3 disconnected_nodes_eq2_h disconnected_nodes_eq2_h2 + disconnected_nodes_eq2_h3 document_ptr_kinds_eq_h finite_set_in h' list.set_intros(2) + local.set_disconnected_nodes_get_disconnected_nodes select_result_I2) show "heap_is_wellformed h'" using \a_acyclic_heap h'\ \a_all_ptrs_in_heap h'\ \a_distinct_lists h'\ \a_owner_document_valid h'\ by(simp add: heap_is_wellformed_def) qed end -interpretation i_create_element_wf?: l_create_element_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr known_ptrs type_wf - get_child_nodes get_child_nodes_locs get_disconnected_nodes - get_disconnected_nodes_locs heap_is_wellformed parent_child_rel - set_tag_type set_tag_type_locs - set_disconnected_nodes set_disconnected_nodes_locs create_element +interpretation i_create_element_wf?: l_create_element_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr known_ptrs type_wf + get_child_nodes get_child_nodes_locs get_disconnected_nodes + get_disconnected_nodes_locs heap_is_wellformed parent_child_rel + set_tag_name set_tag_name_locs + set_disconnected_nodes set_disconnected_nodes_locs create_element using instances by(auto simp add: l_create_element_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) declare l_create_element_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms [instances] subsection \create\_character\_data\ locale l_create_character_data_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - known_ptr type_wf get_child_nodes get_child_nodes_locs get_disconnected_nodes - get_disconnected_nodes_locs heap_is_wellformed parent_child_rel + known_ptr type_wf get_child_nodes get_child_nodes_locs get_disconnected_nodes + get_disconnected_nodes_locs heap_is_wellformed parent_child_rel + l_new_character_data_get_disconnected_nodes - get_disconnected_nodes get_disconnected_nodes_locs + get_disconnected_nodes get_disconnected_nodes_locs + l_set_val_get_disconnected_nodes - type_wf set_val set_val_locs get_disconnected_nodes get_disconnected_nodes_locs + type_wf set_val set_val_locs get_disconnected_nodes get_disconnected_nodes_locs + l_create_character_data\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes - set_disconnected_nodes_locs set_val set_val_locs type_wf create_character_data known_ptr + get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes + set_disconnected_nodes_locs set_val set_val_locs type_wf create_character_data known_ptr + l_new_character_data_get_child_nodes - type_wf known_ptr get_child_nodes get_child_nodes_locs + type_wf known_ptr get_child_nodes get_child_nodes_locs + l_set_val_get_child_nodes - type_wf set_val set_val_locs known_ptr get_child_nodes get_child_nodes_locs + type_wf set_val set_val_locs known_ptr get_child_nodes get_child_nodes_locs + l_set_disconnected_nodes_get_child_nodes - set_disconnected_nodes set_disconnected_nodes_locs get_child_nodes get_child_nodes_locs + set_disconnected_nodes set_disconnected_nodes_locs get_child_nodes get_child_nodes_locs + l_set_disconnected_nodes - type_wf set_disconnected_nodes set_disconnected_nodes_locs + type_wf set_disconnected_nodes set_disconnected_nodes_locs + l_set_disconnected_nodes_get_disconnected_nodes - type_wf get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes - set_disconnected_nodes_locs + type_wf get_disconnected_nodes get_disconnected_nodes_locs set_disconnected_nodes + set_disconnected_nodes_locs + l_new_character_data - type_wf + type_wf + l_known_ptrs - known_ptr known_ptrs + known_ptr known_ptrs for known_ptr :: "(_::linorder) object_ptr \ bool" - and type_wf :: "(_) heap \ bool" - and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" - and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" - and heap_is_wellformed :: "(_) heap \ bool" - and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" - and set_val :: "(_) character_data_ptr \ char list \ ((_) heap, exception, unit) prog" - and set_val_locs :: "(_) character_data_ptr \ ((_) heap, exception, unit) prog set" - and set_disconnected_nodes :: - "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" - and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" - and create_character_data :: - "(_) document_ptr \ char list \ ((_) heap, exception, (_) character_data_ptr) prog" - and known_ptrs :: "(_) heap \ bool" + and type_wf :: "(_) heap \ bool" + and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" + and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" + and heap_is_wellformed :: "(_) heap \ bool" + and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" + and set_val :: "(_) character_data_ptr \ char list \ ((_) heap, exception, unit) prog" + and set_val_locs :: "(_) character_data_ptr \ ((_) heap, exception, unit) prog set" + and set_disconnected_nodes :: + "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" + and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" + and create_character_data :: + "(_) document_ptr \ char list \ ((_) heap, exception, (_) character_data_ptr) prog" + and known_ptrs :: "(_) heap \ bool" begin lemma create_character_data_preserves_wellformedness: assumes "heap_is_wellformed h" and "h \ create_character_data document_ptr text \\<^sub>h h'" and "type_wf h" and "known_ptrs h" shows "heap_is_wellformed h'" and "type_wf h'" and "known_ptrs h'" proof - obtain new_character_data_ptr h2 h3 disc_nodes_h3 where new_character_data_ptr: "h \ new_character_data \\<^sub>r new_character_data_ptr" and h2: "h \ new_character_data \\<^sub>h h2" and h3: "h2 \ set_val new_character_data_ptr text \\<^sub>h h3" and disc_nodes_h3: "h3 \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_h3" and h': "h3 \ set_disconnected_nodes document_ptr (cast new_character_data_ptr # disc_nodes_h3) \\<^sub>h h'" - using assms(2) - by(auto simp add: create_character_data_def - elim!: bind_returns_heap_E - bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] ) + using assms(2) + by(auto simp add: create_character_data_def + elim!: bind_returns_heap_E + bind_returns_heap_E2[rotated, OF get_disconnected_nodes_pure, rotated] ) then have "h \ create_character_data document_ptr text \\<^sub>r new_character_data_ptr" - apply(auto simp add: create_character_data_def intro!: bind_returns_result_I) - apply (metis is_OK_returns_heap_I is_OK_returns_result_E old.unit.exhaust) - apply (metis is_OK_returns_heap_E is_OK_returns_result_I local.get_disconnected_nodes_pure pure_returns_heap_eq) + apply(auto simp add: create_character_data_def intro!: bind_returns_result_I)[1] + apply (metis is_OK_returns_heap_I is_OK_returns_result_E old.unit.exhaust) + apply (metis is_OK_returns_heap_E is_OK_returns_result_I local.get_disconnected_nodes_pure + pure_returns_heap_eq) by (metis is_OK_returns_heap_I is_OK_returns_result_E old.unit.exhaust) have "new_character_data_ptr \ set |h \ character_data_ptr_kinds_M|\<^sub>r" using new_character_data_ptr CharacterDataMonad.ptr_kinds_ptr_kinds_M h2 - using new_character_data_ptr_not_in_heap by blast + using new_character_data_ptr_not_in_heap by blast then have "cast new_character_data_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r" by simp then have "cast new_character_data_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r" by simp - have object_ptr_kinds_eq_h: + have object_ptr_kinds_eq_h: "object_ptr_kinds h2 = object_ptr_kinds h |\| {|cast new_character_data_ptr|}" using new_character_data_new_ptr h2 new_character_data_ptr by blast - then have node_ptr_kinds_eq_h: + then have node_ptr_kinds_eq_h: "node_ptr_kinds h2 = node_ptr_kinds h |\| {|cast new_character_data_ptr|}" apply(simp add: node_ptr_kinds_def) by force - then have character_data_ptr_kinds_eq_h: - "character_data_ptr_kinds h2 = character_data_ptr_kinds h |\| {|new_character_data_ptr|}" - apply(simp add: character_data_ptr_kinds_def) - by force - have element_ptr_kinds_eq_h: "element_ptr_kinds h2 = element_ptr_kinds h" - using object_ptr_kinds_eq_h - by(auto simp add: node_ptr_kinds_def element_ptr_kinds_def) - have document_ptr_kinds_eq_h: "document_ptr_kinds h2 = document_ptr_kinds h" - using object_ptr_kinds_eq_h - by(auto simp add: document_ptr_kinds_def) - - have object_ptr_kinds_eq_h2: "object_ptr_kinds h3 = object_ptr_kinds h2" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", - OF set_val_writes h3]) - using set_val_pointers_preserved - by (auto simp add: reflp_def transp_def) - then have document_ptr_kinds_eq_h2: "document_ptr_kinds h3 = document_ptr_kinds h2" - by (auto simp add: document_ptr_kinds_def) - have node_ptr_kinds_eq_h2: "node_ptr_kinds h3 = node_ptr_kinds h2" - using object_ptr_kinds_eq_h2 - by(auto simp add: node_ptr_kinds_def) - - have object_ptr_kinds_eq_h3: "object_ptr_kinds h' = object_ptr_kinds h3" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", - OF set_disconnected_nodes_writes h']) - using set_disconnected_nodes_pointers_preserved - by (auto simp add: reflp_def transp_def) - then have document_ptr_kinds_eq_h3: "document_ptr_kinds h' = document_ptr_kinds h3" - by (auto simp add: document_ptr_kinds_def) - have node_ptr_kinds_eq_h3: "node_ptr_kinds h' = node_ptr_kinds h3" - using object_ptr_kinds_eq_h3 - by(auto simp add: node_ptr_kinds_def) - - - have "document_ptr |\| document_ptr_kinds h" - using disc_nodes_h3 document_ptr_kinds_eq_h object_ptr_kinds_eq_h2 - get_disconnected_nodes_ptr_in_heap \type_wf h\ document_ptr_kinds_def - by (metis is_OK_returns_result_I) - - have children_eq_h: "\(ptr'::(_) object_ptr) children. ptr' \ cast new_character_data_ptr - \ h \ get_child_nodes ptr' \\<^sub>r children = h2 \ get_child_nodes ptr' \\<^sub>r children" - using get_child_nodes_reads h2 get_child_nodes_new_character_data[rotated, OF new_character_data_ptr h2] - apply(auto simp add: reads_def reflp_def transp_def preserved_def)[1] - by blast+ - then have children_eq2_h: - "\ptr'. ptr' \ cast new_character_data_ptr - \ |h \ get_child_nodes ptr'|\<^sub>r = |h2 \ get_child_nodes ptr'|\<^sub>r" - using select_result_eq by force - have object_ptr_kinds_eq_h: - "object_ptr_kinds h2 = object_ptr_kinds h |\| {|cast new_character_data_ptr|}" - using new_character_data_new_ptr h2 new_character_data_ptr by blast - then have node_ptr_kinds_eq_h: - "node_ptr_kinds h2 = node_ptr_kinds h |\| {|cast new_character_data_ptr|}" - apply(simp add: node_ptr_kinds_def) - by force - then have character_data_ptr_kinds_eq_h: + then have character_data_ptr_kinds_eq_h: "character_data_ptr_kinds h2 = character_data_ptr_kinds h |\| {|new_character_data_ptr|}" apply(simp add: character_data_ptr_kinds_def) by force have element_ptr_kinds_eq_h: "element_ptr_kinds h2 = element_ptr_kinds h" using object_ptr_kinds_eq_h by(auto simp add: node_ptr_kinds_def element_ptr_kinds_def) have document_ptr_kinds_eq_h: "document_ptr_kinds h2 = document_ptr_kinds h" using object_ptr_kinds_eq_h by(auto simp add: document_ptr_kinds_def) have object_ptr_kinds_eq_h2: "object_ptr_kinds h3 = object_ptr_kinds h2" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", - OF set_val_writes h3]) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", + OF set_val_writes h3]) using set_val_pointers_preserved by (auto simp add: reflp_def transp_def) then have document_ptr_kinds_eq_h2: "document_ptr_kinds h3 = document_ptr_kinds h2" by (auto simp add: document_ptr_kinds_def) have node_ptr_kinds_eq_h2: "node_ptr_kinds h3 = node_ptr_kinds h2" - using object_ptr_kinds_eq_h2 + using object_ptr_kinds_eq_h2 by(auto simp add: node_ptr_kinds_def) have object_ptr_kinds_eq_h3: "object_ptr_kinds h' = object_ptr_kinds h3" - apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", - OF set_disconnected_nodes_writes h']) + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", + OF set_disconnected_nodes_writes h']) using set_disconnected_nodes_pointers_preserved by (auto simp add: reflp_def transp_def) then have document_ptr_kinds_eq_h3: "document_ptr_kinds h' = document_ptr_kinds h3" by (auto simp add: document_ptr_kinds_def) have node_ptr_kinds_eq_h3: "node_ptr_kinds h' = node_ptr_kinds h3" using object_ptr_kinds_eq_h3 by(auto simp add: node_ptr_kinds_def) have "document_ptr |\| document_ptr_kinds h" - using disc_nodes_h3 document_ptr_kinds_eq_h object_ptr_kinds_eq_h2 - get_disconnected_nodes_ptr_in_heap \type_wf h\ document_ptr_kinds_def + using disc_nodes_h3 document_ptr_kinds_eq_h object_ptr_kinds_eq_h2 + get_disconnected_nodes_ptr_in_heap \type_wf h\ document_ptr_kinds_def by (metis is_OK_returns_result_I) - have children_eq_h: "\(ptr'::(_) object_ptr) children. ptr' \ cast new_character_data_ptr + have children_eq_h: "\(ptr'::(_) object_ptr) children. ptr' \ cast new_character_data_ptr + \ h \ get_child_nodes ptr' \\<^sub>r children = h2 \ get_child_nodes ptr' \\<^sub>r children" + using get_child_nodes_reads h2 + get_child_nodes_new_character_data[rotated, OF new_character_data_ptr h2] + apply(auto simp add: reads_def reflp_def transp_def preserved_def)[1] + by blast+ + then have children_eq2_h: + "\ptr'. ptr' \ cast new_character_data_ptr + \ |h \ get_child_nodes ptr'|\<^sub>r = |h2 \ get_child_nodes ptr'|\<^sub>r" + using select_result_eq by force + have object_ptr_kinds_eq_h: + "object_ptr_kinds h2 = object_ptr_kinds h |\| {|cast new_character_data_ptr|}" + using new_character_data_new_ptr h2 new_character_data_ptr by blast + then have node_ptr_kinds_eq_h: + "node_ptr_kinds h2 = node_ptr_kinds h |\| {|cast new_character_data_ptr|}" + apply(simp add: node_ptr_kinds_def) + by force + then have character_data_ptr_kinds_eq_h: + "character_data_ptr_kinds h2 = character_data_ptr_kinds h |\| {|new_character_data_ptr|}" + apply(simp add: character_data_ptr_kinds_def) + by force + have element_ptr_kinds_eq_h: "element_ptr_kinds h2 = element_ptr_kinds h" + using object_ptr_kinds_eq_h + by(auto simp add: node_ptr_kinds_def element_ptr_kinds_def) + have document_ptr_kinds_eq_h: "document_ptr_kinds h2 = document_ptr_kinds h" + using object_ptr_kinds_eq_h + by(auto simp add: document_ptr_kinds_def) + + have object_ptr_kinds_eq_h2: "object_ptr_kinds h3 = object_ptr_kinds h2" + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", + OF set_val_writes h3]) + using set_val_pointers_preserved + by (auto simp add: reflp_def transp_def) + then have document_ptr_kinds_eq_h2: "document_ptr_kinds h3 = document_ptr_kinds h2" + by (auto simp add: document_ptr_kinds_def) + have node_ptr_kinds_eq_h2: "node_ptr_kinds h3 = node_ptr_kinds h2" + using object_ptr_kinds_eq_h2 + by(auto simp add: node_ptr_kinds_def) + + have object_ptr_kinds_eq_h3: "object_ptr_kinds h' = object_ptr_kinds h3" + apply(rule writes_small_big[where P="\h h'. object_ptr_kinds h' = object_ptr_kinds h", + OF set_disconnected_nodes_writes h']) + using set_disconnected_nodes_pointers_preserved + by (auto simp add: reflp_def transp_def) + then have document_ptr_kinds_eq_h3: "document_ptr_kinds h' = document_ptr_kinds h3" + by (auto simp add: document_ptr_kinds_def) + have node_ptr_kinds_eq_h3: "node_ptr_kinds h' = node_ptr_kinds h3" + using object_ptr_kinds_eq_h3 + by(auto simp add: node_ptr_kinds_def) + + + have "document_ptr |\| document_ptr_kinds h" + using disc_nodes_h3 document_ptr_kinds_eq_h object_ptr_kinds_eq_h2 + get_disconnected_nodes_ptr_in_heap \type_wf h\ document_ptr_kinds_def + by (metis is_OK_returns_result_I) + + have children_eq_h: "\(ptr'::(_) object_ptr) children. ptr' \ cast new_character_data_ptr \ h \ get_child_nodes ptr' \\<^sub>r children = h2 \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads h2 get_child_nodes_new_character_data[rotated, OF new_character_data_ptr h2] apply(auto simp add: reads_def reflp_def transp_def preserved_def)[1] by blast+ - then have children_eq2_h: "\ptr'. ptr' \ cast new_character_data_ptr + then have children_eq2_h: "\ptr'. ptr' \ cast new_character_data_ptr \ |h \ get_child_nodes ptr'|\<^sub>r = |h2 \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force have "h2 \ get_child_nodes (cast new_character_data_ptr) \\<^sub>r []" - using new_character_data_ptr h2 new_character_data_ptr_in_heap[OF h2 new_character_data_ptr] - new_character_data_is_character_data_ptr[OF new_character_data_ptr] - new_character_data_no_child_nodes + using new_character_data_ptr h2 new_character_data_ptr_in_heap[OF h2 new_character_data_ptr] + new_character_data_is_character_data_ptr[OF new_character_data_ptr] + new_character_data_no_child_nodes by blast - have disconnected_nodes_eq_h: - "\doc_ptr disc_nodes. h \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes + have disconnected_nodes_eq_h: + "\doc_ptr disc_nodes. h \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h2 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" - using get_disconnected_nodes_reads h2 - get_disconnected_nodes_new_character_data[OF new_character_data_ptr h2] + using get_disconnected_nodes_reads h2 + get_disconnected_nodes_new_character_data[OF new_character_data_ptr h2] apply(auto simp add: reads_def reflp_def transp_def preserved_def)[1] by blast+ - then have disconnected_nodes_eq2_h: + then have disconnected_nodes_eq2_h: "\doc_ptr. |h \ get_disconnected_nodes doc_ptr|\<^sub>r = |h2 \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - have children_eq_h2: + have children_eq_h2: "\ptr' children. h2 \ get_child_nodes ptr' \\<^sub>r children = h3 \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads set_val_writes h3 apply(rule reads_writes_preserved) by(auto simp add: set_val_get_child_nodes) - then have children_eq2_h2: + then have children_eq2_h2: "\ptr'. |h2 \ get_child_nodes ptr'|\<^sub>r = |h3 \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force - have disconnected_nodes_eq_h2: - "\doc_ptr disc_nodes. h2 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes + have disconnected_nodes_eq_h2: + "\doc_ptr disc_nodes. h2 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads set_val_writes h3 apply(rule reads_writes_preserved) by(auto simp add: set_val_get_disconnected_nodes) - then have disconnected_nodes_eq2_h2: + then have disconnected_nodes_eq2_h2: "\doc_ptr. |h2 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force have "type_wf h2" using \type_wf h\ new_character_data_types_preserved h2 by blast then have "type_wf h3" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_val_writes h3] - using set_val_types_preserved + using set_val_types_preserved by(auto simp add: reflp_def transp_def) then show "type_wf h'" using writes_small_big[where P="\h h'. type_wf h \ type_wf h'", OF set_disconnected_nodes_writes h'] - using set_disconnected_nodes_types_preserved + using set_disconnected_nodes_types_preserved by(auto simp add: reflp_def transp_def) - have children_eq_h3: + have children_eq_h3: "\ptr' children. h3 \ get_child_nodes ptr' \\<^sub>r children = h' \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads set_disconnected_nodes_writes h' apply(rule reads_writes_preserved) by(auto simp add: set_disconnected_nodes_get_child_nodes) - then have children_eq2_h3: + then have children_eq2_h3: " \ptr'. |h3 \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force - have disconnected_nodes_eq_h3: "\doc_ptr disc_nodes. document_ptr \ doc_ptr - \ h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes + have disconnected_nodes_eq_h3: "\doc_ptr disc_nodes. document_ptr \ doc_ptr + \ h3 \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h' \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads set_disconnected_nodes_writes h' apply(rule reads_writes_preserved) by(auto simp add: set_disconnected_nodes_get_disconnected_nodes_different_pointers) - then have disconnected_nodes_eq2_h3: "\doc_ptr. document_ptr \ doc_ptr + then have disconnected_nodes_eq2_h3: "\doc_ptr. document_ptr \ doc_ptr \ |h3 \ get_disconnected_nodes doc_ptr|\<^sub>r = |h' \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force - + have disc_nodes_document_ptr_h2: "h2 \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_h3" using disconnected_nodes_eq_h2 disc_nodes_h3 by auto then have disc_nodes_document_ptr_h: "h \ get_disconnected_nodes document_ptr \\<^sub>r disc_nodes_h3" using disconnected_nodes_eq_h by auto then have "cast new_character_data_ptr \ set disc_nodes_h3" using \heap_is_wellformed h\ using \cast new_character_data_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ - a_all_ptrs_in_heap_def heap_is_wellformed_def + a_all_ptrs_in_heap_def heap_is_wellformed_def using NodeMonad.ptr_kinds_ptr_kinds_M local.heap_is_wellformed_disc_nodes_in_heap by blast have "acyclic (parent_child_rel h)" - using \heap_is_wellformed h\ + using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def acyclic_heap_def) also have "parent_child_rel h = parent_child_rel h2" proof(auto simp add: parent_child_rel_def)[1] fix a x assume 0: "a |\| object_ptr_kinds h" and 1: "x \ set |h \ get_child_nodes a|\<^sub>r" then show "a |\| object_ptr_kinds h2" by (simp add: object_ptr_kinds_eq_h) next fix a x assume 0: "a |\| object_ptr_kinds h" and 1: "x \ set |h \ get_child_nodes a|\<^sub>r" then show "x \ set |h2 \ get_child_nodes a|\<^sub>r" - by (metis ObjectMonad.ptr_kinds_ptr_kinds_M - \cast new_character_data_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\ children_eq2_h) + by (metis ObjectMonad.ptr_kinds_ptr_kinds_M + \cast new_character_data_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\ children_eq2_h) next fix a x assume 0: "a |\| object_ptr_kinds h2" - and 1: "x \ set |h2 \ get_child_nodes a|\<^sub>r" + and 1: "x \ set |h2 \ get_child_nodes a|\<^sub>r" then show "a |\| object_ptr_kinds h" using object_ptr_kinds_eq_h \h2 \ get_child_nodes (cast new_character_data_ptr) \\<^sub>r []\ by(auto) next fix a x assume 0: "a |\| object_ptr_kinds h2" and 1: "x \ set |h2 \ get_child_nodes a|\<^sub>r" then show "x \ set |h \ get_child_nodes a|\<^sub>r" - by (metis (no_types, lifting) \h2 \ get_child_nodes (cast new_character_data_ptr) \\<^sub>r []\ - children_eq2_h empty_iff empty_set image_eqI select_result_I2) + by (metis (no_types, lifting) \h2 \ get_child_nodes (cast new_character_data_ptr) \\<^sub>r []\ + children_eq2_h empty_iff empty_set image_eqI select_result_I2) qed also have "\ = parent_child_rel h3" by(auto simp add: parent_child_rel_def object_ptr_kinds_eq_h2 children_eq2_h2) also have "\ = parent_child_rel h'" by(auto simp add: parent_child_rel_def object_ptr_kinds_eq_h3 children_eq2_h3) finally have "a_acyclic_heap h'" by (simp add: acyclic_heap_def) have "a_all_ptrs_in_heap h" using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def) then have "a_all_ptrs_in_heap h2" apply(auto simp add: a_all_ptrs_in_heap_def)[1] - using node_ptr_kinds_eq_h \cast new_character_data_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ - \h2 \ get_child_nodes (cast new_character_data_ptr) \\<^sub>r []\ - apply (metis (no_types, lifting) NodeMonad.ptr_kinds_ptr_kinds_M \parent_child_rel h = parent_child_rel h2\ - children_eq2_h finite_set_in finsert_iff funion_finsert_right local.parent_child_rel_child - local.parent_child_rel_parent_in_heap node_ptr_kinds_commutes object_ptr_kinds_eq_h - select_result_I2 subsetD sup_bot.right_neutral) - by (metis assms(1) assms(3) disconnected_nodes_eq2_h document_ptr_kinds_eq_h funionI1 - local.get_disconnected_nodes_ok local.heap_is_wellformed_disc_nodes_in_heap - node_ptr_kinds_eq_h returns_result_select_result) + using node_ptr_kinds_eq_h \cast new_character_data_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ + \h2 \ get_child_nodes (cast new_character_data_ptr) \\<^sub>r []\ + apply (metis (no_types, lifting) NodeMonad.ptr_kinds_ptr_kinds_M \parent_child_rel h = parent_child_rel h2\ + children_eq2_h finite_set_in finsert_iff funion_finsert_right local.parent_child_rel_child + local.parent_child_rel_parent_in_heap node_ptr_kinds_commutes object_ptr_kinds_eq_h + select_result_I2 subsetD sup_bot.right_neutral) + by (metis assms(1) assms(3) disconnected_nodes_eq2_h document_ptr_kinds_eq_h funionI1 + local.get_disconnected_nodes_ok local.heap_is_wellformed_disc_nodes_in_heap + node_ptr_kinds_eq_h returns_result_select_result) then have "a_all_ptrs_in_heap h3" - by (simp add: children_eq2_h2 disconnected_nodes_eq2_h2 document_ptr_kinds_eq_h2 - local.a_all_ptrs_in_heap_def node_ptr_kinds_eq_h2 object_ptr_kinds_eq_h2) + by (simp add: children_eq2_h2 disconnected_nodes_eq2_h2 document_ptr_kinds_eq_h2 + local.a_all_ptrs_in_heap_def node_ptr_kinds_eq_h2 object_ptr_kinds_eq_h2) then have "a_all_ptrs_in_heap h'" - by (smt character_data_ptr_kinds_commutes children_eq2_h3 disc_nodes_document_ptr_h2 - disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 document_ptr_kinds_eq_h3 - finite_set_in h' h2 local.a_all_ptrs_in_heap_def - local.set_disconnected_nodes_get_disconnected_nodes new_character_data_ptr - new_character_data_ptr_in_heap node_ptr_kinds_eq_h2 node_ptr_kinds_eq_h3 - object_ptr_kinds_eq_h3 select_result_I2 set_ConsD subset_code(1)) + by (smt character_data_ptr_kinds_commutes children_eq2_h3 disc_nodes_document_ptr_h2 + disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 document_ptr_kinds_eq_h3 + finite_set_in h' h2 local.a_all_ptrs_in_heap_def + local.set_disconnected_nodes_get_disconnected_nodes new_character_data_ptr + new_character_data_ptr_in_heap node_ptr_kinds_eq_h2 node_ptr_kinds_eq_h3 + object_ptr_kinds_eq_h3 select_result_I2 set_ConsD subset_code(1)) have "\p. p |\| object_ptr_kinds h \ cast new_character_data_ptr \ set |h \ get_child_nodes p|\<^sub>r" using \heap_is_wellformed h\ \cast new_character_data_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ - heap_is_wellformed_children_in_heap - by (meson NodeMonad.ptr_kinds_ptr_kinds_M a_all_ptrs_in_heap_def assms(3) assms(4) fset_mp - fset_of_list_elem get_child_nodes_ok known_ptrs_known_ptr returns_result_select_result) + heap_is_wellformed_children_in_heap + by (meson NodeMonad.ptr_kinds_ptr_kinds_M a_all_ptrs_in_heap_def assms(3) assms(4) fset_mp + fset_of_list_elem get_child_nodes_ok known_ptrs_known_ptr returns_result_select_result) then have "\p. p |\| object_ptr_kinds h2 \ cast new_character_data_ptr \ set |h2 \ get_child_nodes p|\<^sub>r" using children_eq2_h apply(auto simp add: object_ptr_kinds_eq_h)[1] using \h2 \ get_child_nodes (cast new_character_data_ptr) \\<^sub>r []\ apply auto[1] by (metis ObjectMonad.ptr_kinds_ptr_kinds_M \cast new_character_data_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\) then have "\p. p |\| object_ptr_kinds h3 \ cast new_character_data_ptr \ set |h3 \ get_child_nodes p|\<^sub>r" using object_ptr_kinds_eq_h2 children_eq2_h2 by auto - then have new_character_data_ptr_not_in_any_children: + then have new_character_data_ptr_not_in_any_children: "\p. p |\| object_ptr_kinds h' \ cast new_character_data_ptr \ set |h' \ get_child_nodes p|\<^sub>r" using object_ptr_kinds_eq_h3 children_eq2_h3 by auto have "a_distinct_lists h" - using \heap_is_wellformed h\ + using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def) then have "a_distinct_lists h2" using \h2 \ get_child_nodes (cast new_character_data_ptr) \\<^sub>r []\ - apply(auto simp add: a_distinct_lists_def object_ptr_kinds_eq_h document_ptr_kinds_eq_h + apply(auto simp add: a_distinct_lists_def object_ptr_kinds_eq_h document_ptr_kinds_eq_h disconnected_nodes_eq2_h intro!: distinct_concat_map_I)[1] apply (metis distinct_sorted_list_of_set finite_fset sorted_list_of_set_insert) apply(case_tac "x=cast new_character_data_ptr") apply(auto simp add: children_eq2_h[symmetric] insort_split dest: distinct_concat_map_E(2))[1] apply(auto simp add: children_eq2_h[symmetric] insort_split dest: distinct_concat_map_E(2))[1] apply(auto simp add: children_eq2_h[symmetric] insort_split dest: distinct_concat_map_E(2))[1] - apply (metis IntI assms(1) assms(3) assms(4) empty_iff local.get_child_nodes_ok - local.heap_is_wellformed_one_parent local.known_ptrs_known_ptr + apply (metis IntI assms(1) assms(3) assms(4) empty_iff local.get_child_nodes_ok + local.heap_is_wellformed_one_parent local.known_ptrs_known_ptr returns_result_select_result) apply(auto simp add: children_eq2_h[symmetric] insort_split dest: distinct_concat_map_E(2))[1] - by (metis \local.a_distinct_lists h\ \type_wf h2\ disconnected_nodes_eq_h document_ptr_kinds_eq_h + by (metis \local.a_distinct_lists h\ \type_wf h2\ disconnected_nodes_eq_h document_ptr_kinds_eq_h local.distinct_lists_no_parent local.get_disconnected_nodes_ok returns_result_select_result) then have "a_distinct_lists h3" - by(auto simp add: a_distinct_lists_def disconnected_nodes_eq2_h2 document_ptr_kinds_eq_h2 - children_eq2_h2 object_ptr_kinds_eq_h2)[1] + by(auto simp add: a_distinct_lists_def disconnected_nodes_eq2_h2 document_ptr_kinds_eq_h2 + children_eq2_h2 object_ptr_kinds_eq_h2)[1] then have "a_distinct_lists h'" - proof(auto simp add: a_distinct_lists_def disconnected_nodes_eq2_h3 children_eq2_h3 - object_ptr_kinds_eq_h3 document_ptr_kinds_eq_h3 intro!: distinct_concat_map_I)[1] + proof(auto simp add: a_distinct_lists_def disconnected_nodes_eq2_h3 children_eq2_h3 + object_ptr_kinds_eq_h3 document_ptr_kinds_eq_h3 intro!: distinct_concat_map_I)[1] fix x - assume "distinct (concat (map (\document_ptr. |h3 \ get_disconnected_nodes document_ptr|\<^sub>r) + assume "distinct (concat (map (\document_ptr. |h3 \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h3)))))" and "x |\| document_ptr_kinds h3" then show "distinct |h' \ get_disconnected_nodes x|\<^sub>r" using document_ptr_kinds_eq_h3 disconnected_nodes_eq_h3 h' set_disconnected_nodes_get_disconnected_nodes - by (metis (no_types, lifting) \cast new_character_data_ptr \ set disc_nodes_h3\ - \a_distinct_lists h3\ \type_wf h'\ disc_nodes_h3 distinct.simps(2) - distinct_lists_disconnected_nodes get_disconnected_nodes_ok returns_result_eq - returns_result_select_result) + by (metis (no_types, lifting) \cast new_character_data_ptr \ set disc_nodes_h3\ + \a_distinct_lists h3\ \type_wf h'\ disc_nodes_h3 distinct.simps(2) + distinct_lists_disconnected_nodes get_disconnected_nodes_ok returns_result_eq + returns_result_select_result) next fix x y xa assume "distinct (concat (map (\document_ptr. |h3 \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h3)))))" and "x |\| document_ptr_kinds h3" and "y |\| document_ptr_kinds h3" and "x \ y" and "xa \ set |h' \ get_disconnected_nodes x|\<^sub>r" and "xa \ set |h' \ get_disconnected_nodes y|\<^sub>r" moreover have "set |h3 \ get_disconnected_nodes x|\<^sub>r \ set |h3 \ get_disconnected_nodes y|\<^sub>r = {}" using calculation by(auto dest: distinct_concat_map_E(1)) ultimately show "False" - by (smt NodeMonad.ptr_kinds_ptr_kinds_M \cast\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_character_data_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ - \local.a_all_ptrs_in_heap h\ disc_nodes_document_ptr_h2 disconnected_nodes_eq2_h - disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 disjoint_iff_not_equal - document_ptr_kinds_eq_h document_ptr_kinds_eq_h2 finite_set_in h' - l_set_disconnected_nodes_get_disconnected_nodes.set_disconnected_nodes_get_disconnected_nodes - local.a_all_ptrs_in_heap_def local.l_set_disconnected_nodes_get_disconnected_nodes_axioms - select_result_I2 set_ConsD subsetD) + by (smt NodeMonad.ptr_kinds_ptr_kinds_M + \cast\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_character_data_ptr \ set |h \ node_ptr_kinds_M|\<^sub>r\ + \local.a_all_ptrs_in_heap h\ disc_nodes_document_ptr_h2 disconnected_nodes_eq2_h + disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3 disjoint_iff_not_equal + document_ptr_kinds_eq_h document_ptr_kinds_eq_h2 finite_set_in h' + l_set_disconnected_nodes_get_disconnected_nodes.set_disconnected_nodes_get_disconnected_nodes + local.a_all_ptrs_in_heap_def local.l_set_disconnected_nodes_get_disconnected_nodes_axioms + select_result_I2 set_ConsD subsetD) next fix x xa xb - assume 2: "(\x\fset (object_ptr_kinds h3). set |h' \ get_child_nodes x|\<^sub>r) + assume 2: "(\x\fset (object_ptr_kinds h3). set |h' \ get_child_nodes x|\<^sub>r) \ (\x\fset (document_ptr_kinds h3). set |h3 \ get_disconnected_nodes x|\<^sub>r) = {}" and 3: "xa |\| object_ptr_kinds h3" and 4: "x \ set |h' \ get_child_nodes xa|\<^sub>r" and 5: "xb |\| document_ptr_kinds h3" and 6: "x \ set |h' \ get_disconnected_nodes xb|\<^sub>r" show "False" using disc_nodes_document_ptr_h disconnected_nodes_eq2_h3 apply(cases "xb = document_ptr") apply (metis (no_types, hide_lams) "3" "4" "6" - \\p. p |\| object_ptr_kinds h3 \ cast new_character_data_ptr \ set |h3 \ get_child_nodes p|\<^sub>r\ - \a_distinct_lists h3\ children_eq2_h3 disc_nodes_h3 distinct_lists_no_parent h' - select_result_I2 set_ConsD set_disconnected_nodes_get_disconnected_nodes) - by (metis "3" "4" "5" "6" \a_distinct_lists h3\ \type_wf h3\ children_eq2_h3 - distinct_lists_no_parent get_disconnected_nodes_ok returns_result_select_result) + \\p. p |\| object_ptr_kinds h3 \ cast new_character_data_ptr \ set |h3 \ get_child_nodes p|\<^sub>r\ + \a_distinct_lists h3\ children_eq2_h3 disc_nodes_h3 distinct_lists_no_parent h' + select_result_I2 set_ConsD set_disconnected_nodes_get_disconnected_nodes) + by (metis "3" "4" "5" "6" \a_distinct_lists h3\ \type_wf h3\ children_eq2_h3 + distinct_lists_no_parent get_disconnected_nodes_ok returns_result_select_result) qed have "a_owner_document_valid h" using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def) then have "a_owner_document_valid h'" using disc_nodes_h3 \document_ptr |\| document_ptr_kinds h\ apply(simp add: a_owner_document_valid_def) apply(simp add: object_ptr_kinds_eq_h object_ptr_kinds_eq_h3 ) apply(simp add: object_ptr_kinds_eq_h2) apply(simp add: document_ptr_kinds_eq_h document_ptr_kinds_eq_h3 ) apply(simp add: document_ptr_kinds_eq_h2) apply(simp add: node_ptr_kinds_eq_h node_ptr_kinds_eq_h3 ) apply(simp add: node_ptr_kinds_eq_h2 node_ptr_kinds_eq_h ) - apply(auto simp add: children_eq2_h2[symmetric] children_eq2_h3[symmetric] disconnected_nodes_eq2_h - disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3)[1] - apply (metis (no_types, lifting) document_ptr_kinds_eq_h h' list.set_intros(1) - local.set_disconnected_nodes_get_disconnected_nodes select_result_I2) + apply(auto simp add: children_eq2_h2[symmetric] children_eq2_h3[symmetric] disconnected_nodes_eq2_h + disconnected_nodes_eq2_h2 disconnected_nodes_eq2_h3)[1] + apply (metis (no_types, lifting) document_ptr_kinds_eq_h h' list.set_intros(1) + local.set_disconnected_nodes_get_disconnected_nodes select_result_I2) apply(simp add: object_ptr_kinds_eq_h) - by (metis (mono_tags, lifting) \cast\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_character_data_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\ - children_eq2_h disconnected_nodes_eq2_h3 document_ptr_kinds_eq_h finite_set_in h' - l_ptr_kinds_M.ptr_kinds_ptr_kinds_M - l_set_disconnected_nodes_get_disconnected_nodes.set_disconnected_nodes_get_disconnected_nodes - list.set_intros(2) local.l_set_disconnected_nodes_get_disconnected_nodes_axioms object_ptr_kinds_M_def - select_result_I2) + by (smt ObjectMonad.ptr_kinds_ptr_kinds_M + \cast\<^sub>c\<^sub>h\<^sub>a\<^sub>r\<^sub>a\<^sub>c\<^sub>t\<^sub>e\<^sub>r\<^sub>_\<^sub>d\<^sub>a\<^sub>t\<^sub>a\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_character_data_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\ children_eq2_h + disconnected_nodes_eq2_h3 document_ptr_kinds_eq_h finite_set_in h' list.set_intros(2) + local.set_disconnected_nodes_get_disconnected_nodes select_result_I2) have "known_ptr (cast new_character_data_ptr)" - using \h \ create_character_data document_ptr text \\<^sub>r new_character_data_ptr\ local.create_character_data_known_ptr by blast + using \h \ create_character_data document_ptr text \\<^sub>r new_character_data_ptr\ + local.create_character_data_known_ptr by blast then have "known_ptrs h2" using known_ptrs_new_ptr object_ptr_kinds_eq_h \known_ptrs h\ h2 by blast then have "known_ptrs h3" using known_ptrs_preserved object_ptr_kinds_eq_h2 by blast then show "known_ptrs h'" using known_ptrs_preserved object_ptr_kinds_eq_h3 by blast show "heap_is_wellformed h'" using \a_acyclic_heap h'\ \a_all_ptrs_in_heap h'\ \a_distinct_lists h'\ \a_owner_document_valid h'\ by(simp add: heap_is_wellformed_def) qed end -interpretation i_create_character_data_wf?: l_create_character_data_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf - get_child_nodes get_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs - heap_is_wellformed parent_child_rel set_val set_val_locs set_disconnected_nodes - set_disconnected_nodes_locs create_character_data known_ptrs +interpretation i_create_character_data_wf?: l_create_character_data_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf + get_child_nodes get_child_nodes_locs get_disconnected_nodes get_disconnected_nodes_locs + heap_is_wellformed parent_child_rel set_val set_val_locs set_disconnected_nodes + set_disconnected_nodes_locs create_character_data known_ptrs using instances by (auto simp add: l_create_character_data_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) declare l_create_character_data_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms [instances] subsection \create\_document\ locale l_create_document_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M = l_heap_is_wellformed\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - known_ptr type_wf get_child_nodes get_child_nodes_locs get_disconnected_nodes - get_disconnected_nodes_locs heap_is_wellformed parent_child_rel + known_ptr type_wf get_child_nodes get_child_nodes_locs get_disconnected_nodes + get_disconnected_nodes_locs heap_is_wellformed parent_child_rel + l_new_document_get_disconnected_nodes - get_disconnected_nodes get_disconnected_nodes_locs + get_disconnected_nodes get_disconnected_nodes_locs + l_create_document\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M - create_document + create_document + l_new_document_get_child_nodes - type_wf known_ptr get_child_nodes get_child_nodes_locs - + l_new_document - type_wf + type_wf known_ptr get_child_nodes get_child_nodes_locs + + l_new_document + type_wf + l_known_ptrs - known_ptr known_ptrs + known_ptr known_ptrs for known_ptr :: "(_::linorder) object_ptr \ bool" - and type_wf :: "(_) heap \ bool" - and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" - and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" - and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" - and heap_is_wellformed :: "(_) heap \ bool" - and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" - and set_val :: "(_) character_data_ptr \ char list \ ((_) heap, exception, unit) prog" - and set_val_locs :: "(_) character_data_ptr \ ((_) heap, exception, unit) prog set" - and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" - and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" - and create_document :: "((_) heap, exception, (_) document_ptr) prog" - and known_ptrs :: "(_) heap \ bool" + and type_wf :: "(_) heap \ bool" + and get_child_nodes :: "(_) object_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_child_nodes_locs :: "(_) object_ptr \ ((_) heap \ (_) heap \ bool) set" + and get_disconnected_nodes :: "(_) document_ptr \ ((_) heap, exception, (_) node_ptr list) prog" + and get_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap \ (_) heap \ bool) set" + and heap_is_wellformed :: "(_) heap \ bool" + and parent_child_rel :: "(_) heap \ ((_) object_ptr \ (_) object_ptr) set" + and set_val :: "(_) character_data_ptr \ char list \ ((_) heap, exception, unit) prog" + and set_val_locs :: "(_) character_data_ptr \ ((_) heap, exception, unit) prog set" + and set_disconnected_nodes :: "(_) document_ptr \ (_) node_ptr list \ ((_) heap, exception, unit) prog" + and set_disconnected_nodes_locs :: "(_) document_ptr \ ((_) heap, exception, unit) prog set" + and create_document :: "((_) heap, exception, (_) document_ptr) prog" + and known_ptrs :: "(_) heap \ bool" begin lemma create_document_preserves_wellformedness: assumes "heap_is_wellformed h" and "h \ create_document \\<^sub>h h'" and "type_wf h" and "known_ptrs h" shows "heap_is_wellformed h'" proof - obtain new_document_ptr where new_document_ptr: "h \ new_document \\<^sub>r new_document_ptr" and h': "h \ new_document \\<^sub>h h'" - using assms(2) + using assms(2) apply(simp add: create_document_def) using new_document_ok by blast have "new_document_ptr \ set |h \ document_ptr_kinds_M|\<^sub>r" using new_document_ptr DocumentMonad.ptr_kinds_ptr_kinds_M using new_document_ptr_not_in_heap h' by blast then have "cast new_document_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r" by simp have "new_document_ptr |\| document_ptr_kinds h" using new_document_ptr DocumentMonad.ptr_kinds_ptr_kinds_M using new_document_ptr_not_in_heap h' by blast then have "cast new_document_ptr |\| object_ptr_kinds h" by simp have object_ptr_kinds_eq: "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast new_document_ptr|}" using new_document_new_ptr h' new_document_ptr by blast then have node_ptr_kinds_eq: "node_ptr_kinds h' = node_ptr_kinds h" apply(simp add: node_ptr_kinds_def) by force then have character_data_ptr_kinds_eq_h: "character_data_ptr_kinds h' = character_data_ptr_kinds h" by(simp add: character_data_ptr_kinds_def) have element_ptr_kinds_eq_h: "element_ptr_kinds h' = element_ptr_kinds h" using object_ptr_kinds_eq by(auto simp add: node_ptr_kinds_def element_ptr_kinds_def) have document_ptr_kinds_eq_h: "document_ptr_kinds h' = document_ptr_kinds h |\| {|new_document_ptr|}" using object_ptr_kinds_eq apply(auto simp add: document_ptr_kinds_def)[1] by (metis (no_types, lifting) document_ptr_kinds_commutes document_ptr_kinds_def finsertI1 fset.map_comp) - have children_eq: - "\(ptr'::(_) object_ptr) children. ptr' \ cast new_document_ptr + have children_eq: + "\(ptr'::(_) object_ptr) children. ptr' \ cast new_document_ptr \ h \ get_child_nodes ptr' \\<^sub>r children = h' \ get_child_nodes ptr' \\<^sub>r children" using get_child_nodes_reads h' get_child_nodes_new_document[rotated, OF new_document_ptr h'] apply(auto simp add: reads_def reflp_def transp_def preserved_def)[1] by blast+ - then have children_eq2: "\ptr'. ptr' \ cast new_document_ptr + then have children_eq2: "\ptr'. ptr' \ cast new_document_ptr \ |h \ get_child_nodes ptr'|\<^sub>r = |h' \ get_child_nodes ptr'|\<^sub>r" using select_result_eq by force have "h' \ get_child_nodes (cast new_document_ptr) \\<^sub>r []" - using new_document_ptr h' new_document_ptr_in_heap[OF h' new_document_ptr] - new_document_is_document_ptr[OF new_document_ptr] new_document_no_child_nodes + using new_document_ptr h' new_document_ptr_in_heap[OF h' new_document_ptr] + new_document_is_document_ptr[OF new_document_ptr] new_document_no_child_nodes by blast - have disconnected_nodes_eq_h: - "\doc_ptr disc_nodes. doc_ptr \ new_document_ptr + have disconnected_nodes_eq_h: + "\doc_ptr disc_nodes. doc_ptr \ new_document_ptr \ h \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes = h' \ get_disconnected_nodes doc_ptr \\<^sub>r disc_nodes" using get_disconnected_nodes_reads h' get_disconnected_nodes_new_document_different_pointers new_document_ptr - apply(auto simp add: reads_def reflp_def transp_def preserved_def)[1] - by (metis(full_types) \\thesis. (\new_document_ptr. - \h \ new_document \\<^sub>r new_document_ptr; h \ new_document \\<^sub>h h'\ \ thesis) \ thesis\ - local.get_disconnected_nodes_new_document_different_pointers new_document_ptr)+ - then have disconnected_nodes_eq2_h: "\doc_ptr. doc_ptr \ new_document_ptr + apply(auto simp add: reads_def reflp_def transp_def preserved_def)[1] + by (metis(full_types) \\thesis. (\new_document_ptr. + \h \ new_document \\<^sub>r new_document_ptr; h \ new_document \\<^sub>h h'\ \ thesis) \ thesis\ + local.get_disconnected_nodes_new_document_different_pointers new_document_ptr)+ + then have disconnected_nodes_eq2_h: "\doc_ptr. doc_ptr \ new_document_ptr \ |h \ get_disconnected_nodes doc_ptr|\<^sub>r = |h' \ get_disconnected_nodes doc_ptr|\<^sub>r" using select_result_eq by force have "h' \ get_disconnected_nodes new_document_ptr \\<^sub>r []" using h' local.new_document_no_disconnected_nodes new_document_ptr by blast have "type_wf h'" using \type_wf h\ new_document_types_preserved h' by blast have "acyclic (parent_child_rel h)" - using \heap_is_wellformed h\ + using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def acyclic_heap_def) also have "parent_child_rel h = parent_child_rel h'" proof(auto simp add: parent_child_rel_def)[1] fix a x assume 0: "a |\| object_ptr_kinds h" and 1: "x \ set |h \ get_child_nodes a|\<^sub>r" then show "a |\| object_ptr_kinds h'" by (simp add: object_ptr_kinds_eq) next fix a x assume 0: "a |\| object_ptr_kinds h" and 1: "x \ set |h \ get_child_nodes a|\<^sub>r" then show "x \ set |h' \ get_child_nodes a|\<^sub>r" - by (metis ObjectMonad.ptr_kinds_ptr_kinds_M - \cast new_document_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\ children_eq2) + by (metis ObjectMonad.ptr_kinds_ptr_kinds_M + \cast new_document_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\ children_eq2) next fix a x assume 0: "a |\| object_ptr_kinds h'" - and 1: "x \ set |h' \ get_child_nodes a|\<^sub>r" + and 1: "x \ set |h' \ get_child_nodes a|\<^sub>r" then show "a |\| object_ptr_kinds h" using object_ptr_kinds_eq \h' \ get_child_nodes (cast new_document_ptr) \\<^sub>r []\ by(auto) - next + next fix a x assume 0: "a |\| object_ptr_kinds h'" and 1: "x \ set |h' \ get_child_nodes a|\<^sub>r" then show "x \ set |h \ get_child_nodes a|\<^sub>r" - by (metis (no_types, lifting) \h' \ get_child_nodes (cast new_document_ptr) \\<^sub>r []\ - children_eq2 empty_iff empty_set image_eqI select_result_I2) + by (metis (no_types, lifting) \h' \ get_child_nodes (cast new_document_ptr) \\<^sub>r []\ + children_eq2 empty_iff empty_set image_eqI select_result_I2) qed finally have "a_acyclic_heap h'" by (simp add: acyclic_heap_def) have "a_all_ptrs_in_heap h" using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def) - then have "a_all_ptrs_in_heap h'" + then have "a_all_ptrs_in_heap h'" apply(auto simp add: a_all_ptrs_in_heap_def)[1] - using ObjectMonad.ptr_kinds_ptr_kinds_M - \cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\ - \parent_child_rel h = parent_child_rel h'\ assms(1) children_eq fset_of_list_elem - local.heap_is_wellformed_children_in_heap local.parent_child_rel_child - local.parent_child_rel_parent_in_heap node_ptr_kinds_eq - apply (metis (no_types, lifting) \h' \ get_child_nodes (cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr) \\<^sub>r []\ - children_eq2 finite_set_in finsert_iff funion_finsert_right object_ptr_kinds_eq select_result_I2 subsetD sup_bot.right_neutral) - by (metis (no_types, lifting) \cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr |\| object_ptr_kinds h\ - \h' \ get_child_nodes (cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr) \\<^sub>r []\ - \h' \ get_disconnected_nodes new_document_ptr \\<^sub>r []\ \parent_child_rel h = parent_child_rel h'\ \type_wf h'\ assms(1) disconnected_nodes_eq_h local.get_disconnected_nodes_ok - local.heap_is_wellformed_disc_nodes_in_heap local.parent_child_rel_child local.parent_child_rel_parent_in_heap - node_ptr_kinds_eq returns_result_select_result select_result_I2) + using ObjectMonad.ptr_kinds_ptr_kinds_M + \cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr \ set |h \ object_ptr_kinds_M|\<^sub>r\ + \parent_child_rel h = parent_child_rel h'\ assms(1) children_eq fset_of_list_elem + local.heap_is_wellformed_children_in_heap local.parent_child_rel_child + local.parent_child_rel_parent_in_heap node_ptr_kinds_eq + apply (metis (no_types, lifting) \h' \ get_child_nodes (cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr) \\<^sub>r []\ + children_eq2 finite_set_in finsert_iff funion_finsert_right object_ptr_kinds_eq + select_result_I2 subsetD sup_bot.right_neutral) + by (metis (no_types, lifting) \cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr |\| object_ptr_kinds h\ + \h' \ get_child_nodes (cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr) \\<^sub>r []\ + \h' \ get_disconnected_nodes new_document_ptr \\<^sub>r []\ + \parent_child_rel h = parent_child_rel h'\ \type_wf h'\ assms(1) disconnected_nodes_eq_h + local.get_disconnected_nodes_ok + local.heap_is_wellformed_disc_nodes_in_heap local.parent_child_rel_child + local.parent_child_rel_parent_in_heap + node_ptr_kinds_eq returns_result_select_result select_result_I2) have "a_distinct_lists h" - using \heap_is_wellformed h\ + using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def) then have "a_distinct_lists h'" - using \h' \ get_disconnected_nodes new_document_ptr \\<^sub>r []\ - \h' \ get_child_nodes (cast new_document_ptr) \\<^sub>r []\ - - apply(auto simp add: children_eq2[symmetric] a_distinct_lists_def insort_split object_ptr_kinds_eq - document_ptr_kinds_eq_h disconnected_nodes_eq2_h intro!: distinct_concat_map_I)[1] + using \h' \ get_disconnected_nodes new_document_ptr \\<^sub>r []\ + \h' \ get_child_nodes (cast new_document_ptr) \\<^sub>r []\ + + apply(auto simp add: children_eq2[symmetric] a_distinct_lists_def insort_split object_ptr_kinds_eq + document_ptr_kinds_eq_h disconnected_nodes_eq2_h intro!: distinct_concat_map_I)[1] apply (metis distinct_sorted_list_of_set finite_fset sorted_list_of_set_insert) apply(auto simp add: dest: distinct_concat_map_E)[1] apply(auto simp add: dest: distinct_concat_map_E)[1] using \new_document_ptr |\| document_ptr_kinds h\ apply(auto simp add: distinct_insort dest: distinct_concat_map_E)[1] using disconnected_nodes_eq_h - apply (metis assms(1) assms(3) disconnected_nodes_eq2_h local.get_disconnected_nodes_ok - local.heap_is_wellformed_disconnected_nodes_distinct - returns_result_select_result) + apply (metis assms(1) assms(3) disconnected_nodes_eq2_h local.get_disconnected_nodes_ok + local.heap_is_wellformed_disconnected_nodes_distinct + returns_result_select_result) proof - fix x :: "(_) document_ptr" and y :: "(_) document_ptr" and xa :: "(_) node_ptr" assume a1: "x \ y" assume a2: "x |\| document_ptr_kinds h" assume a3: "x \ new_document_ptr" assume a4: "y |\| document_ptr_kinds h" assume a5: "y \ new_document_ptr" - assume a6: "distinct (concat (map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) + assume a6: "distinct (concat (map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h)))))" assume a7: "xa \ set |h' \ get_disconnected_nodes x|\<^sub>r" assume a8: "xa \ set |h' \ get_disconnected_nodes y|\<^sub>r" have f9: "xa \ set |h \ get_disconnected_nodes x|\<^sub>r" using a7 a3 disconnected_nodes_eq2_h by presburger have f10: "xa \ set |h \ get_disconnected_nodes y|\<^sub>r" using a8 a5 disconnected_nodes_eq2_h by presburger have f11: "y \ set (sorted_list_of_set (fset (document_ptr_kinds h)))" using a4 by simp have "x \ set (sorted_list_of_set (fset (document_ptr_kinds h)))" using a2 by simp then show False using f11 f10 f9 a6 a1 by (meson disjoint_iff_not_equal distinct_concat_map_E(1)) next fix x xa xb assume 0: "h' \ get_disconnected_nodes new_document_ptr \\<^sub>r []" and 1: "h' \ get_child_nodes (cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr) \\<^sub>r []" - and 2: "distinct (concat (map (\ptr. |h \ get_child_nodes ptr|\<^sub>r) + and 2: "distinct (concat (map (\ptr. |h \ get_child_nodes ptr|\<^sub>r) (sorted_list_of_set (fset (object_ptr_kinds h)))))" - and 3: "distinct (concat (map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) + and 3: "distinct (concat (map (\document_ptr. |h \ get_disconnected_nodes document_ptr|\<^sub>r) (sorted_list_of_set (fset (document_ptr_kinds h)))))" - and 4: "(\x\fset (object_ptr_kinds h). set |h \ get_child_nodes x|\<^sub>r) + and 4: "(\x\fset (object_ptr_kinds h). set |h \ get_child_nodes x|\<^sub>r) \ (\x\fset (document_ptr_kinds h). set |h \ get_disconnected_nodes x|\<^sub>r) = {}" and 5: "x \ set |h \ get_child_nodes xa|\<^sub>r" and 6: "x \ set |h' \ get_disconnected_nodes xb|\<^sub>r" and 7: "xa |\| object_ptr_kinds h" and 8: "xa \ cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr" and 9: "xb |\| document_ptr_kinds h" and 10: "xb \ new_document_ptr" then show "False" - by (metis \local.a_distinct_lists h\ assms(3) disconnected_nodes_eq2_h - local.distinct_lists_no_parent local.get_disconnected_nodes_ok - returns_result_select_result) + by (metis \local.a_distinct_lists h\ assms(3) disconnected_nodes_eq2_h + local.distinct_lists_no_parent local.get_disconnected_nodes_ok + returns_result_select_result) qed have "a_owner_document_valid h" using \heap_is_wellformed h\ by (simp add: heap_is_wellformed_def) then have "a_owner_document_valid h'" apply(auto simp add: a_owner_document_valid_def)[1] - by (metis \cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr |\| object_ptr_kinds h\ - children_eq2 disconnected_nodes_eq2_h document_ptr_kinds_commutes finite_set_in funion_iff node_ptr_kinds_eq object_ptr_kinds_eq) + by (metis \cast\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_document_ptr |\| object_ptr_kinds h\ + children_eq2 disconnected_nodes_eq2_h document_ptr_kinds_commutes finite_set_in + funion_iff node_ptr_kinds_eq object_ptr_kinds_eq) show "heap_is_wellformed h'" using \a_acyclic_heap h'\ \a_all_ptrs_in_heap h'\ \a_distinct_lists h'\ \a_owner_document_valid h'\ by(simp add: heap_is_wellformed_def) qed end -interpretation i_create_document_wf?: l_create_document_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes - get_child_nodes_locs get_disconnected_nodes - get_disconnected_nodes_locs heap_is_wellformed parent_child_rel - set_val set_val_locs set_disconnected_nodes - set_disconnected_nodes_locs create_document known_ptrs +interpretation i_create_document_wf?: l_create_document_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M known_ptr type_wf get_child_nodes + get_child_nodes_locs get_disconnected_nodes + get_disconnected_nodes_locs heap_is_wellformed parent_child_rel + set_val set_val_locs set_disconnected_nodes + set_disconnected_nodes_locs create_document known_ptrs using instances by (auto simp add: l_create_document_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_def) declare l_create_document_wf\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M_axioms [instances] end diff --git a/thys/Core_DOM/standard/classes/ElementClass.thy b/thys/Core_DOM/standard/classes/ElementClass.thy --- a/thys/Core_DOM/standard/classes/ElementClass.thy +++ b/thys/Core_DOM/standard/classes/ElementClass.thy @@ -1,314 +1,328 @@ (*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\Element\ text\In this theory, we introduce the types for the Element class.\ theory ElementClass imports "NodeClass" "ShadowRootPointer" begin text\The type @{type "DOMString"} is a type synonym for @{type "string"}, define in \autoref{sec:Core_DOM_Basic_Datatypes}.\ type_synonym attr_key = DOMString type_synonym attr_value = DOMString type_synonym attrs = "(attr_key, attr_value) fmap" -type_synonym tag_type = DOMString +type_synonym tag_name = DOMString record ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr) RElement = RNode + nothing :: unit - tag_type :: tag_type + tag_name :: tag_name child_nodes :: "('node_ptr, 'element_ptr, 'character_data_ptr) node_ptr list" attrs :: attrs shadow_root_opt :: "'shadow_root_ptr shadow_root_ptr option" type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element) Element - = "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) RElement_scheme" + = "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) +RElement_scheme" register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element) Element" type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Node, 'Element) Node - = "(('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) RElement_ext + 'Node) Node" + = "(('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) RElement_ext ++ 'Node) Node" register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Node, 'Element) Node" type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element) Object - = "('Object, ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) RElement_ext + 'Node) Object" + = "('Object, ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) +RElement_ext + 'Node) Object" register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element) Object" type_synonym - ('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element) heap - = "('document_ptr document_ptr + 'shadow_root_ptr shadow_root_ptr + 'object_ptr, 'element_ptr element_ptr + 'character_data_ptr character_data_ptr + 'node_ptr, 'Object, - ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) RElement_ext + 'Node) heap" + ('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, + 'Object, 'Node, 'Element) heap + = "('document_ptr document_ptr + 'shadow_root_ptr shadow_root_ptr + 'object_ptr, +'element_ptr element_ptr + 'character_data_ptr character_data_ptr + 'node_ptr, 'Object, +('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) RElement_ext + +'Node) heap" register_default_tvars - "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element) heap" + "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, +'Object, 'Node, 'Element) heap" type_synonym heap\<^sub>f\<^sub>i\<^sub>n\<^sub>a\<^sub>l = "(unit, unit, unit, unit, unit, unit, unit, unit, unit) heap" definition element_ptr_kinds :: "(_) heap \ (_) element_ptr fset" where - "element_ptr_kinds heap = the |`| (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r |`| (ffilter is_element_ptr_kind (node_ptr_kinds heap)))" + "element_ptr_kinds heap = +the |`| (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r |`| (ffilter is_element_ptr_kind (node_ptr_kinds heap)))" lemma element_ptr_kinds_simp [simp]: - "element_ptr_kinds (Heap (fmupd (cast element_ptr) element (the_heap h))) = {|element_ptr|} |\| element_ptr_kinds h" + "element_ptr_kinds (Heap (fmupd (cast element_ptr) element (the_heap h))) = +{|element_ptr|} |\| element_ptr_kinds h" apply(auto simp add: element_ptr_kinds_def)[1] by force definition element_ptrs :: "(_) heap \ (_) element_ptr fset" where "element_ptrs heap = ffilter is_element_ptr (element_ptr_kinds heap)" definition cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) Node \ (_) Element option" where - "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t node = (case RNode.more node of Inl element \ Some (RNode.extend (RNode.truncate node) element) | _ \ None)" + "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t node = +(case RNode.more node of Inl element \ Some (RNode.extend (RNode.truncate node) element) | _ \ None)" adhoc_overloading cast cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t abbreviation cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) Object \ (_) Element option" where "cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t obj \ (case cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e obj of Some node \ cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t node | None \ None)" adhoc_overloading cast cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t definition cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e :: "(_) Element \ (_) Node" where "cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e element = RNode.extend (RNode.truncate element) (Inl (RNode.more element))" adhoc_overloading cast cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e abbreviation cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t :: "(_) Element \ (_) Object" where "cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr \ cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t (cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr)" adhoc_overloading cast cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t consts is_element_kind :: 'a definition is_element_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e :: "(_) Node \ bool" where "is_element_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr \ cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr \ None" adhoc_overloading is_element_kind is_element_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e lemmas is_element_kind_def = is_element_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def abbreviation is_element_kind\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t :: "(_) Object \ bool" where "is_element_kind\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr \ cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr \ None" adhoc_overloading is_element_kind is_element_kind\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t lemma element_ptr_kinds_commutes [simp]: "cast element_ptr |\| node_ptr_kinds h \ element_ptr |\| element_ptr_kinds h" apply(auto simp add: node_ptr_kinds_def element_ptr_kinds_def)[1] by (metis (no_types, lifting) element_ptr_casts_commute2 ffmember_filter fimage_eqI fset.map_comp is_element_ptr_kind_none node_ptr_casts_commute3 node_ptr_kinds_commutes node_ptr_kinds_def option.sel option.simps(3)) definition get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) element_ptr \ (_) heap \ (_) Element option" where "get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr h = Option.bind (get\<^sub>N\<^sub>o\<^sub>d\<^sub>e (cast element_ptr) h) cast" adhoc_overloading get get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t locale l_type_wf_def\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin definition a_type_wf :: "(_) heap \ bool" where "a_type_wf h = (NodeClass.type_wf h \ (\element_ptr \ fset (element_ptr_kinds h). get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr h \ None))" end global_interpretation l_type_wf_def\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t defines type_wf = a_type_wf . lemmas type_wf_defs = a_type_wf_def locale l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t = l_type_wf type_wf for type_wf :: "((_) heap \ bool)" + assumes type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t: "type_wf h \ ElementClass.type_wf h" sublocale l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t \ l_type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e apply(unfold_locales) using NodeClass.a_type_wf_def by (meson ElementClass.a_type_wf_def l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_axioms l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) locale l_get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas = l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin sublocale l_get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_lemmas by unfold_locales lemma get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_type_wf: assumes "type_wf h" shows "element_ptr |\| element_ptr_kinds h \ get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr h \ None" using l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_axioms assms apply(simp add: type_wf_defs get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) by (metis NodeClass.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf bind_eq_None_conv element_ptr_kinds_commutes notin_fset option.distinct(1)) end global_interpretation l_get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas type_wf by unfold_locales definition put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) element_ptr \ (_) Element \ (_) heap \ (_) heap" where "put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr element = put\<^sub>N\<^sub>o\<^sub>d\<^sub>e (cast element_ptr) (cast element)" adhoc_overloading put put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t lemma put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap: assumes "put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr element h = h'" shows "element_ptr |\| element_ptr_kinds h'" using assms unfolding put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def element_ptr_kinds_def by (metis element_ptr_kinds_commutes element_ptr_kinds_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_ptr_in_heap) lemma put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_put_ptrs: assumes "put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr element h = h'" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast element_ptr|}" using assms by (simp add: put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_put_ptrs) lemma cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_inject [simp]: "cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e x = cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e y \ x = y" apply(simp add: cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def RObject.extend_def RNode.extend_def) by (metis (full_types) RNode.surjective old.unit.exhaust) lemma cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_none [simp]: "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t node = None \ \ (\element. cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e element = node)" apply(auto simp add: cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def RObject.extend_def RNode.extend_def split: sum.splits)[1] by (metis (full_types) RNode.select_convs(2) RNode.surjective old.unit.exhaust) lemma cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_some [simp]: "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t node = Some element \ cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e element = node" by(auto simp add: cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def RObject.extend_def RNode.extend_def split: sum.splits) lemma cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_inv [simp]: "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t (cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e element) = Some element" by simp lemma get_elment_ptr_simp1 [simp]: "get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr (put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr element h) = Some element" by(auto simp add: get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) lemma get_elment_ptr_simp2 [simp]: "element_ptr \ element_ptr' \ get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr (put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr' element h) = get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr h" by(auto simp add: get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) -abbreviation "create_element_obj tag_type_arg child_nodes_arg attrs_arg shadow_root_opt_arg +abbreviation "create_element_obj tag_name_arg child_nodes_arg attrs_arg shadow_root_opt_arg \ \ RObject.nothing = (), RNode.nothing = (), RElement.nothing = (), - tag_type = tag_type_arg, Element.child_nodes = child_nodes_arg, attrs = attrs_arg, + tag_name = tag_name_arg, Element.child_nodes = child_nodes_arg, attrs = attrs_arg, shadow_root_opt = shadow_root_opt_arg, \ = None \" definition new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) heap \ ((_) element_ptr \ (_) heap)" where "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (let new_element_ptr = element_ptr.Ref (Suc (fMax (finsert 0 (element_ptr.the_ref |`| (element_ptrs h))))) in (new_element_ptr, put new_element_ptr (create_element_obj '''' [] fmempty None) h))" lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" shows "new_element_ptr |\| element_ptr_kinds h'" using assms unfolding new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def using put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap by blast lemma new_element_ptr_new: "element_ptr.Ref (Suc (fMax (finsert 0 (element_ptr.the_ref |`| element_ptrs h)))) |\| element_ptrs h" by (metis Suc_n_not_le_n element_ptr.sel(1) fMax_ge fimage_finsert finsertI1 finsertI2 set_finsert) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_not_in_heap: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" shows "new_element_ptr |\| element_ptr_kinds h" using assms unfolding new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def by (metis Pair_inject element_ptrs_def ffmember_filter new_element_ptr_new is_element_ptr_ref) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_new_ptr: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast new_element_ptr|}" using assms by (metis Pair_inject new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_put_ptrs) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_is_element_ptr: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" shows "is_element_ptr new_element_ptr" using assms by(auto simp add: new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t [simp]: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" assumes "ptr \ cast new_element_ptr" shows "get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h = get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h'" using assms by(auto simp add: new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>N\<^sub>o\<^sub>d\<^sub>e [simp]: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" assumes "ptr \ cast new_element_ptr" shows "get\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr h = get\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr h'" using assms by(auto simp add: new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t [simp]: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" assumes "ptr \ new_element_ptr" shows "get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h = get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h'" using assms by(auto simp add: new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def) locale l_known_ptr\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin definition a_known_ptr :: "(_) object_ptr \ bool" where "a_known_ptr ptr = (known_ptr ptr \ is_element_ptr ptr)" lemma known_ptr_not_element_ptr: "\is_element_ptr ptr \ a_known_ptr ptr \ known_ptr ptr" by(simp add: a_known_ptr_def) end global_interpretation l_known_ptr\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t defines known_ptr = a_known_ptr . lemmas known_ptr_defs = a_known_ptr_def locale l_known_ptrs\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t = l_known_ptr known_ptr for known_ptr :: "(_) object_ptr \ bool" begin definition a_known_ptrs :: "(_) heap \ bool" where "a_known_ptrs h = (\ptr \ fset (object_ptr_kinds h). known_ptr ptr)" lemma known_ptrs_known_ptr: "ptr |\| object_ptr_kinds h \ a_known_ptrs h \ known_ptr ptr" apply(simp add: a_known_ptrs_def) using notin_fset by fastforce -lemma known_ptrs_preserved: "object_ptr_kinds h = object_ptr_kinds h' \ a_known_ptrs h = a_known_ptrs h'" +lemma known_ptrs_preserved: + "object_ptr_kinds h = object_ptr_kinds h' \ a_known_ptrs h = a_known_ptrs h'" by(auto simp add: a_known_ptrs_def) -lemma known_ptrs_subset: "object_ptr_kinds h' |\| object_ptr_kinds h \ a_known_ptrs h \ a_known_ptrs h'" +lemma known_ptrs_subset: + "object_ptr_kinds h' |\| object_ptr_kinds h \ a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def less_eq_fset.rep_eq subsetD) -lemma known_ptrs_new_ptr: "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ a_known_ptrs h \ a_known_ptrs h'" +lemma known_ptrs_new_ptr: + "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ +a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def) end global_interpretation l_known_ptrs\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t known_ptr defines known_ptrs = a_known_ptrs . lemmas known_ptrs_defs = a_known_ptrs_def lemma known_ptrs_is_l_known_ptrs: "l_known_ptrs known_ptr known_ptrs" using known_ptrs_known_ptr known_ptrs_preserved known_ptrs_subset known_ptrs_new_ptr l_known_ptrs_def by blast end